1
|
McGlacken-Byrne SM, Del Valle I, Xenakis T, Simcock IC, Suntharalingham JP, Buonocore F, Crespo B, Moreno N, Liptrot D, Niola P, Brooks T, Conway GS, Dattani MT, Arthurs OJ, Solanky N, Achermann JC. Mapping the anatomical and transcriptional landscape of early human fetal ovary development. Sci Rep 2025; 15:15814. [PMID: 40328871 PMCID: PMC12055976 DOI: 10.1038/s41598-025-96135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/26/2025] [Indexed: 05/08/2025] Open
Abstract
The complex genetic mechanisms underlying human ovary development can give rise to clinical phenotypes if disrupted, such as Primary (or Premature) Ovarian Insufficiency and Differences of Sex Development. We combine single-nuclei RNA sequencing, bulk RNA sequencing, and micro-focus computed tomography to elucidate the anatomy and transcriptional landscape of the human fetal ovary across key developmental timepoints (Carnegie Stage 22 until 20 weeks post conception). We show the marked growth and distinct morphological changes within the fetal ovary at the critical timepoint of germ cell expansion and demonstrate that the fetal ovary becomes more transcriptomically distinct from the testis with age. We describe previously uncharacterised ovary developmental pathways, relating to neuroendocrine signalling, energy homeostasis, mitochondrial networks, and inflammasome regulation. We define transcriptional regulators and candidate genes for meiosis within the developing ovary. Together, this work advances our fundamental understanding of human ovary development and has relevance for human ovarian insufficiency phenotypes.
Collapse
Affiliation(s)
- Sinead M McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK.
| | - Ignacio Del Valle
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Theodoros Xenakis
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Ian C Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
- NIHR Great Ormond Street Biomedical Research Centre, London, WC1N 1EH, UK
| | - Jenifer P Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Berta Crespo
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Nadjeda Moreno
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Danielle Liptrot
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Paola Niola
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
| | - Tony Brooks
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
| | - Gerard S Conway
- Institute for Women's Health, University College London, London, WC1E 6AU, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Owen J Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
- NIHR Great Ormond Street Biomedical Research Centre, London, WC1N 1EH, UK
| | - Nita Solanky
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - John C Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
2
|
Lu L, Wang T, Liu A, Ye H. A Single-Cell Atlas of Crab Ovary Provides New Insights Into Oogenesis in Crustaceans. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409688. [PMID: 39555715 PMCID: PMC11727118 DOI: 10.1002/advs.202409688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Oogenesis is crucial for sexual reproduction and provides the material basis for population continuation. Nonetheless, the identity of the cells involved, the nature of transformation, and underlying regulators of oogenesis in crustaceans remain elusive. Here, an atlas of the ovary is plotted via single-nuclei RNA sequencing (snRNA-seq) in the mud crab Scylla paramamosain, resulting in five cell types, including germ cells, somatic cells, and three follicle cell types identified, which in turn provides abundant candidate markers for them. Moreover, profiles of ligand-receptor in different cells of the crab ovary indicate the roles of cell communication in oogenesis. Dozens of transcription factors in the trajectory from oogonia to oocytes as well as the key molecules/pathways in somatic cells and follicle cells relevant to oogenesis are screened, which is evolutionarily conserved and its underlying regulatory mechanism is subject to some modification across various phyla. The spatiotemporal expression patterns of seven markers are further verified and the RNAi confirms the essential roles of piwi and VgR in oogenesis. These data help to elucidate the mechanism underlying gametogenesis and the evolution of reproductive strategy in invertebrates.
Collapse
Affiliation(s)
- Li Lu
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - Tao Wang
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - An Liu
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - Haihui Ye
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| |
Collapse
|
3
|
He J, Kang L. Regulation of insect behavior by non-coding RNAs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1106-1118. [PMID: 38443665 DOI: 10.1007/s11427-023-2482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 03/07/2024]
Abstract
The adaptation of insects to environments relies on a sophisticated set of behaviors controlled by molecular and physiological processes. Over the past several decades, accumulating studies have unveiled the roles of non-coding RNAs (ncRNAs) in regulating insect behaviors. ncRNAs assume particularly pivotal roles in the behavioral plasticity of insects by rapidly responding to environmental stimuli. ncRNAs also contribute to the maintenance of homeostasis of insects by fine-tuning the expression of target genes. However, a comprehensive review of ncRNAs' roles in regulating insect behaviors has yet to be conducted. Here, we present the recent progress in our understanding of how ncRNAs regulate various insect behaviors, including flight and movement, social behavior, reproduction, learning and memory, and feeding. We refine the intricate mechanisms by which ncRNAs modulate the function of neural, motor, reproductive, and other physiological systems, as well as gene expression in insects like fruit flies, social insects, locusts, and mosquitos. Furthermore, we discuss potential avenues for future studies in ncRNA-mediated insect behaviors.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Onishi R, Yamanaka S, Siomi MC. piRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO Rep 2021; 22:e53062. [PMID: 34347367 PMCID: PMC8490990 DOI: 10.15252/embr.202153062] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The PIWI‐interacting RNA (piRNA) pathway acts as a self‐defense mechanism against transposons to maintain germline genome integrity. Failures in the piRNA pathway cause DNA damage in the germline genome, disturbing inheritance of “correct” genetic information by the next generations and leading to infertility. piRNAs execute transposon repression in two ways: degrading their RNA transcripts and compacting the genomic loci via heterochromatinization. The former event is mechanistically similar to siRNA‐mediated RNA cleavage that occurs in the cytoplasm and has been investigated in many species including nematodes, fruit flies, and mammals. The latter event seems to be mechanistically parallel to siRNA‐centered kinetochore assembly and subsequent chromosome segregation, which has so far been studied particularly in fission yeast. Despite the interspecies conservations, the overall schemes of the nuclear events show clear biodiversity across species. In this review, we summarize the recent progress regarding piRNA‐mediated transcriptional silencing in Drosophila and discuss the biodiversity by comparing it with the equivalent piRNA‐mediated system in mice and the siRNA‐mediated system in fission yeast.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Fernández R, Marcet-Houben M, Legeai F, Richard G, Robin S, Wucher V, Pegueroles C, Gabaldón T, Tagu D. Selection following Gene Duplication Shapes Recent Genome Evolution in the Pea Aphid Acyrthosiphon pisum. Mol Biol Evol 2021; 37:2601-2615. [PMID: 32359152 PMCID: PMC7475028 DOI: 10.1093/molbev/msaa110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ecology of insects is as wide as their diversity, which reflects their high capacity of adaptation in most of the environments of our planet. Aphids, with over 4,000 species, have developed a series of adaptations including a high phenotypic plasticity and the ability to feed on the phloem sap of plants, which is enriched in sugars derived from photosynthesis. Recent analyses of aphid genomes have indicated a high level of shared ancestral gene duplications that might represent a basis for genetic innovation and broad adaptations. In addition, there are a large number of recent, species-specific gene duplications whose role in adaptation remains poorly understood. Here, we tested whether duplicates specific to the pea aphid Acyrthosiphon pisum are related to genomic innovation by combining comparative genomics, transcriptomics, and chromatin accessibility analyses. Consistent with large levels of neofunctionalization, we found that most of the recent pairs of gene duplicates evolved asymmetrically, showing divergent patterns of positive selection and gene expression. Genes under selection involved a plethora of biological functions, suggesting that neofunctionalization and tissue specificity, among other evolutionary mechanisms, have orchestrated the evolution of recent paralogs in the pea aphid and may have facilitated host-symbiont cooperation. Our comprehensive phylogenomics analysis allowed us to tackle the history of duplicated genes to pave the road toward understanding the role of gene duplication in ecological adaptation.
Collapse
Affiliation(s)
- Rosa Fernández
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.,Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Fabrice Legeai
- IGEPP, INRAE, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France.,INRIA, IRISA, Genscale, Campus Beaulieu, Rennes, France
| | - Gautier Richard
- IGEPP, INRAE, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Stéphanie Robin
- IGEPP, INRAE, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France.,INRIA, IRISA, GenOuest Core Facility, Campus Beaulieu, Rennes, France
| | - Valentin Wucher
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Cinta Pegueroles
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.,Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Denis Tagu
- IGEPP, INRAE, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| |
Collapse
|
6
|
Tsai SY, Huang F. Acetyltransferase Enok regulates transposon silencing and piRNA cluster transcription. PLoS Genet 2021; 17:e1009349. [PMID: 33524038 PMCID: PMC7877743 DOI: 10.1371/journal.pgen.1009349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2021] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
The piRNA pathway is a highly conserved mechanism to repress transposon activation in the germline in Drosophila and mammals. This pathway starts from transcribing piRNA clusters to generate long piRNA precursors. The majority of piRNA clusters lack conventional promoters, and utilize heterochromatin- and HP1D/Rhino-dependent noncanonical mechanisms for transcription. However, information regarding the transcriptional regulation of piRNA clusters is limited. Here, we report that the Drosophila acetyltransferase Enok, which can activate transcription by acetylating H3K23, is critical for piRNA production from 54% of piRNA clusters including 42AB, the major piRNA source. Surprisingly, we found that Enok not only promotes rhino expression by acetylating H3K23, but also directly enhances transcription of piRNA clusters by facilitating Rhino recruitment. Taken together, our study provides novel insights into the regulation of noncanonical transcription at piRNA clusters and transposon silencing. Roughly half of our genome is composed of transposons. Activation of those transposons in the germline will result in severe DNA damages and infertility. The PIWI-interacting RNA (piRNA) pathway, which is highly conserved between mammals and flies, is a key mechanism to suppress transposon activation in the germline. Here, we identified the fly acetyltransferase Enok as a novel regulator functioning in the early steps of this pathway. We found that Enok can promote the expression of three genes involved in piRNA production by acetylating histone H3 lysine 23 (H3K23). We also demonstrated that Enok regulates the recruitment of Rhi, a factor critical for transcription initiation at piRNA-generating loci, to a subset of those loci, and therefore enhances their transcription. Our findings reveal an upstream regulator in the piRNA pathway and advance our understanding regarding the molecular mechanism of transposon silencing.
Collapse
Affiliation(s)
- Shih-Ying Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Onishi R, Sato K, Murano K, Negishi L, Siomi H, Siomi MC. Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. SCIENCE ADVANCES 2020; 6:6/50/eaaz7420. [PMID: 33310860 PMCID: PMC7732180 DOI: 10.1126/sciadv.aaz7420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/19/2020] [Indexed: 05/05/2023]
Abstract
Drosophila Piwi associates with PIWI-interacting RNAs (piRNAs) and represses transposons transcriptionally through heterochromatinization; however, this process is poorly understood. Here, we identify Brahma (Brm), the core adenosine triphosphatase of the SWI/SNF chromatin remodeling complex, as a new Piwi interactor, and show Brm involvement in activating transcription of Piwi-targeted transposons before silencing. Bioinformatic analyses indicated that Piwi, once bound to target RNAs, reduced the occupancies of SWI/SNF and RNA polymerase II (Pol II) on target loci, abrogating transcription. Artificial piRNA-driven targeting of Piwi to RNA transcripts enhanced repression of Brm-dependent reporters compared with Brm-independent reporters. This was dependent on Piwi cofactors, Gtsf1/Asterix (Gtsf1), Panoramix/Silencio (Panx), and Maelstrom (Mael), but not Eggless/dSetdb (Egg)-mediated H3K9me3 deposition. The λN-box B-mediated tethering of Mael to reporters repressed Brm-dependent genes in the absence of Piwi, Panx, and Gtsf1. We propose that Piwi, via Mael, can rapidly suppress transcription of Brm-dependent genes to facilitate heterochromatin formation.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Lumi Negishi
- Central Laboratory, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
8
|
Hsu SJ, Stow EC, Simmons JR, Wallace HA, Lopez AM, Stroud S, Labrador M. Mutations in the insulator protein Suppressor of Hairy wing induce genome instability. Chromosoma 2020; 129:255-274. [PMID: 33140220 DOI: 10.1007/s00412-020-00743-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Insulator proteins orchestrate the three-dimensional organization of the genome. Insulators function by facilitating communications between regulatory sequences and gene promoters, allowing accurate gene transcription regulation during embryo development and cell differentiation. However, the role of insulator proteins beyond genome organization and transcription regulation remains unclear. Suppressor of Hairy wing [Su(Hw)] is a Drosophila insulator protein that plays an important function in female oogenesis. Here we find that su(Hw) has an unsuspected role in genome stability during cell differentiation. We show that su(Hw) mutant developing egg chambers have poorly formed microtubule organization centers (MTOCs) in the germarium and display mislocalization of the anterior/posterior axis specification factor gurken in later oogenesis stages. Additionally, eggshells from partially rescued su(Hw) mutant female germline exhibit dorsoventral patterning defects. These phenotypes are very similar to phenotypes found in the important class of spindle mutants or in piRNA pathway mutants in Drosophila, in which defects generally result from the failure of germ cells to repair DNA damage. Similarities between mutations in su(Hw) and spindle and piRNA mutants are further supported by an excess of DNA damage in nurse cells, and because Gurken localization defects are partially rescued by mutations in the ATR (mei-41) and Chk1 (grapes) DNA damage response genes. Finally, we also show that su(Hw) mutants produce an elevated number of chromosome breaks in dividing neuroblasts from larval brains. Together, these findings suggest that Su(Hw) is necessary for the maintenance of genome integrity during Drosophila development, in both germline and dividing somatic cells.
Collapse
Affiliation(s)
- Shih-Jui Hsu
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Emily C Stow
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Heather A Wallace
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Andrea Mancheno Lopez
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Shannon Stroud
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Lin KY, Wang WD, Lin CH, Rastegari E, Su YH, Chang YT, Liao YF, Chang YC, Pi H, Yu BY, Chen SH, Lin CY, Lu MY, Su TY, Tzou FY, Chan CC, Hsu HJ. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat Commun 2020; 11:3147. [PMID: 32561720 PMCID: PMC7305233 DOI: 10.1038/s41467-020-16858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade β-catenin. Disruption of β-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and β-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Der Wang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Tzu Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chieh Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Haiwei Pi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Bo-Yi Yu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
10
|
Venkei ZG, Choi CP, Feng S, Chen C, Jacobsen SE, Kim JK, Yamashita YM. A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage. PLoS Genet 2020; 16:e1008648. [PMID: 32168327 PMCID: PMC7094869 DOI: 10.1371/journal.pgen.1008648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/25/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
The piRNA pathway protects germline genomes from selfish genetic elements (e.g. transposons) through their transcript cleavage in the cytoplasm and/or their transcriptional silencing in the nucleus. Here, we describe a mechanism by which the nuclear and cytoplasmic arms of the piRNA pathway are linked. We find that during mitosis of Drosophila spermatogonia, nuclear Piwi interacts with nuage, the compartment that mediates the cytoplasmic arm of the piRNA pathway. At the end of mitosis, Piwi leaves nuage to return to the nucleus. Dissociation of Piwi from nuage occurs at the depolymerizing microtubules of the central spindle, mediated by a microtubule-depolymerizing kinesin, Klp10A. Depletion of klp10A delays the return of Piwi to the nucleus and affects piRNA production, suggesting the role of nuclear-cytoplasmic communication in piRNA biogenesis. We propose that cell cycle-dependent communication between the nuclear and cytoplasmic arms of the piRNA pathway may play a previously unappreciated role in piRNA regulation. The piRNA pathway that defends germline from selfish elements operates in two subpathways, one mediated by Piwi in Drosophila to silence transcription of targets in the nucleus and the other mediated by Aub and Ago3 to cleave transcripts of targets in the cytoplasm. How these two subpathways might coordinate with each other, particularly at the cell biological level, remains elusive. This study shows that Piwi interacts with Aub/Ago3 specifically in mitosis in nuage, the organelle that serves as the platform for piRNA cytoplasmic subpathway. Piwi returns to the nucleus at the end of mitosis, and our study suggests that dissociation of Piwi from nuage is facilitated by microtubule depolymerization by a kinesin Klp10A at the central spindle. We propose that cell-cycle-dependent interaction of two piRNA subpathways may play an important role in piRNA production.
Collapse
Affiliation(s)
- Zsolt G. Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charlotte P. Choi
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
| | - Cuie Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - John K. Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yukiko M. Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Murano K, Iwasaki YW, Ishizu H, Mashiko A, Shibuya A, Kondo S, Adachi S, Suzuki S, Saito K, Natsume T, Siomi MC, Siomi H. Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J 2019; 38:e102870. [PMID: 31368590 PMCID: PMC6717896 DOI: 10.15252/embj.2019102870] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway preserves genomic integrity by repressing transposable elements (TEs) in animal germ cells. Among PIWI-clade proteins in Drosophila, Piwi transcriptionally silences its targets through interactions with cofactors, including Panoramix (Panx) and forms heterochromatin characterized by H3K9me3 and H1. Here, we identified Nxf2, a nuclear RNA export factor (NXF) variant, as a protein that forms complexes with Piwi, Panx, and p15. Panx-Nxf2-P15 complex formation is necessary in the silencing by stabilizing protein levels of Nxf2 and Panx. Notably, ectopic targeting of Nxf2 initiates co-transcriptional repression of the target reporter in a manner independent of H3K9me3 marks or H1. However, continuous silencing requires HP1a and H1. In addition, Nxf2 directly interacts with target TE transcripts in a Piwi-dependent manner. These findings suggest a model in which the Panx-Nxf2-P15 complex enforces the association of Piwi with target transcripts to trigger co-transcriptional repression, prior to heterochromatin formation in the nuclear piRNA pathway. Our results provide an unexpected connection between an NXF variant and small RNA-mediated co-transcriptional silencing.
Collapse
Affiliation(s)
- Kensaku Murano
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Yuka W Iwasaki
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Hirotsugu Ishizu
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Akane Mashiko
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
- Graduate School of EngineeringYokohama National UniversityYokohamaJapan
| | - Aoi Shibuya
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Shu Kondo
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Saori Suzuki
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Kuniaki Saito
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Haruhiko Siomi
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
12
|
Wang C, Yang ZZ, Guo FH, Shi S, Han XS, Zeng A, Lin H, Jing Q. Heat shock protein DNAJA1 stabilizes PIWI proteins to support regeneration and homeostasis of planarian Schmidtea mediterranea. J Biol Chem 2019; 294:9873-9887. [PMID: 31076507 DOI: 10.1074/jbc.ra118.004445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
PIWI proteins are key regulators of germline and somatic stem cells throughout different evolutionary lineages. However, how PIWI proteins themselves are regulated remains largely unknown. To identify candidate proteins that interact with PIWI proteins and regulate their stability, here we established a yeast two-hybrid (Y2H) assay in the planarian species Schmidtea mediterranea We show that DNAJA1, a heat shock protein 40 family member, interacts with the PIWI protein SMEDWI-2, as validated by the Y2H screen and co-immunoprecipitation assays. We found that DNAJA1 is enriched in planarian adult stem cells, the nervous system, and intestinal tissues. DNAJA1-knockdown abolished planarian regeneration and homeostasis, compromised stem cell maintenance and PIWI-interacting RNA (piRNA) biogenesis, and deregulated SMEDWI-1/2 target genes. Mechanistically, we observed that DNAJA1 is required for the stability of SMEDWI-1 and SMEDWI-2 proteins. Furthermore, we noted that human DNAJA1 binds to Piwi-like RNA-mediated gene silencing 1 (PIWIL1) and is required for PIWIL1 stability in human gastric cancer cells. In summary, our results reveal not only an evolutionarily conserved functional link between PIWI and DNAJA1 that is essential for PIWI protein stability and piRNA biogenesis, but also an important role of DNAJA1 in the control of proteins involved in stem cell regulation.
Collapse
Affiliation(s)
- Chen Wang
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.,the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Zhen-Zhen Yang
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fang-Hao Guo
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Shuo Shi
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Shuai Han
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - An Zeng
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Haifan Lin
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China, .,the Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06511
| | - Qing Jing
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| |
Collapse
|
13
|
Cusumano P, Damulewicz M, Carbognin E, Caccin L, Puricella A, Specchia V, Bozzetti MP, Costa R, Mazzotta GM. The RNA Helicase BELLE Is Involved in Circadian Rhythmicity and in Transposons Regulation in Drosophila melanogaster. Front Physiol 2019; 10:133. [PMID: 30842743 PMCID: PMC6392097 DOI: 10.3389/fphys.2019.00133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Circadian clocks control and synchronize biological rhythms of several behavioral and physiological phenomena in most, if not all, organisms. Rhythm generation relies on molecular auto-regulatory oscillations of interlocked transcriptional-translational feedback loops. Rhythmic clock-gene expression is at the base of rhythmic protein accumulation, though post-transcriptional and post-translational mechanisms have evolved to adjust and consolidate the proper pace of the clock. In Drosophila, BELLE, a conserved DEAD-box RNA helicase playing important roles in reproductive capacity, is involved in the small RNA-mediated regulation associated to the piRNA pathway. Here, we report that BELLE is implicated in the circadian rhythmicity and in the regulation of endogenous transposable elements (TEs) in both nervous system and gonads. We suggest that BELLE acts as important element in the piRNA-mediated regulation of the TEs and raise the hypothesis that this specific regulation could represent another level of post-transcriptional control adopted by the clock to ensure the proper rhythmicity.
Collapse
Affiliation(s)
- Paola Cusumano
- Department of Biology, University of Padua, Padua, Italy
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | | - Laura Caccin
- Department of Biology, University of Padua, Padua, Italy
| | - Antonietta Puricella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | | |
Collapse
|
14
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
15
|
Bothun AM, Gao Y, Takai Y, Ishihara O, Seki H, Karger B, Tilly JL, Woods DC. Quantitative Proteomic Profiling of the Human Ovary from Early to Mid-Gestation Reveals Protein Expression Dynamics of Oogenesis and Folliculogenesis. Stem Cells Dev 2018; 27:723-735. [PMID: 29631484 DOI: 10.1089/scd.2018.0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The in vivo gene networks involved in coordinating human fetal ovarian development remain obscure. In this study, quantitative mass spectrometry was conducted on ovarian tissue collected at key stages during the first two trimesters of human gestational development, confirming the expression profiling data using immunofluorescence, as well as in vitro modeling with human oogonial stem cells (OSCs) and human embryonic stem cells (ESCs). A total of 3,837 proteins were identified in samples spanning developmental days 47-137. Bioinformatics clustering and Ingenuity Pathway Analysis identified DNA mismatch repair and base excision repair as major pathways upregulated during this time. In addition, MAEL and TEX11, two key meiosis-related proteins, were identified as highly expressed during the developmental window associated with fetal oogenesis. These findings were confirmed and extended using in vitro differentiation of OSCs into in vitro derived oocytes and of ESCs into primordial germ cell-like cells and oocyte-like cells, as models. In conclusion, the global protein expression profiling data generated by this study have provided novel insights into human fetal ovarian development in vivo and will serve as a valuable new resource for future studies of the signaling pathways used to orchestrate human oogenesis and folliculogenesis.
Collapse
Affiliation(s)
- Alisha M Bothun
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| | - Yuanwei Gao
- 2 Department of Chemistry & Chemical Biology, The Barnett Institute for Chemical and Biological Analysis, Northeastern University , Boston, Massachusetts
| | - Yasushi Takai
- 3 Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Osamu Ishihara
- 4 Department of Obstetrics and Gynecology, Saitama Medical University , Saitama, Japan
| | - Hiroyuki Seki
- 3 Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Barry Karger
- 2 Department of Chemistry & Chemical Biology, The Barnett Institute for Chemical and Biological Analysis, Northeastern University , Boston, Massachusetts
| | - Jonathan L Tilly
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| | - Dori C Woods
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| |
Collapse
|
16
|
Ma X, Zhu X, Han Y, Story B, Do T, Song X, Wang S, Zhang Y, Blanchette M, Gogol M, Hall K, Peak A, Anoja P, Xie T. Aubergine Controls Germline Stem Cell Self-Renewal and Progeny Differentiation via Distinct Mechanisms. Dev Cell 2017; 41:157-169.e5. [DOI: 10.1016/j.devcel.2017.03.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/10/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
|
17
|
Pridöhl F, Weißkopf M, Koniszewski N, Sulzmaier A, Uebe S, Ekici AB, Schoppmeier M. Transcriptome sequencing reveals maelstrom as a novel target gene of the terminal-system in the red flour beetle Tribolium castaneum. Development 2017; 144:1339-1349. [DOI: 10.1242/dev.136853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 02/07/2017] [Indexed: 12/30/2022]
Abstract
Terminal regions of the Drosophila embryo are patterned by the localized activation of the Torso-RTK pathway, which promotes the down-regulation of Capicua. In the short-germ beetle Tribolium, the function of the terminal system appears to be rather different, as the pathway promotes axis elongation and in addition, is required for patterning the extraembryonic serosa at the anterior. Here we show that Torso signalling induces gene expression by relieving CAPICUA-mediated repression also in Tribolium. Given that the majority of Torso target genes remain to be identified, we established a differential gene-expression screen. A subset of 50 putative terminal target genes was screened for functions in early embryonic patterning. Of those, 13 genes show early terminal expression domains and also phenotypes were related to terminal patterning. Among others, we found the PIWI-interacting RNA factor Maelstrom to be crucial for early embryonic polarization. Tc-mael is required for proper serosal size regulation and head morphogenesis. Moreover, Tc-mael promotes growth-zone formation and axis elongation. Our results suggest that posterior patterning by Torso may be realized through Maelstrom depended activation of posterior wnt-domains.
Collapse
Affiliation(s)
- Fabian Pridöhl
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany, phone: ++49-9131-8528097, fax: ++49-9131-8528040
| | - Matthias Weißkopf
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany, phone: ++49-9131-8528097, fax: ++49-9131-8528040
| | - Nikolaus Koniszewski
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany, phone: ++49-9131-8528097, fax: ++49-9131-8528040
- present address: Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany, phone: ++49-391-6721834, fax: ++49-391-6713384
| | - Andreas Sulzmaier
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany, phone: ++49-9131-8528097, fax: ++49-9131-8528040
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany, phone: ++49-9131 8522318, fax: ++49-9131 85-23232
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany, phone: ++49-9131 8522318, fax: ++49-9131 85-23232
| | - Michael Schoppmeier
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany, phone: ++49-9131-8528097, fax: ++49-9131-8528040
| |
Collapse
|
18
|
Taning CNT, Andrade EC, Hunter WB, Christiaens O, Smagghe G. Asian Citrus Psyllid RNAi Pathway - RNAi evidence. Sci Rep 2016; 6:38082. [PMID: 27901078 PMCID: PMC5128860 DOI: 10.1038/srep38082] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Abstract
Diaphorina citri, known as the Asian citrus psyllid, is an important pest of citrus because it transmits a phloem-limited bacteria strongly implicated in huanglongbing (citrus greening disease). Emerging biotechnologies, such as RNA interference, could provide a new sustainable and environmentally friendly strategy for the management of this pest. In this study, genome and functional analysis were performed to verify whether the RNAi core genes are present in the Asian psyllid genome and if the RNAi machinery could be exploited to develop a management strategy for this pest. Analyses of RNAi-related genes in the Asian citrus psyllid genome showed an absence of sequences encoding R2D2, a dsRNA-binding protein that functions as a cofactor of Dicer-2 in Drosophila. Nevertheless, bioassays using an in Planta System showed that the Asian citrus psyllid was very sensitive to ingested dsRNA, demonstrating a strong RNAi response. A small dose of dsRNA administered through a citrus flush was enough to trigger the RNAi mechanism, causing significant suppression of the targeted transcript, and increased psyllid mortality. This study provides evidence of a functional RNAi machinery, which could be further exploited to develop RNAi based management strategies for the control of the Asian citrus psyllid.
Collapse
Affiliation(s)
- Clauvis N. T. Taning
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Eduardo C. Andrade
- EMBRAPA Cassava and Fruits, Rua Embrapa, s/n, Cruz das Almas, Bahia, Cep 44380-000, Brazil
| | - Wayne B. Hunter
- U.S. Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
19
|
Zobel T, Brinkmann K, Koch N, Schneider K, Seemann E, Fleige A, Qualmann B, Kessels MM, Bogdan S. Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-cadherin in epithelial morphogenesis. J Cell Sci 2016; 128:499-515. [PMID: 25413347 DOI: 10.1242/jcs.155929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
F-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.Whereas single mutant flies are viable and fertile, combined loss of nostrin and cip4 results in reduced viability and fertility. Double mutant escaper flies show enhanced wing polarization defects and females exhibit strong egg chamber encapsulation defects. Live imaging analysis suggests that the observed phenotypes are caused by an impaired turnover of E-cadherin at the membrane. Simultaneous knockdown of Cip4 and Nostrin strongly increases the formation of tubular E-cadherin vesicles at adherens junctions. Cip4 and Nostrin localize at distinct membrane subdomains. Both proteins prefer similar membrane curvatures but seem to form distinct membrane coats and do not heterooligomerize. Our data suggest an important synergistic function of both F-BAR proteins in membrane dynamics. We propose a cooperative recruitment model, in which Cip4 initially promotes membrane invagination and early-actin-based endosomal motility, and Nostrin makes contacts with microtubules through the kinesin Khc-73 for trafficking of recycling endosomes.
Collapse
|
20
|
Tóth KF, Pezic D, Stuwe E, Webster A. The piRNA Pathway Guards the Germline Genome Against Transposable Elements. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:51-77. [PMID: 26659487 DOI: 10.1007/978-94-017-7417-8_4] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transposable elements (TEs) have the capacity to replicate and insert into new genomic locations. This contributs significantly to evolution of genomes, but can also result in DNA breaks and illegitimate recombination, and therefore poses a significant threat to genomic integrity. Excess damage to the germ cell genome results in sterility. A specific RNA silencing pathway, termed the piRNA pathway operates in germ cells of animals to control TE activity. At the core of the piRNA pathway is a ribonucleoprotein complex consisting of a small RNA, called piRNA, and a protein from the PIWI subfamily of Argonaute nucleases. The piRNA pathway relies on the specificity provided by the piRNA sequence to recognize complementary TE targets, while effector functions are provided by the PIWI protein. PIWI-piRNA complexes silence TEs both at the transcriptional level - by attracting repressive chromatin modifications to genomic targets - and at the posttranscriptional level - by cleaving TE transcripts in the cytoplasm. Impairment of the piRNA pathway leads to overexpression of TEs, significantly compromised genome structure and, invariably, germ cell death and sterility.The piRNA pathway is best understood in the fruit fly, Drosophila melanogaster, and in mouse. This Chapter gives an overview of current knowledge on piRNA biogenesis, and mechanistic details of both transcriptional and posttranscriptional TE silencing by the piRNA pathway. It further focuses on the importance of post-translational modifications and subcellular localization of the piRNA machinery. Finally, it provides a brief description of analogous pathways in other systems.
Collapse
Affiliation(s)
- Katalin Fejes Tóth
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA.
| | - Dubravka Pezic
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Evelyn Stuwe
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Alexandre Webster
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
21
|
piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:82-92. [DOI: 10.1016/j.bbagrm.2015.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
|
22
|
Sato K, Iwasaki Y, Shibuya A, Carninci P, Tsuchizawa Y, Ishizu H, Siomi M, Siomi H. Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline. Mol Cell 2015. [DOI: 10.1016/j.molcel.2015.06.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Sellars MJ, Trewin C, McWilliam SM, Glaves RSE, Hertzler PL. Transcriptome profiles of Penaeus (Marsupenaeus) japonicus animal and vegetal half-embryos: identification of sex determination, germ line, mesoderm, and other developmental genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:252-265. [PMID: 25634056 DOI: 10.1007/s10126-015-9613-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
There is virtually no knowledge of the molecular events controlling early embryogenesis in Penaeid shrimp. A combination of controlled spawning environment, shrimp embryo micro-dissection techniques, and next-generation sequencing was used to produce transcriptome EST datasets of Penaeus japonicus animal and vegetal half-embryos. Embryos were collected immediately after spawning, and then blastomeres were separated at the two-cell stage and allowed to develop to late gastrulation, then pooled for RNA isolation and cDNA synthesis. Ion Torrent sequencing of cDNA from approximately 500 pooled animal and vegetal half-embryos from multiple spawnings resulted in 560,516 and 493,703 reads, respectively. Reads from each library were assembled and Gene Ontogeny analysis produced 3479 annotated animal contigs and 4173 annotated vegetal contigs, with 159/139 hits for developmental processes in the animal/vegetal contigs, respectively. Contigs were subject to BLAST for selected developmental toolbox genes. Some of the genes found included the sex determination genes sex-lethal and transformer; the germ line genes argonaute 1, boule, germ cell-less, gustavus, maelstrom, mex-3, par-1, pumilio, SmB, staufen, and tudor; the mesoderm genes brachyury, mef2, snail, and twist; the axis determination/segmentation genes β-catenin, deformed, distal-less, engrailed, giant, hairy, hunchback, kruppel, orthodenticle, patched, tailless, and wingless/wnt-8c; and a number of cell-cycle regulators. Animal and vegetal contigs were computationally subtracted from each other to produce sets unique to either half-embryo library. Genes expressed only in the animal half included bmp1, kruppel, maelstrom, and orthodenticle. Genes expressed only in the vegetal half included boule, brachyury, deformed, dorsal, engrailed, hunchback, spalt, twist, and wingless/wnt-8c.
Collapse
Affiliation(s)
- Melony J Sellars
- CSIRO Agriculture Flagship, Integrated Sustainable Aquaculture, Dutton Park, Qld, 4102, Australia,
| | | | | | | | | |
Collapse
|
24
|
Chen KM, Campbell E, Pandey RR, Yang Z, McCarthy AA, Pillai RS. Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists. RNA (NEW YORK, N.Y.) 2015; 21:833-839. [PMID: 25778731 PMCID: PMC4408791 DOI: 10.1261/rna.049437.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Piwi-interacting RNAs (piRNAs) guide Piwi argonautes to their transposon targets for silencing. The highly conserved protein Maelstrom is linked to both piRNA biogenesis and effector roles in this pathway. One defining feature of Maelstrom is the predicted MAEL domain of unknown molecular function. Here, we present the first crystal structure of the MAEL domain from Bombyx Maelstrom, which reveals a nuclease fold. The overall architecture resembles that found in Mg(2+)- or Mn(2+)-dependent DEDD nucleases, but a clear distinguishing feature is the presence of a structural Zn(2+) ion coordinated by the conserved ECHC residues. Strikingly, metazoan Maelstrom orthologs across the animal kingdom lack the catalytic DEDD residues, and as we show for Bombyx Maelstrom are inactive as nucleases. However, a MAEL domain-containing protein from amoeba having both sequence motifs (DEDD and ECHC) is robustly active as an exoribonuclease. Finally, we show that the MAEL domain of Bombyx Maelstrom displays a strong affinity for single-stranded RNAs. Our studies suggest that the ancient MAEL nuclease domain evolved to function as an RNA-binding module in metazoan Maelstrom.
Collapse
Affiliation(s)
- Kuan-Ming Chen
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 38042 Grenoble Cedex 9, France
| | - Edgar Campbell
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 38042 Grenoble Cedex 9, France
| | - Radha Raman Pandey
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 38042 Grenoble Cedex 9, France
| | - Zhaolin Yang
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 38042 Grenoble Cedex 9, France
| | - Andrew A McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 38042 Grenoble Cedex 9, France
| | - Ramesh S Pillai
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 38042 Grenoble Cedex 9, France
| |
Collapse
|
25
|
Matsumoto N, Sato K, Nishimasu H, Namba Y, Miyakubi K, Dohmae N, Ishitani R, Siomi H, Siomi MC, Nureki O. Crystal Structure and Activity of the Endoribonuclease Domain of the piRNA Pathway Factor Maelstrom. Cell Rep 2015; 11:366-75. [PMID: 25865890 DOI: 10.1016/j.celrep.2015.03.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/19/2015] [Accepted: 03/10/2015] [Indexed: 01/09/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) protect the genome from transposons in animal gonads. Maelstrom (Mael) is an evolutionarily conserved protein, composed of a high-mobility group (HMG) domain and a MAEL domain, and is essential for piRNA-mediated transcriptional transposon silencing in various species, such as Drosophila and mice. However, its structure and biochemical function have remained elusive. Here, we report the crystal structure of the MAEL domain from Drosophila melanogaster Mael, at 1.6 Å resolution. The structure reveals that the MAEL domain has an RNase H-like fold but lacks canonical catalytic residues conserved among RNase H-like superfamily nucleases. Our biochemical analyses reveal that the MAEL domain exhibits single-stranded RNA (ssRNA)-specific endonuclease activity. Our cell-based analyses further indicate that ssRNA cleavage activity appears dispensable for piRNA-mediated transcriptional transposon silencing in Drosophila. Our findings provide clues toward understanding the multiple roles of Mael in the piRNA pathway.
Collapse
Affiliation(s)
- Naoki Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; JST, PRESTO, Tokyo 113-0032, Japan
| | - Yurika Namba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kana Miyakubi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Team and CREST/JST, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
26
|
Sato K, Siomi MC. Functional and structural insights into the piRNA factor Maelstrom. FEBS Lett 2015; 589:1688-93. [DOI: 10.1016/j.febslet.2015.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
27
|
A unique HMG-box domain of mouse Maelstrom binds structured RNA but not double stranded DNA. PLoS One 2015; 10:e0120268. [PMID: 25807393 PMCID: PMC4373776 DOI: 10.1371/journal.pone.0120268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 01/11/2023] Open
Abstract
Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response.
Collapse
|
28
|
Huang F, Paulson A, Dutta A, Venkatesh S, Smolle M, Abmayr SM, Workman JL. Histone acetyltransferase Enok regulates oocyte polarization by promoting expression of the actin nucleation factor spire. Genes Dev 2015; 28:2750-63. [PMID: 25512562 PMCID: PMC4265678 DOI: 10.1101/gad.249730.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and have been shown to play important roles in transcriptional regulation. Here, we demonstrate that the Drosophila KAT6 Enok acetylates histone H3 Lys 23 (H3K23) in vitro and in vivo. Mutants lacking functional Enok exhibited defects in the localization of Oskar (Osk) to the posterior end of the oocyte, resulting in loss of germline formation and abdominal segments in the embryo. RNA sequencing (RNA-seq) analysis revealed that spire (spir) and maelstrom (mael), both required for the posterior localization of Osk in the oocyte, were down-regulated in enok mutants. Chromatin immunoprecipitation showed that Enok is localized to and acetylates H3K23 at the spir and mael genes. Furthermore, Gal4-driven expression of spir in the germline can largely rescue the defective Osk localization in enok mutant ovaries. Our results suggest that the Enok-mediated H3K23 acetylation (H3K23Ac) promotes the expression of spir, providing a specific mechanism linking oocyte polarization to histone modification.
Collapse
Affiliation(s)
- Fu Huang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Arnob Dutta
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Michaela Smolle
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
29
|
Castañeda J, Genzor P, van der Heijden GW, Sarkeshik A, Yates JR, Ingolia NT, Bortvin A. Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice. EMBO J 2014; 33:1999-2019. [PMID: 25063675 DOI: 10.15252/embj.201386855] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pachytene piRNAs are a class of Piwi-interacting small RNAs abundant in spermatids of the adult mouse testis. They are processed from piRNA primary transcripts by a poorly understood mechanism and, unlike fetal transposon-derived piRNAs, lack complementary targets in the spermatid transcriptome. We report that immunopurified complexes of a conserved piRNA pathway protein Maelstrom (MAEL) are enriched in MIWI (Piwi partner of pachytene piRNAs), Tudor-domain proteins and processing intermediates of pachytene piRNA primary transcripts. We provide evidence of functional significance of these complexes in Mael129 knockout mice that exhibit spermiogenic arrest with acrosome and flagellum malformation. Mael129-null mutant testes possess low levels of piRNAs derived from MAEL-associated piRNA precursors and exhibit reduced translation of numerous spermiogenic mRNAs including those encoding acrosome and flagellum proteins. These translation defects in haploid round spermatids are likely indirect, as neither MAEL nor piRNA precursors associate with polyribosomes, and they may arise from an imbalance between pachytene piRNAs and MIWI.
Collapse
Affiliation(s)
- Julio Castañeda
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Pavol Genzor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | | | - Ali Sarkeshik
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas T Ingolia
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| |
Collapse
|
30
|
Stratoulias V, Heino TI, Michon F. Lin-28 regulates oogenesis and muscle formation in Drosophila melanogaster. PLoS One 2014; 9:e101141. [PMID: 24963666 PMCID: PMC4071072 DOI: 10.1371/journal.pone.0101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/03/2014] [Indexed: 01/07/2023] Open
Abstract
Understanding the control of stem cell (SC) differentiation is important to comprehend developmental processes as well as to develop clinical applications. Lin28 is a conserved molecule that is involved in SC maintenance and differentiation by regulating let-7 miRNA maturation. However, little is known about the in vivo function of Lin28. Here, we report critical roles for lin-28 during oogenesis. We found that let-7 maturation was increased in lin-28 null mutant fly ovaries. We showed that lin-28 null mutant female flies displayed reduced fecundity, due to defects in egg chamber formation. More specifically, we demonstrated that in mutant ovaries, the egg chambers fuse during early oogenesis resulting in abnormal late egg chambers. We also showed that this phenotype is the combined result of impaired germline SC differentiation and follicle SC differentiation. We suggest a model in which these multiple oogenesis defects result from a misregulation of the ecdysone signaling network, through the fine-tuning of Abrupt and Fasciclin2 expression. Our results give a better understanding of the evolutionarily conserved role of lin-28 on GSC maintenance and differentiation.
Collapse
Affiliation(s)
| | - Tapio I. Heino
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (FM); (TH)
| | - Frederic Michon
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, Helsinki, Finland
- * E-mail: (FM); (TH)
| |
Collapse
|
31
|
Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 2014; 1:205-218. [PMID: 25512877 DOI: 10.1093/nsr/nwu014] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a complex class of small non-coding RNAs that are mostly 24-32 nucleotides in length and composed of at least hundreds of thousands of species that specifically interact with the PIWI protein subfamily of the ARGONAUTE family. Recent studies revealed that PIWI proteins interact with a number of proteins, especially the TUDOR-domain-containing proteins, to regulate piRNA biogenesis and regulatory function. Current research also provides evidence that PIWI proteins and piRNAs are not only crucial for transposon silencing in the germline, but also mediate novel mechanisms of epigenetic programming, DNA rearrangements, mRNA turnover, and translational control both in the germline and in the soma. These new discoveries begin to reveal an exciting new dimension of gene regulation in the cell.
Collapse
Affiliation(s)
- Hsueh-Yen Ku
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
32
|
Atikukke G, Albosta P, Zhang H, Finley RL. A role for Drosophila Cyclin J in oogenesis revealed by genetic interactions with the piRNA pathway. Mech Dev 2014; 133:64-76. [PMID: 24946235 DOI: 10.1016/j.mod.2014.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022]
Abstract
Cyclin J (CycJ) is a poorly characterized member of the Cyclin superfamily of cyclin-dependent kinase regulators, many of which regulate the cell cycle or transcription. Although CycJ is conserved in metazoans its cellular function has not been identified and no mutant defects have been described. In Drosophila, CycJ transcript is present primarily in ovaries and very early embryos, suggesting a role in one or both of these tissues. The CycJ gene (CycJ) lies immediately downstream of armitage (armi), a gene involved in the Piwi-associated RNA (piRNA) pathways that are required for silencing transposons in the germline and adjacent somatic cells. Mutations in armi result in oogenesis defects but a role for CycJ in oogenesis has not been defined. Here we assessed oogenesis in CycJ mutants in the presence or absence of mutations in armi or other piRNA pathway genes. CycJ null ovaries appeared normal, indicating that CycJ is not essential for oogenesis under normal conditions. In contrast, armi null ovaries produced only two egg chambers per ovariole and the eggs had severe axis specification defects, as observed previously for armi and other piRNA pathway mutants. Surprisingly, the CycJ armi double mutant failed to produce any mature eggs. The double null ovaries generally had only one egg chamber per ovariole and the egg chambers frequently contained an overabundance of differentiated germline cells. Production of these compound egg chambers could be suppressed with CycJ transgenes but not with mutations in the checkpoint gene mnk, which suppress oogenesis defects in armi mutants. The CycJ null showed similar genetic interactions with the germline and somatic piRNA pathway gene piwi, and to a lesser extent with aubergine (aub), a member of the germline-specific piRNA pathway. The strong genetic interactions between CycJ and piRNA pathway genes reveal a role for CycJ in early oogenesis. Our results suggest that CycJ is required to regulate egg chamber production or maturation when piRNA pathways are compromised.
Collapse
Affiliation(s)
- Govindaraja Atikukke
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Paul Albosta
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Russell L Finley
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
33
|
Abstract
The integrity of the germline genome must be maintained to achieve successive generations of a species, because germline cells are the only source for transmitting genetic information to the next generation. Accordingly, the germline has acquired a system dedicated to protecting the genome from 'injuries' caused by harmful selfish nucleic acid elements, such as TEs (transposable elements). Accumulating evidence shows that a germline-specific subclass of small non-coding RNAs, piRNAs (piwi-interacting RNAs), are necessary for silencing TEs to protect the genome in germline cells. To silence TEs post-transcriptionally and/or transcriptionally, mature piRNAs are loaded on to germline-specific Argonaute proteins, or PIWI proteins, to form the piRISC (piRNA-induced silencing complex). The present chapter will highlight insights into the molecular mechanisms underlying piRISC-mediated silencing and piRNA biogenesis, and discuss a possible link with tumorigenesis, particularly in Drosophila.
Collapse
|
34
|
Vazquez-Pianzola P, Adam J, Haldemann D, Hain D, Urlaub H, Suter B. Clathrin heavy chain plays multiple roles in polarizing the Drosophila oocyte downstream of Bic-D. Development 2014; 141:1915-26. [PMID: 24718986 DOI: 10.1242/dev.099432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bicaudal-D (Bic-D), Egalitarian (Egl), microtubules and their motors form a transport machinery that localizes a remarkable diversity of mRNAs to specific cellular regions during oogenesis and embryogenesis. Bic-D family proteins also promote dynein-dependent transport of Golgi vesicles, lipid droplets, synaptic vesicles and nuclei. However, the transport of these different cargoes is still poorly understood. We searched for novel proteins that either mediate Bic-D-dependent transport processes or are transported by them. Clathrin heavy chain (Chc) co-immunopurifies with Bic-D in embryos and ovaries, and a fraction of Chc colocalizes with Bic-D. Both proteins control posterior patterning of the Drosophila oocyte and endocytosis. Although the role of Chc in endocytosis is well established, our results show that Bic-D is also needed for the elevated endocytic activity at the posterior of the oocyte. Apart from affecting endocytosis indirectly by its role in osk mRNA localization, Bic-D is also required to transport Chc mRNA into the oocyte and for transport and proper localization of Chc protein to the oocyte cortex, pointing to an additional, more direct role of Bic-D in the endocytic pathway. Furthermore, similar to Bic-D, Chc also contributes to proper localization of osk mRNA and to oocyte growth. However, in contrast to other endocytic components and factors of the endocytic recycling pathway, such as Rabenosyn-5 (Rbsn-5) and Rab11, Chc is needed during early stages of oogenesis (from stage 6 onwards) to localize osk mRNA correctly. Moreover, we also uncovered a novel, presumably endocytosis-independent, role of Chc in the establishment of microtubule polarity in stage 6 oocytes.
Collapse
|
35
|
Minakhina S, Changela N, Steward R. Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery. Development 2014; 141:259-68. [PMID: 24381196 DOI: 10.1242/dev.101410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The maintenance of stem cells is central to generating diverse cell populations in many tissues throughout the life of an animal. Elucidating the mechanisms involved in how stem cells are formed and maintained is crucial to understanding both normal developmental processes and the growth of many cancers. Previously, we showed that Zfrp8/PDCD2 is essential for the maintenance of Drosophila hematopoietic stem cells. Here, we show that Zfrp8/PDCD2 is also required in both germline and follicle stem cells in the Drosophila ovary. Expression of human PDCD2 fully rescues the Zfrp8 phenotype, underlining the functional conservation of Zfrp8/PDCD2. The piRNA pathway is essential in early oogenesis, and we find that nuclear localization of Zfrp8 in germline stem cells and their offspring is regulated by some piRNA pathway genes. We also show that Zfrp8 forms a complex with the piRNA pathway protein Maelstrom and controls the accumulation of Maelstrom in the nuage. Furthermore, Zfrp8 regulates the activity of specific transposable elements also controlled by Maelstrom and Piwi. Our results suggest that Zfrp8/PDCD2 is not an integral member of the piRNA pathway, but has an overlapping function, possibly competing with Maelstrom and Piwi.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Rutgers University, Department of Molecular Biology, Waksman Institute, Cancer Institute of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
36
|
Clark JP, Lau NC. Piwi Proteins and piRNAs step onto the systems biology stage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:159-97. [PMID: 25201106 PMCID: PMC4248790 DOI: 10.1007/978-1-4939-1221-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal germ cells are totipotent because they maintain a highly unique and specialized epigenetic state for its genome. To accomplish this, germ cells express a rich repertoire of specialized RNA-binding protein complexes such as the Piwi proteins and Piwi-interacting RNAs (piRNAs): a germ-cell branch of the RNA interference (RNAi) phenomenon which includes microRNA and endogenous small interfering RNA pathways. Piwi proteins and piRNAs are deeply conserved in animal evolution and play essential roles in fertility and regeneration. Molecular mechanisms for how these ribonucleoproteins act upon the transcriptome and genome are only now coming to light with the application of systems-wide approaches in both invertebrates and vertebrates. Systems biology studies on invertebrates have revealed that transcriptional and heritable silencing is a main mechanism driven by Piwi proteins and piRNA complexes. In vertebrates, Piwi-targeting mechanisms and piRNA biogenesis have progressed, while the discovery that the nuclease activity of Piwi protein is essential for vertebrate germ cell development but not completely required in invertebrates highlights the many complexities of this pathway in different animals. This review recounts how recent systems-wide approaches have rapidly accelerated our appreciation for the broad reach of the Piwi pathway on germline genome regulation and what questions facing the field await to be unraveled.
Collapse
Affiliation(s)
- Josef P. Clark
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
37
|
Swevers L, Huvenne H, Menschaert G, Kontogiannatos D, Kourti A, Pauchet Y, ffrench-Constant R, Smagghe G. Colorado potato beetle (Coleoptera) gut transcriptome analysis: expression of RNA interference-related genes. INSECT MOLECULAR BIOLOGY 2013; 22:668-684. [PMID: 24580832 DOI: 10.1111/imb.12054] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the search for new methods of pest control, the potential of RNA interference (RNAi) is being explored. Because the gut is the first barrier for the uptake of double-stranded (ds)RNA, pyrosequencing of the gut transcriptome is a powerful tool for obtaining the necessary sequences for specific dsRNA-mediated pest control. In the present study, a dataset representing the gut transcriptome of the Colorado potato beetle (CPB; Leptinotarsa decemlineata) was generated and analysed for the presence of RNAi-related genes. Almost all selected genes that were implicated in silencing efficiency at different levels in the RNAi pathway (core machinery, associated intracellular factors, dsRNA uptake, antiviral RNAi, nucleases), which uses different types of small RNA (small interfering RNA, microRNA and piwi-RNA), were expressed in the CPB gut. Although the database is of lower quality, the majority of the RNAi genes are also found to be present in the gut transcriptome of the tobacco hornworm [TH; Manduca sexta (19 out of 35 genes analysed)]. The high quality of the CPB transcriptome database will lay the foundation for future gene expression and functional studies regarding the gut and RNAi.
Collapse
Affiliation(s)
- L Swevers
- Insect Molecular Genetics and Biotechnology, NCSR 'Demokritos', Institute of Biosciences & Applications, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ohtani H, Iwasaki YW, Shibuya A, Siomi H, Siomi MC, Saito K. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes Dev 2013; 27:1656-61. [PMID: 23913921 DOI: 10.1101/gad.221515.113] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Piwi-piRNA (PIWI-interacting RNA) complex (Piwi-piRISC) in Drosophila ovarian somatic cells represses transposons transcriptionally to maintain genome integrity; however, the underlying mechanisms remain obscure. Here, we reveal that DmGTSF1, a Drosophila homolog of gametocyte-specific factor 1 (GTSF1) (which is required for transposon silencing in mouse testes), is necessary for Piwi-piRISC to repress target transposons and neighboring genes. DmGTSF1 depletion affected neither piRNA biogenesis nor nuclear import of Piwi-piRISC. DmGTSF1 mutations caused derepression of transposons and loss of ovary follicle layers, resulting in female infertility. We suggest that DmGTSF1, a nuclear Piwi interactor, is an integral factor in Piwi-piRISC-mediated transcriptional silencing.
Collapse
Affiliation(s)
- Hitoshi Ohtani
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Saxe JP, Chen M, Zhao H, Lin H. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J 2013; 32:1869-85. [PMID: 23714778 DOI: 10.1038/emboj.2013.121] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 04/08/2013] [Indexed: 02/08/2023] Open
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposition, regulate translation, and guide epigenetic programming in the germline. Here, we show that an evolutionarily conserved Tudor and KH domain-containing protein, Tdrkh (a.k.a. Tdrd2), is required for spermatogenesis and involved in piRNA biogenesis. Tdrkh partners with Miwi and Miwi2 via symmetrically dimethylated arginine residues in Miwi and Miwi2. Tdrkh is a mitochondrial protein often juxtaposed to pi-bodies and piP-bodies and is required for Tdrd1 cytoplasmic localization and Miwi2 nuclear localization. Tdrkh mutants display meiotic arrest at the zygotene stage, attenuate methylation of Line1 DNA, and upregulate Line1 RNA and protein, without inducing apoptosis. Furthermore, Tdrkh mutants have severely reduced levels of mature piRNAs but accumulate a distinct population of 1'U-containing, 2'O-methylated 31-37 nt RNAs that largely complement the missing mature piRNAs. Our results demonstrate that the primary piRNA biogenesis pathway involves 3'→5' processing of 31-37 nt intermediates and that Tdrkh promotes this final step of piRNA biogenesis but not the ping-pong cycle. These results shed light on mechanisms underlying primary piRNA biogenesis, an area in which information is conspicuously absent.
Collapse
Affiliation(s)
- Jonathan P Saxe
- Yale Stem Cell Center, Yale University, New Haven, CT 06519, USA
| | | | | | | |
Collapse
|
40
|
Carter JM, Baker SC, Pink R, Carter DRF, Collins A, Tomlin J, Gibbs M, Breuker CJ. Unscrambling butterfly oogenesis. BMC Genomics 2013; 14:283. [PMID: 23622113 PMCID: PMC3654919 DOI: 10.1186/1471-2164-14-283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 12/16/2022] Open
Abstract
Background Butterflies are popular model organisms to study physiological mechanisms
underlying variability in oogenesis and egg provisioning in response to
environmental conditions. Nothing is known, however, about; the
developmental mechanisms governing butterfly oogenesis, how polarity in the
oocyte is established, or which particular maternal effect genes regulate
early embryogenesis. To gain insights into these developmental mechanisms
and to identify the conserved and divergent aspects of butterfly oogenesis,
we analysed a de novo ovarian transcriptome of the Speckled Wood
butterfly Pararge aegeria (L.), and compared the results with known
model organisms such as Drosophila melanogaster and Bombyx
mori. Results A total of 17306 contigs were annotated, with 30% possibly novel or highly
divergent sequences observed. Pararge aegeria females expressed
74.5% of the genes that are known to be essential for D.
melanogaster oogenesis. We discuss the genes involved in all
aspects of oogenesis, including vitellogenesis and choriogenesis, plus those
implicated in hormonal control of oogenesis and transgenerational hormonal
effects in great detail. Compared to other insects, a number of significant
differences were observed in; the genes involved in stem cell maintenance
and differentiation in the germarium, establishment of oocyte polarity, and
in several aspects of maternal regulation of zygotic development. Conclusions This study provides valuable resources to investigate a number of divergent
aspects of butterfly oogenesis requiring further research. In order to fully
unscramble butterfly oogenesis, we also now also have the resources to
investigate expression patterns of oogenesis genes under a range of
environmental conditions, and to establish their function.
Collapse
Affiliation(s)
- Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Takebe M, Onohara Y, Yokota S. Expression of MAEL in nuage and non-nuage compartments of rat spermatogenic cells and colocalization with DDX4, DDX25 and MIWI. Histochem Cell Biol 2013; 140:169-81. [PMID: 23412502 DOI: 10.1007/s00418-012-1067-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
The functions of MAELSTROM protein (MAEL) in spermatogenesis are gradually being identified but the precise distribution of MAEL in spermatogenic cells during spermatogenesis has not yet been mapped. We studied the expression of MAEL in rat testis by immunofluorescence and immunoelectron microscopy (IEM). Immunofluorescence staining showed that MAEL was localized in intermitochondrial cement, irregularly-shaped perinuclear granules and satellite bodies of pachytene spermatocytes, and in chromatoid bodies of spermatids. The SBs appeared exclusively in pachytene spermatocytes at stages IX-X and were stained strongly for MAEL. In step 12-19 spermatids, many granules stained for MAEL but not DDX4. These granules were confirmed to be non-nuage structures, including mitochondria-associated granules, reticulated body, granulated body by IEM. In the neck region of late spermatids and sperm, MAEL-positive small granules were found. MAEL is colocalized with MIWI in nuage and non-nuage. The results suggest that MAEL seems to function in nuage and non-nuage structures and interacts with MIWI.
Collapse
Affiliation(s)
- Miki Takebe
- Division of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | | | | |
Collapse
|
42
|
Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 2013; 26:2361-73. [PMID: 23124062 DOI: 10.1101/gad.203786.112] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are endogenous small noncoding RNAs that act as guardians of the genome, protecting it from invasive transposable elements in the germline. Animals lacking piRNA functions show defects in gametogenesis and exhibit sterility. Their descendants are also predisposed to inheriting mutations. Thus, the piRNA pathway has evolved to repress transposons post-transcriptionally and/or transcriptionally. A growing number of studies on piRNAs have investigated piRNA-mediated gene silencing, including piRNA biogenesis. However, piRNAs remain the most enigmatic among all of the silencing-inducing small RNAs because of their complexity and uniqueness. Although piRNAs have been previously suggested to be germline-specific, recent studies have shown that piRNAs also play crucial roles in nongonadal cells. Furthermore, piRNAs have also recently been shown to have roles in multigenerational epigenetic phenomena in worms. The purpose of this review is to highlight new piRNA factors and novel insights in the piRNA world.
Collapse
Affiliation(s)
- Hirotsugu Ishizu
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
43
|
Pek JW, Ng BF, Kai T. Polo-mediated phosphorylation of Maelstrom regulates oocyte determination during oogenesis in Drosophila. Development 2012; 139:4505-13. [DOI: 10.1242/dev.082867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Drosophila, Maelstrom is a conserved component of the perinuclear nuage, a germline-unique structure that appears to serve as a site for Piwi-interacting RNA (piRNA) production to repress deleterious transposons. Maelstrom also functions in the nucleus as a transcriptional regulator to repress the expression of microRNA-7, a process that is essential for the proper differentiation of germline stem cells. In this paper, we report another function of Maelstrom in regulating oocyte determination independently of its transposon silencing and germline stem cell differentiation activities. In Drosophila, the conserved serine 138 residue in Maelstrom is required for its phosphorylation, an event that promotes oocyte determination. Phosphorylation of Maelstrom is required for the repression of the pachytene checkpoint protein Sir2, but not for transposon silencing or for germline stem cell differentiation. We identify Polo as a kinase that mediates the phosphorylation of Maelstrom. Our results suggest that the Polo-mediated phosphorylation of Maelstrom may be a mechanism that controls oocyte determination by inactivating the pachytene checkpoint via the repression of Sir2 in Drosophila ovaries.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604
| | - Bing Fu Ng
- Department of Biological Sciences, National University of Singapore, Singapore 117604
| | - Toshie Kai
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604
- Department of Biological Sciences, National University of Singapore, Singapore 117604
| |
Collapse
|