1
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Krams I, Trakimas G, Kecko S, Elferts D, Krams R, Luoto S, Rantala MJ, Mänd M, Kuusik A, Kekäläinen J, Jõers P, Kortet R, Krama T. Linking organismal growth, coping styles, stress reactivity, and metabolism via responses against a selective serotonin reuptake inhibitor in an insect. Sci Rep 2018; 8:8599. [PMID: 29872133 PMCID: PMC5988682 DOI: 10.1038/s41598-018-26722-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/15/2018] [Indexed: 01/21/2023] Open
Abstract
Evidence suggests that brain serotonin (5-HT) is one of the central mediators of different types of animal personality. We tested this assumption in field crickets Gryllus integer using a selective serotonin reuptake inhibitor (SSRI). Crickets were selected for slow and rapid development and tested for their coping styles under non-stressful conditions (time spent exploring a novel object). Resting metabolic rate, maximum metabolic rate and latency to resume activity were measured under stressful conditions (stress reactivity). Measurements were taken (i) before and (ii) during the SSRI treatment. Before the SSRI treatment, a strong negative correlation was observed between coping style and stress reactivity, which suggests the existence of a behavioral syndrome. After the SSRI treatment, the syndrome was no longer evident. The results of this study show that 5-HT may be involved in regulating behavior not only along a stress reactivity gradient but also along a coping styles axis. The relationship between personality and the strength and direction of 5-HT treatment on observed behaviors indicates trait-like individual differences in 5-HT signaling. Overall, these findings do not support recent ideas arising from the pace-of-life syndrome (POLS) hypothesis, which predict higher exploration and metabolic rates in rapidly developing bold animals.
Collapse
Affiliation(s)
- Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Rīga, Latvia.
- University of Tennessee, Department of Psychology, Knoxville, USA.
| | - Giedrius Trakimas
- Institute of Biosciences, Vilnius University, Vilnius, Lithuania
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia
| | - Sanita Kecko
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia
| | - Didzis Elferts
- Department of Botany and Ecology, Faculty of Biology, University of Latvia, Rīga, Latvia
| | - Ronalds Krams
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Markus J Rantala
- Department of Biology & Turku Brain and Mind Centre, University of Turku, Turku, Finland
| | - Marika Mänd
- Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian University of Life Science, Tartu, Estonia
| | - Aare Kuusik
- Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian University of Life Science, Tartu, Estonia
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Priit Jõers
- Insttute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Raine Kortet
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tatjana Krama
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia
- Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian University of Life Science, Tartu, Estonia
| |
Collapse
|
3
|
Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster. Neural Plast 2016; 2016:7291438. [PMID: 26989517 PMCID: PMC4773565 DOI: 10.1155/2016/7291438] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 01/13/2023] Open
Abstract
Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity.
Collapse
|
4
|
Badisco L, Van Wielendaele P, Vanden Broeck J. Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Front Physiol 2013; 4:202. [PMID: 23966944 PMCID: PMC3735985 DOI: 10.3389/fphys.2013.00202] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/17/2013] [Indexed: 01/25/2023] Open
Abstract
Insects, like all heterotrophic organisms, acquire from their food the nutrients that are essential for anabolic processes that lead to growth (larval stages) or reproduction (adult stage). In adult females, this nutritional input is processed and results in a very specific output, i.e., the production of fully developed eggs ready for fertilization and deposition. An important role in this input-output transition is attributed to the insulin signaling pathway (ISP). The ISP is considered to act as a sensor of the organism's nutritional status and to stimulate the progression of anabolic events when the status is positive. In several insect species belonging to different orders, the ISP has been demonstrated to positively control vitellogenesis and oocyte growth. Whether or not ISP acts herein via a mediator action of lipophilic insect hormones (ecdysteroids and juvenile hormone) remains debatable and might be differently controlled in different insect orders. Most likely, insulin-related peptides, ecdysteroids and juvenile hormone are involved in a complex regulatory network, in which they mutually influence each other and in which the insect's nutritional status is a crucial determinant of the network's output. The current review will present an overview of the regulatory role of the ISP in female insect reproduction and its interaction with other pathways involving nutrients, lipophilic hormones and neuropeptides.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Research Group of Molecular Developmental Physiology and Signal Transduction KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
5
|
Van Wielendaele P, Badisco L, Vanden Broeck J. Neuropeptidergic regulation of reproduction in insects. Gen Comp Endocrinol 2013; 188:23-34. [PMID: 23454669 DOI: 10.1016/j.ygcen.2013.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/01/2013] [Accepted: 02/10/2013] [Indexed: 12/17/2022]
Abstract
Successful animal reproduction depends on multiple physiological and behavioral processes that take place in a timely and orderly manner in both mating partners. It is not only necessary that all relevant processes are well coordinated, they also need to be adjusted to external factors of abiotic and biotic nature (e.g. population density, mating partner availability). Therefore, it is not surprising that several hormonal factors play a crucial role in the regulation of animal reproductive physiology. In insects (the largest class of animals on planet Earth), lipophilic hormones, such as ecdysteroids and juvenile hormones, as well as several neuropeptides take part in this complex regulation. While some peptides can affect reproduction via an indirect action (e.g. by influencing secretion of juvenile hormone), others exert their regulatory activity by directly targeting the reproductive system. In addition to insect peptides with proven activities, several others were suggested to also play a role in the regulation of reproductive physiology. Because of the long evolutionary history of many insect orders, it is not always clear to what extent functional data obtained in a given species can be extrapolated to other insect taxa. In this paper, we will review the current knowledge concerning the neuropeptidergic regulation of insect reproduction and situate it in a more general physiological context.
Collapse
Affiliation(s)
- Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, University of Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
6
|
Gospodaryov DV, Yurkevych IS, Jafari M, Lushchak VI, Lushchak OV. Lifespan extension and delay of age-related functional decline caused by Rhodiola rosea depends on dietary macronutrient balance. LONGEVITY & HEALTHSPAN 2013; 2:5. [PMID: 24472572 PMCID: PMC3922952 DOI: 10.1186/2046-2395-2-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 02/11/2013] [Indexed: 01/04/2023]
Abstract
Background This study was conducted to evaluate the effects of rhizome powder from the herb Rhodiola rosea, a traditional Western Ukraine medicinal adaptogen, on lifespan and age-related physiological functions of the fruit fly Drosophila melanogaster. Results Flies fed food supplemented with 5.0 mg/ml and 10.0 mg/ml of R. rosea rhizome powder had a 14% to 17% higher median lifespan, whereas at 30.0 mg/ml lifespan was decreased by 9% to 12%. The preparation did not decrease fly fecundity. The effect of R. rosea supplement on lifespan was dependent on diet composition. Lifespan extension by 15% to 21% was observed only for diets with protein-to-carbohydrate ratios less than 1. Lifespan extension was also dependent on total concentration of macronutrients. Thus, for the diet with 15% yeast and 15% sucrose there was no lifespan extension, while for the diet with protein-to-carbohydrate ratio 20:1 R. rosea decreased lifespan by about 10%. Flies fed Rhodiola preparation were physically more active, less sensitive to the redox-cycling compound menadione and had a longer time of heat coma onset compared with controls. Positive effects of Rhodiola rhizome on stress resistance and locomotor activity were highest at the ‘middle age’. Conclusions The present data show that long-term food supplementation with R. rosea rhizome not only increases D. melanogaster lifespan, but also delays age-related decline of physical activity and increases stress resistance, what depends on protein-to-carbohydrate ratio of the diet.
Collapse
Affiliation(s)
| | | | | | | | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
7
|
Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1832:905-10. [PMID: 23032152 PMCID: PMC3793867 DOI: 10.1016/j.bbadis.2012.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/15/2012] [Accepted: 09/22/2012] [Indexed: 12/22/2022]
Abstract
The molecule serotonin (5-hydroxytryptamine or 5-HT) is involved in numerous biological processes both inside and outside of the central nervous system. 5-HT signals through 5-HT receptors and it is the diversity of these receptors and their subtypes that give rise to the varied physiological responses. It is clear that platelet derived serotonin is critical for normal wound healing in multiple organs including, liver, lung heart and skin. 5-HT stimulates both vasoconstriction and vasodilation, influences inflammatory responses and promotes formation of a temporary scar which acts as a scaffold for normal tissue to be restored. However, in situations of chronic injury or damage 5-HT signaling can have deleterious effects and promote aberrant wound healing resulting in tissue fibrosis and impaired organ regeneration. This review highlights the diverse actions of serotonin signaling in the pathogenesis of fibrotic disease and explores how modulating the activity of specific 5-HT receptors, in particular the 5-HT2 subclass could have the potential to limit fibrosis and restore tissue regeneration. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
8
|
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63:411-36. [PMID: 21415126 PMCID: PMC3082451 DOI: 10.1124/pr.110.003293] [Citation(s) in RCA: 718] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process.
Collapse
Affiliation(s)
- Udai Bhan Pandey
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | | |
Collapse
|
9
|
Abstract
The insulin signalling pathway is highly conserved from mammals to Drosophila. Insulin signalling in the fly, as in mammals, regulates a number of physiological functions, including carbohydrate and lipid metabolism, tissue growth and longevity. In the present review, I discuss the molecular mechanisms by which insulin signalling regulates metabolism in Drosophila, comparing and contrasting with the mammalian system. I discuss both the intracellular signalling network, as well as the communication between organs in the fly.
Collapse
|
10
|
Inositol 1,4,5- trisphosphate receptor function in Drosophila insulin producing cells. PLoS One 2009; 4:e6652. [PMID: 19680544 PMCID: PMC2721413 DOI: 10.1371/journal.pone.0006652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 07/13/2009] [Indexed: 01/26/2023] Open
Abstract
The Inositol 1,4,5- trisphosphate receptor (InsP3R) is an intracellular ligand gated channel that releases calcium from intracellular stores in response to extracellular signals. To identify and understand physiological processes and behavior that depends on the InsP3 signaling pathway at a systemic level, we are studying Drosophila mutants for the InsP3R (itpr) gene. Here, we show that growth defects precede larval lethality and both are a consequence of the inability to feed normally. Moreover, restoring InsP3R function in insulin producing cells (IPCs) in the larval brain rescues the feeding deficit, growth and lethality in the itpr mutants to a significant extent. We have previously demonstrated a critical requirement for InsP3R activity in neuronal cells, specifically in aminergic interneurons, for larval viability. Processes from the IPCs and aminergic domain are closely apposed in the third instar larval brain with no visible cellular overlap. Ubiquitous depletion of itpr by dsRNA results in feeding deficits leading to larval lethality similar to the itpr mutant phenotype. However, when itpr is depleted specifically in IPCs or aminergic neurons, the larvae are viable. These data support a model where InsP3R activity in non-overlapping neuronal domains independently rescues larval itpr phenotypes by non-cell autonomous mechanisms.
Collapse
|