1
|
Talross GJS, Carlson JR. New dimensions in the molecular genetics of insect chemoreception. Trends Genet 2025:S0168-9525(25)00078-2. [PMID: 40340097 DOI: 10.1016/j.tig.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025]
Abstract
Chemoreception is the foundation of olfaction and taste, which in insects underlie the detection of humans to whom they spread disease and crops that they ravage. Recent advances have provided clear and in some cases surprising new insights into the molecular genetics of chemoreception. We describe mechanisms that govern the choice of a single Odorant receptor gene by an olfactory receptor neuron in Drosophila. We highlight genetic and epigenetic mechanisms by which chemoreceptor expression can be modulated. Exitrons, RNA editing, and pseudo-pseudogenes in chemosensory systems are described. We summarize key insights from the recent structural determinations of odorant and taste receptors. Finally, new molecular components of chemosensory systems, including long noncoding RNAs, are described.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Du C, Volkan P. Using Chromatin Immunoprecipitation (ChIP) to Study the Chromatin State in Drosophila. Cold Spring Harb Protoc 2025; 2025:pdb.top108139. [PMID: 38453456 DOI: 10.1101/pdb.top108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The chromatin state plays an important role in regulating gene expression, which affects organismal development and plasticity. Proteins, including transcription factors, chromatin modulatory proteins, and histone proteins, usually with modifications, interact with gene loci involved in cellular differentiation, function, and modulation. One molecular method used to characterize protein-DNA interactions is chromatin immunoprecipitation (ChIP). ChIP uses antibodies to immunoprecipitate specific proteins cross-linked to DNA fragments. This approach, in combination with quantitative PCR (qPCR) or high-throughput DNA sequencing, can determine the enrichment of a certain protein or histone modification around specific gene loci or across the whole genome. ChIP has been used in Drosophila to characterize the binding pattern of transcription factors and to elucidate the roles of regulatory proteins in gene expression during development and in response to environment stimuli. This review outlines ChIP procedures using tissues from the Drosophila nervous system as an example and discusses all steps and the necessary optimization.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Pelin Volkan
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
3
|
Yan R, Chen P, Xu Z, Qian J, Zhu G, Jin Y, Chen B, Chen M. A potential link between aromatics-induced oviposition repellency behaviors and specific odorant receptor of Aedes albopictus. PEST MANAGEMENT SCIENCE 2024; 80:3603-3611. [PMID: 38458148 DOI: 10.1002/ps.8064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND The Asian tiger mosquito, Aedes albopictus, is a competent vector for the spread of several viral arboviruses including dengue, chikungunya, and Zika. Several vital mosquito behaviors linked to survival and reproduction are primarily dependent on a sophisticated olfactory system for semiochemical perception. However, a limited number of studies has hampered our understanding of the relationship between the A. albopictus acute olfactory system and the complex chemical world. RESULTS Here, we performed a qRT-PCR assay on antennae from A. albopictus of differing sex, age and physiological states, and found that AalbOr10 was enriched in blood-fed female mosquitoes. We then undertook single sensillum recording to de-orphan AalbOr10 using a panel of physiologically and behaviorally relevant odorants in a Drosophila 'empty neuron' system. The results indicated that AalbOr10 was activated by seven aromatic compounds, all of which hampered egg-laying in blood-fed mosquitoes. Furthermore, using a post-RNA interference oviposition assay, we found that reducing the transcript level of AalbOr10 affected repellent activity mediated by 2-ethylphenol at low concentrations (10-4 vol/vol). Computational modeling and molecular docking studies suggested that hydrogen bonds to Y68 and Y150 mediated the interaction of 2-ethylphenol with AalbOr10. CONCLUSION We reveal a potential link between aromatics-induced oviposition repellency behaviors and a specific odorant receptor in A. albopictus. Our findings provide a foundation for identifying active semiochemicals for the monitoring or controlling of mosquito populations. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ru Yan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peitong Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Jiali Qian
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yongfeng Jin
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Mengli Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Moceri S, Bäuerle N, Habermeyer J, Ratz-Wirsching V, Harrer J, Distler J, Schulze-Krebs A, Timotius IK, Bluhm A, Hartlage-Rübsamen M, Roßner S, Winkler J, Xiang W, Hörsten SV. Young human alpha synuclein transgenic (BAC-SNCA) mice display sex- and gene-dose-dependent phenotypic disturbances. Behav Brain Res 2024; 460:114781. [PMID: 38043677 DOI: 10.1016/j.bbr.2023.114781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of aggregated alpha synuclein (aSyn). The disease often presents with early prodromal non-motor symptoms and later motor symptoms. Diagnosing PD based purely on motor symptoms is often too late for successful intervention, as a significant neuronal loss has already occurred. Furthermore, the lower prevalence of PD in females is not well understood, highlighting the need for a better understanding of the interaction between sex and aSyn, the crucial protein for PD pathogenesis. Here, we conducted a comprehensive phenotyping study in 1- to 5-month-old mice overexpressing human aSyn gene (SNCA) in a bacterial artificial chromosome (BAC-SNCA). We demonstrate a SNCA gene-dose-dependent increase of human aSyn and phosphorylated aSyn, as well as a decrease in tyrosine hydroxylase expression in BAC-SNCA mice, with more pronounced effects in male mice. Phosphorylated aSyn was already found in the dorsal motor nucleus of the vagus nerve of 2-month-old mice. This was time-wise associated with significant gait altrations in BAC-SNCA mice as early as 1 and 3 months of age using CatWalk gait analysis. Furthermore, anxiety-related behavioral tests revealed an increase in anxiety levels in male BAC-SNCA mice. Finally, 5-month-old male BAC-SNCA mice exhibited a SNCA gene-dose-dependent elevation in energy expenditure in automated home-cage monitoring. For the first time, these findings describe early-onset, sex- and gene-dose-dependent, aSyn-mediated disturbances in BAC-SNCA mice, providing a model for sex-differences, early-onset neuropathology, and prodromal symptoms of PD.
Collapse
Affiliation(s)
- Sandra Moceri
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Natascha Bäuerle
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Johanna Habermeyer
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veronika Ratz-Wirsching
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Julia Harrer
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jörg Distler
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Anja Schulze-Krebs
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ivanna K Timotius
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; Department of Electronic Engineering, Satya Wacana Christian University, 50711 Salatiga, Indonesia
| | - Alexandra Bluhm
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | | | - Steffen Roßner
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
5
|
Faria J, Briggs EM, Black JA, McCulloch R. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol 2022; 70:102209. [PMID: 36215868 DOI: 10.1016/j.mib.2022.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Survival of the African trypanosome within its mammalian hosts, and hence transmission between hosts, relies upon antigenic variation, where stochastic changes in the composition of their protective variant-surface glycoprotein (VSG) coat thwart effective removal of the pathogen by adaptive immunity. Antigenic variation has evolved remarkable mechanistic complexity in Trypanosoma brucei, with switching of the VSG coat executed by either transcriptional or recombination reactions. In the former, a single T. brucei cell selectively transcribes one telomeric VSG transcription site, termed the expression site (ES), from a pool of around 15. Silencing of the active ES and activation of one previously silent ES can lead to a co-ordinated VSG coat switch. Outside the ESs, the T. brucei genome contains an enormous archive of silent VSG genes and pseudogenes, which can be recombined into the ES to execute a coat switch. Most such recombination involves gene conversion, including copying of a complete VSG and more complex reactions where novel 'mosaic' VSGs are formed as patchworks of sequences from several silent (pseudo)genes. Understanding of the cellular machinery that directs transcriptional and recombination VSG switching is growing rapidly and the emerging picture is of the use of proteins, complexes and pathways that are not limited to trypanosomes, but are shared across the wider grouping of kinetoplastids and beyond, suggesting co-option of widely used, core cellular reactions. We will review what is known about the machinery of antigenic variation and discuss if there remains the possibility of trypanosome adaptations, or even trypanosome-specific machineries, that might offer opportunities to impair this crucial parasite-survival process.
Collapse
Affiliation(s)
- Joana Faria
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom.
| | - Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
6
|
Li DZ, Duan SG, Yang RN, Yi SC, Liu A, Abdelnabby HE, Wang MQ. BarH1 regulates odorant-binding proteins expression and olfactory perception of Monochamus alternatus Hope. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103677. [PMID: 34763091 DOI: 10.1016/j.ibmb.2021.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Insect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns. In this paper, an apparent gradient expression pattern of Obp19, that was highly and specifically expressed in antennae and played an essential role in the detection of camphene, was defined in the antennae of the Japanese pine sawyer. Further, the transcription factor BarH1, that also presented gradient expression pattern in antennae, was found to regulate expression of Obp19 directly through binding to its upstream DNA sequence. The condition of BarH1 gene silence, the gene expression levels of Obp19 significantly decreased. At the same time, additional olfactory genes also were regulated and thus influence camphene reception. These findings provide us an opportunity to incorporate Obps in the gene regulatory networks of insects, which contribute to a better understanding of the multiplicity and diversity of OBPs and the olfactory mediated behaviors.
Collapse
Affiliation(s)
- Dong-Zhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ao Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hazem Elewa Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, 13736, Egypt
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
7
|
Mika K, Benton R. Olfactory Receptor Gene Regulation in Insects: Multiple Mechanisms for Singular Expression. Front Neurosci 2021; 15:738088. [PMID: 34602974 PMCID: PMC8481607 DOI: 10.3389/fnins.2021.738088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
The singular expression of insect olfactory receptors in specific populations of olfactory sensory neurons is fundamental to the encoding of odors in patterns of neuronal activity in the brain. How a receptor gene is selected, from among a large repertoire in the genome, to be expressed in a particular neuron is an outstanding question. Focusing on Drosophila melanogaster, where most investigations have been performed, but incorporating recent insights from other insect species, we review the multilevel regulatory mechanisms of olfactory receptor expression. We discuss how cis-regulatory elements, trans-acting factors, chromatin modifications, and feedback pathways collaborate to activate and maintain expression of the chosen receptor (and to suppress others), highlighting similarities and differences with the mechanisms underlying singular receptor expression in mammals. We also consider the plasticity of receptor regulation in response to environmental cues and internal state during the lifetime of an individual, as well as the evolution of novel expression patterns over longer timescales. Finally, we describe the mechanisms and potential significance of examples of receptor co-expression.
Collapse
Affiliation(s)
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Jafari S, Henriksson J, Yan H, Alenius M. Stress and odorant receptor feedback during a critical period after hatching regulates olfactory sensory neuron differentiation in Drosophila. PLoS Biol 2021; 19:e3001101. [PMID: 33793547 PMCID: PMC8043390 DOI: 10.1371/journal.pbio.3001101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/13/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Here, we reveal that the regulation of Drosophila odorant receptor (OR) expression during the pupal stage is permissive and imprecise. We found that directly after hatching an OR feedback mechanism both directs and refines OR expression. We demonstrate that, as in mice, dLsd1 and Su(var)3-9 balance heterochromatin formation to direct OR expression. We show that the expressed OR induces dLsd1 and Su(var)3-9 expression, linking OR level and possibly function to OR expression. OR expression refinement shows a restricted duration, suggesting that a gene regulatory critical period brings olfactory sensory neuron differentiation to an end. Consistent with a change in differentiation, stress during the critical period represses dLsd1 and Su(var)3-9 expression and makes the early permissive OR expression permanent. This induced permissive gene regulatory state makes OR expression resilient to stress later in life. Hence, during a critical period OR feedback, similar to in mouse OR selection, defines adult OR expression in Drosophila.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Henriksson
- Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Mattias Alenius
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
The Dm-Myb Oncoprotein Contributes to Insulator Function and Stabilizes Repressive H3K27me3 PcG Domains. Cell Rep 2021; 30:3218-3228.e5. [PMID: 32160531 PMCID: PMC7172335 DOI: 10.1016/j.celrep.2020.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/30/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Drosophila Myb (Dm-Myb) encodes a protein that plays a key role in regulation of mitotic phase genes. Here, we further refine its role in the context of a developing tissue as a potentiator of gene expression required for proper RNA polymerase II (RNA Pol II) function and efficient H3K4 methylation at promoters. In contrast to its role in gene activation, Myb is also required for repression of many genes, although no specific mechanism for this role has been proposed. We now reveal a critical role for Myb in contributing to insulator function, in part by promoting binding of insulator proteins BEAF-32 and CP190 and stabilizing H3K27me3 Polycomb-group (PcG) domains. In the absence of Myb, H3K27me3 is markedly reduced throughout the genome, leading to H3K4me3 spreading and gene derepression. Finally, Myb is enriched at boundaries that demarcate chromatin environments, including chromatin loop anchors. These results reveal functions of Myb that extend beyond transcriptional regulation. Myb has been considered a transcriptional activator of primarily M phase genes. Here, Santana et al. show that Myb also contributes to insulator function, in part by promoting binding of insulator factors, and is required to stabilize repressive domains in the genome.
Collapse
|
10
|
Ferguson ST, Bakis I, Zwiebel LJ. Advances in the Study of Olfaction in Eusocial Ants. INSECTS 2021; 12:252. [PMID: 33802783 PMCID: PMC8002415 DOI: 10.3390/insects12030252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022]
Abstract
Over the past decade, spurred in part by the sequencing of the first ant genomes, there have been major advances in the field of olfactory myrmecology. With the discovery of a significant expansion of the odorant receptor gene family, considerable efforts have been directed toward understanding the olfactory basis of complex social behaviors in ant colonies. Here, we review recent pivotal studies that have begun to reveal insights into the development of the olfactory system as well as how olfactory stimuli are peripherally and centrally encoded. Despite significant biological and technical impediments, substantial progress has been achieved in the application of gene editing and other molecular techniques that notably distinguish the complex olfactory system of ants from other well-studied insect model systems, such as the fruit fly. In doing so, we hope to draw attention not only to these studies but also to critical knowledge gaps that will serve as a compass for future research endeavors.
Collapse
Affiliation(s)
| | | | - Laurence J. Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; (S.T.F.); (I.B.)
| |
Collapse
|
11
|
Jafari S, Alenius M. Odor response adaptation in Drosophila-a continuous individualization process. Cell Tissue Res 2021; 383:143-148. [PMID: 33492517 PMCID: PMC7873105 DOI: 10.1007/s00441-020-03384-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023]
Abstract
Olfactory perception is very individualized in humans and also in Drosophila. The process that individualize olfaction is adaptation that across multiple time scales and mechanisms shape perception and olfactory-guided behaviors. Olfactory adaptation occurs both in the central nervous system and in the periphery. Central adaptation occurs at the level of the circuits that process olfactory inputs from the periphery where it can integrate inputs from other senses, metabolic states, and stress. We will here focus on the periphery and how the fast, slow, and persistent (lifelong) adaptation mechanisms in the olfactory sensory neurons individualize the Drosophila olfactory system.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Biology, New York University, New York, NY, USA
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, 901 87, Umeå, SE, Sweden.
| |
Collapse
|
12
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
13
|
Vorster PJ, Goetsch P, Wijeratne TU, Guiley KZ, Andrejka L, Tripathi S, Larson BJ, Rubin SM, Strome S, Lipsick JS. A long lost key opens an ancient lock: Drosophila Myb causes a synthetic multivulval phenotype in nematodes. Biol Open 2020; 9:bio051508. [PMID: 32295830 PMCID: PMC7225089 DOI: 10.1242/bio.051508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/05/2020] [Indexed: 01/14/2023] Open
Abstract
The five-protein MuvB core complex is highly conserved in animals. This nuclear complex interacts with RB-family tumor suppressor proteins and E2F-DP transcription factors to form DREAM complexes that repress genes that regulate cell cycle progression and cell fate. The MuvB core complex also interacts with Myb family oncoproteins to form the Myb-MuvB complexes that activate many of the same genes. We show that animal-type Myb genes are present in Bilateria, Cnidaria and Placozoa, the latter including the simplest known animal species. However, bilaterian nematode worms lost their animal-type Myb genes hundreds of millions of years ago. Nevertheless, amino acids in the LIN9 and LIN52 proteins that directly interact with the MuvB-binding domains of human B-Myb and Drosophila Myb are conserved in Caenorhabditiselegans Here, we show that, despite greater than 500 million years since their last common ancestor, the Drosophila melanogaster Myb protein can bind to the nematode LIN9-LIN52 proteins in vitro and can cause a synthetic multivulval (synMuv) phenotype in vivo This phenotype is similar to that caused by loss-of-function mutations in C. elegans synMuvB-class genes including those that encode homologs of the MuvB core, RB, E2F and DP. Furthermore, amino acid substitutions in the MuvB-binding domain of Drosophila Myb that disrupt its functions in vitro and in vivo also disrupt these activities in C. elegans We speculate that nematodes and other animals may contain another protein that can bind to LIN9 and LIN52 in order to activate transcription of genes repressed by DREAM complexes.
Collapse
Affiliation(s)
- Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul Goetsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Braden J Larson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
14
|
Zhao S, Deanhardt B, Barlow GT, Schleske PG, Rossi AM, Volkan PC. Chromatin-based reprogramming of a courtship regulator by concurrent pheromone perception and hormone signaling. SCIENCE ADVANCES 2020; 6:eaba6913. [PMID: 32494751 PMCID: PMC7244261 DOI: 10.1126/sciadv.aba6913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
To increase fitness, animals use both internal and external states to coordinate reproductive behaviors. The molecular mechanisms underlying this coordination remain unknown. Here, we focused on pheromone-sensing Drosophila Or47b neurons, which exhibit age- and social experience-dependent increase in pheromone responses and courtship advantage in males. FruitlessM (FruM), a master regulator of male courtship behaviors, drives the effects of social experience and age on Or47b neuron responses and function. We show that simultaneous exposure to social experience and age-specific juvenile hormone (JH) induces chromatin-based reprogramming of fruM expression in Or47b neurons. Group housing and JH signaling increase fruM expression in Or47b neurons and active chromatin marks at fruM promoter. Conversely, social isolation or loss of JH signaling decreases fruM expression and increases repressive marks around fruM promoter. Our results suggest that fruM promoter integrates coincident hormone and pheromone signals driving chromatin-based changes in expression and ultimately neuronal and behavioral plasticity.
Collapse
Affiliation(s)
- Songhui Zhao
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Bryson Deanhardt
- Department of Neurobiology, Duke University, Durham, NC 27708, USA
| | | | | | - Anthony M. Rossi
- Department of Biology, New York University, New York, NY 10003, USA
| | - Pelin C. Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
15
|
Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. Evolution, developmental expression and function of odorant receptors in insects. J Exp Biol 2020; 223:jeb208215. [PMID: 32034042 PMCID: PMC7790194 DOI: 10.1242/jeb.208215] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals rely on their chemosensory system to discriminate among a very large number of attractive or repulsive chemical cues in the environment, which is essential to respond with proper action. The olfactory sensory systems in insects share significant similarities with those of vertebrates, although they also exhibit dramatic differences, such as the molecular nature of the odorant receptors (ORs): insect ORs function as heteromeric ion channels with a common Orco subunit, unlike the G-protein-coupled olfactory receptors found in vertebrates. Remarkable progress has recently been made in understanding the evolution, development and function of insect odorant receptor neurons (ORNs). These studies have uncovered the diversity of olfactory sensory systems among insect species, including in eusocial insects that rely extensively on olfactory sensing of pheromones for social communication. However, further studies, notably functional analyses, are needed to improve our understanding of the origins of the Orco-OR system, the mechanisms of ORN fate determination, and the extraordinary diversity of behavioral responses to chemical cues.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste (UFCST), University of Florida, Gainesville, FL 32610, USA
| | - Shadi Jafari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Biology, New York University, New York, NY 10003, USA
| | - Gregory Pask
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Danny Reinberg
- Howard Hughes Medical Institute (HHMI), Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
16
|
Faria J, Glover L, Hutchinson S, Boehm C, Field MC, Horn D. Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex. Nat Commun 2019; 10:3023. [PMID: 31289266 PMCID: PMC6617441 DOI: 10.1038/s41467-019-10823-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
The largest gene families in eukaryotes are subject to allelic exclusion, but mechanisms underpinning single allele selection and inheritance remain unclear. Here, we describe a protein complex sustaining variant surface glycoprotein (VSG) allelic exclusion and antigenic variation in Trypanosoma brucei parasites. The VSG-exclusion-1 (VEX1) protein binds both telomeric VSG-associated chromatin and VEX2, an ortholog of nonsense-mediated-decay helicase, UPF1. VEX1 and VEX2 assemble in an RNA polymerase-I transcription-dependent manner and sustain the active, subtelomeric VSG-associated transcription compartment. VSG transcripts and VSG coats become highly heterogeneous when VEX proteins are depleted. Further, the DNA replication-associated chromatin assembly factor, CAF-1, binds to and specifically maintains VEX1 compartmentalisation following DNA replication. Thus, the VEX-complex controls VSG-exclusion, while CAF-1 sustains VEX-complex inheritance in association with the active-VSG. Notably, the VEX2-orthologue and CAF-1 in mammals are also implicated in exclusion and inheritance functions. In trypanosomes, these factors sustain a highly effective and paradigmatic immune evasion strategy.
Collapse
Affiliation(s)
- Joana Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Sebastian Hutchinson
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Cordula Boehm
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Mark C Field
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
17
|
Dabydeen SA, Desai A, Sahoo D. Unbiased Boolean analysis of public gene expression data for cell cycle gene identification. Mol Biol Cell 2019; 30:1770-1779. [PMID: 31091168 PMCID: PMC6727750 DOI: 10.1091/mbc.e19-01-0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/04/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cell proliferation is essential for the development and maintenance of all organisms and is dysregulated in cancer. Using synchronized cells progressing through the cell cycle, pioneering microarray studies defined cell cycle genes based on cyclic variation in their expression. However, the concordance of the small number of synchronized cell studies has been limited, leading to discrepancies in definition of the transcriptionally regulated set of cell cycle genes within and between species. Here we present an informatics approach based on Boolean logic to identify cell cycle genes. This approach used the vast array of publicly available gene expression data sets to query similarity to CCNB1, which encodes the cyclin subunit of the Cdk1-cyclin B complex that triggers the G2-to-M transition. In addition to highlighting conservation of cell cycle genes across large evolutionary distances, this approach identified contexts where well-studied genes known to act during the cell cycle are expressed and potentially acting in nondivision contexts. An accessible web platform enables a detailed exploration of the cell cycle gene lists generated using the Boolean logic approach. The methods employed are straightforward to extend to processes other than the cell cycle.
Collapse
Affiliation(s)
- Sarah A. Dabydeen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Debashis Sahoo
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
18
|
Laktionov PP, Maksimov DA, Romanov SE, Antoshina PA, Posukh OV, White-Cooper H, Koryakov DE, Belyakin SN. Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis. Epigenetics Chromatin 2018; 11:14. [PMID: 29609617 PMCID: PMC5879934 DOI: 10.1186/s13072-018-0183-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND During Drosophila spermatogenesis, testis-specific meiotic arrest complex (tMAC) and testis-specific TBP-associated factors (tTAF) contribute to activation of hundreds of genes required for meiosis and spermiogenesis. Intriguingly, tMAC is paralogous to the broadly expressed complex Myb-MuvB (MMB)/dREAM and Mip40 protein is shared by both complexes. tMAC acts as a gene activator in spermatocytes, while MMB/dREAM was shown to repress gene activity in many cell types. RESULTS Our study addresses the intricate interplay between tMAC, tTAF, and MMB/dREAM during spermatogenesis. We used cell type-specific DamID to build the DNA-binding profiles of Cookie monster (tMAC), Cannonball (tTAF), and Mip40 (MMB/dREAM and tMAC) proteins in male germline cells. Incorporating the whole transcriptome analysis, we characterized the regulatory effects of these proteins and identified their gene targets. This analysis revealed that tTAFs complex is involved in activation of achi, vis, and topi meiosis arrest genes, implying that tTAFs may indirectly contribute to the regulation of Achi, Vis, and Topi targets. To understand the relationship between tMAC and MMB/dREAM, we performed Mip40 DamID in tTAF- and tMAC-deficient mutants demonstrating meiosis arrest phenotype. DamID profiles of Mip40 were highly dynamic across the stages of spermatogenesis and demonstrated a strong dependence on tMAC in spermatocytes. Integrative analysis of our data indicated that MMB/dREAM represses genes that are not expressed in spermatogenesis, whereas tMAC recruits Mip40 for subsequent gene activation in spermatocytes. CONCLUSIONS Discovered interdependencies allow to formulate a renewed model for tMAC and tTAFs action in Drosophila spermatogenesis demonstrating how tissue-specific genes are regulated.
Collapse
Affiliation(s)
- Petr P Laktionov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Stanislav E Romanov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Polina A Antoshina
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Olga V Posukh
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | | | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090.,Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Stepan N Belyakin
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090. .,Novosibirsk State University, Novosibirsk, Russia, 630090.
| |
Collapse
|
19
|
Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017; 52:638-662. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany.,b Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,c Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Gerd A Müller
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany
| |
Collapse
|
20
|
Pan JW, McLaughlin J, Yang H, Leo C, Rambarat P, Okuwa S, Monroy-Eklund A, Clark S, Jones CD, Volkan PC. Comparative analysis of behavioral and transcriptional variation underlying CO 2 sensory neuron function and development in Drosophila. Fly (Austin) 2017. [PMID: 28644712 DOI: 10.1080/19336934.2017.1344374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO2 as well as the transcriptional profile of key developmental regulators of CO2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages. Comparisons of transcriptional profiles from the developing and adult antennae for subset these species suggest that behavioral differences in some species may be due to differences in the expression of the CO2 co-receptor Gr63a. Furthermore, these differences in Gr63a expression are correlated with changes in the expression of a few genes known to be involved in the development of the CO2 circuit, namely dac, an important regulator of sensilla fate for sensilla that house CO2 ORNs, and mip120, a member of the MMB/dREAM epigenetic regulatory complex that regulates CO2 receptor expression. In contrast, most of the other known structural, molecular, and developmental components of the peripheral Drosophila CO2 olfactory system seem to be well-conserved across all examined lineages. These findings suggest that certain components of CO2 sensory ORN development may be more evolutionarily labile, and may contribute to differences in CO2-evoked behavioral responses across species.
Collapse
Affiliation(s)
- Jia Wern Pan
- a Department of Biology , Duke University , Durham , North Carolina
| | - Joi McLaughlin
- a Department of Biology , Duke University , Durham , North Carolina
| | - Haining Yang
- a Department of Biology , Duke University , Durham , North Carolina
| | - Charles Leo
- a Department of Biology , Duke University , Durham , North Carolina
| | - Paula Rambarat
- a Department of Biology , Duke University , Durham , North Carolina
| | - Sumie Okuwa
- b Pratt School of Engineering , Duke University , Durham , North Carolina
| | - Anaïs Monroy-Eklund
- c Department of Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina
| | - Sabrina Clark
- c Department of Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina
| | - Corbin D Jones
- c Department of Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina
| | | |
Collapse
|
21
|
Sim CK, Kim SY, Brunmeir R, Zhang Q, Li H, Dharmasegaran D, Leong C, Lim YY, Han W, Xu F. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1. PLoS One 2017; 12:e0174761. [PMID: 28358928 PMCID: PMC5373604 DOI: 10.1371/journal.pone.0174761] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1), a Rho GTPase Activating Protein (RhoGAP) previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK) and filamentous actin (F-actin), suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways.
Collapse
Affiliation(s)
- Choon Kiat Sim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sun-Yee Kim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Reinhard Brunmeir
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Qiongyi Zhang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hongyu Li
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Dharmini Dharmasegaran
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Carol Leong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ying Yan Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Feng Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
22
|
Hsieh YW, Alqadah A, Chuang CF. Mechanisms controlling diversification of olfactory sensory neuron classes. Cell Mol Life Sci 2017; 74:3263-3274. [PMID: 28357469 DOI: 10.1007/s00018-017-2512-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
Animals survive in harsh and fluctuating environments using sensory neurons to detect and respond to changes in their surroundings. Olfactory sensory neurons are essential for detecting food, identifying danger, and sensing pheromones. The ability to sense a large repertoire of different types of odors is crucial to distinguish between different situations, and is achieved through neuronal diversity within the olfactory system. Here, we review the developmental mechanisms used to establish diversity of olfactory sensory neurons in various model organisms, including Caenorhabditis elegans, Drosophila, and vertebrate models. Understanding and comparing how different olfactory neurons develop within the nervous system of different animals can provide insight into how the olfactory system is shaped in humans.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA.
| |
Collapse
|
23
|
Achieving diverse and monoallelic olfactory receptor selection through dual-objective optimization design. Proc Natl Acad Sci U S A 2016; 113:E2889-98. [PMID: 27162367 DOI: 10.1073/pnas.1601722113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at the organism level, the types of expressed ORs need to be maximized. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and constructed a comprehensive model that has all its components based on physical interactions. Analyzing the model reveals an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic barrier crossing coupled to a negative feedback loop that mechanistically differs from previous theoretical proposals, and a previously unidentified enhancer competition step. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression, and has multiple predictions validated by existing experimental results. Through making an analogy to a physical system with thermally activated barrier crossing and comparative reverse engineering analyses, the study reveals that the olfactory receptor selection system is optimally designed, and particularly underscores cooperativity and synergy as a general design principle for multiobjective optimization in biology.
Collapse
|
24
|
Hueston CE, Olsen D, Li Q, Okuwa S, Peng B, Wu J, Volkan PC. Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the Refinement and Maintenance of Fruitless Expression in Olfactory Receptor Neurons. PLoS Biol 2016; 14:e1002443. [PMID: 27093619 PMCID: PMC4836687 DOI: 10.1371/journal.pbio.1002443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
During development, sensory neurons must choose identities that allow them to detect specific signals and connect with appropriate target neurons. Ultimately, these sensory neurons will successfully integrate into appropriate neural circuits to generate defined motor outputs, or behavior. This integration requires a developmental coordination between the identity of the neuron and the identity of the circuit. The mechanisms that underlie this coordination are currently unknown. Here, we describe two modes of regulation that coordinate the sensory identities of Drosophila melanogaster olfactory receptor neurons (ORNs) involved in sex-specific behaviors with the sex-specific behavioral circuit identity marker fruitless (fru). The first mode involves a developmental program that coordinately restricts to appropriate ORNs the expression of fru and two olfactory receptors (Or47b and Ir84a) involved in sex-specific behaviors. This regulation requires the chromatin modulatory protein Alhambra (Alh). The second mode relies on the signaling from the olfactory receptors through CamK and histone acetyl transferase p300/CBP to maintain ORN-specific fru expression. Our results highlight two feed-forward regulatory mechanisms with both developmentally hardwired and olfactory receptor activity-dependent components that establish and maintain fru expression in ORNs. Such a dual mechanism of fru regulation in ORNs might be a trait of neurons driving plastic aspects of sex-specific behaviors.
Collapse
Affiliation(s)
- Catherine E. Hueston
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Douglas Olsen
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Qingyun Li
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Bo Peng
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Jianni Wu
- Undergraduate Program in Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Duke Institute for Brain Science, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Li Q, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, Jones CD, Volkan PC. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity. PLoS Genet 2016; 12:e1005780. [PMID: 26765103 PMCID: PMC4713227 DOI: 10.1371/journal.pgen.1005780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Abigail Maciejewski
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alicia T. Brandt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dominik Reinhold
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Mathematics and Computer Science, Clark University, Worcester, Massachusetts, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
26
|
Joseph RM, Carlson JR. Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends Genet 2015; 31:683-695. [PMID: 26477743 DOI: 10.1016/j.tig.2015.09.005] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 10/22/2022]
Abstract
Chemoreception is essential for survival. Feeding, mating, and avoidance of predators depend on detection of sensory cues. Drosophila contains diverse families of chemoreceptors that detect odors, tastants, pheromones, and noxious stimuli, including receptors of the odor receptor (Or), gustatory receptor (Gr), ionotropic receptor (IR), Pickpocket (Ppk), and Trp families. We consider recent progress in understanding chemoreception in the fly, including the identification of new receptors, the discovery of novel biological functions for receptors, and the localization of receptors in unexpected places. We discuss major unsolved problems and suggest areas that may be particularly ripe for future discoveries, including the roles of these receptors in driving the circuits and behaviors that are essential to the survival and reproduction of the animal.
Collapse
Affiliation(s)
- Ryan M Joseph
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | - John R Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.
| |
Collapse
|
27
|
Barish S, Volkan PC. Mechanisms of olfactory receptor neuron specification in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:609-21. [PMID: 26088441 PMCID: PMC4744966 DOI: 10.1002/wdev.197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/04/2015] [Accepted: 05/16/2015] [Indexed: 11/05/2022]
Abstract
Detection of a broad range of chemosensory signals is necessary for the survival of multicellular organisms. Chemical signals are the main facilitators of foraging, escape, and social behaviors. To increase detection coverage, animal sensory systems have evolved to create a large number of neurons with highly specific functions. The olfactory system, much like the nervous system as a whole, is astonishingly diverse. The mouse olfactory system has millions of neurons with over a thousand classes, whereas the more compact Drosophila genome has approximately 80 odorant receptor genes that give rise to 50 neuronal classes and 1300 neurons in the adult.(4) Understanding how neuronal diversity is generated remains one of the central questions in developmental neurobiology. Here, we review the current knowledge on the development of the adult Drosophila olfactory system and the progress that has been made toward answering this central question.
Collapse
Affiliation(s)
- Scott Barish
- Department of Biology, Duke University, Durham, NC, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC, USA.,Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
28
|
Jafari S, Alenius M. Cis-regulatory mechanisms for robust olfactory sensory neuron class-restricted odorant receptor gene expression in Drosophila. PLoS Genet 2015; 11:e1005051. [PMID: 25760344 PMCID: PMC4356613 DOI: 10.1371/journal.pgen.1005051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/02/2015] [Indexed: 12/26/2022] Open
Abstract
Odor perception requires that each olfactory sensory neuron (OSN) class continuously express a single odorant receptor (OR) regardless of changes in the environment. However, little is known about the control of the robust, class-specific OR expression involved. Here, we investigate the cis-regulatory mechanisms and components that generate robust and OSN class-specific OR expression in Drosophila. Our results demonstrate that the spatial restriction of expression to a single OSN class is directed by clusters of transcription-factor DNA binding motifs. Our dissection of motif clusters of differing complexity demonstrates that structural components such as motif overlap and motif order integrate transcription factor combinations and chromatin status to form a spatially restricted pattern. We further demonstrate that changes in metabolism or temperature perturb the function of complex clusters. We show that the cooperative regulation between motifs around and within the cluster generates robust, class-specific OR expression. Our neurons can become over a hundred years old. Even if neurons are restructured and remodeled by their constant work of receiving, storing and sending information, they stay devoted to one single task and retain their identity for their whole life. How a neuron keeps its identity is not well understood. In the olfactory system, the identity of the olfactory sensory neuron (OSN) is a result of the expression of a single odorant receptor (OR) from a large receptor gene repertoire in the genome. Neurons that share an expressed receptor make a functional class. Here, we identify clusters of transcription factor binding motifs to be the smallest unit that drive expression in a single olfactory sensory neuron class. We further demonstrate that it is the structure of the cluster that determines the class specific expression. However, environmental stress, such as temperature changes or starvation, destabilizes the expression produced by the cluster. Our results demonstrate that stable expression is generated from redundant motifs outside the cluster and suggest that cooperative regulation generates robust expression of the genes that determine neuronal identity and function.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Alenius
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
29
|
A functional insulator screen identifies NURF and dREAM components to be required for enhancer-blocking. PLoS One 2014; 9:e107765. [PMID: 25247414 PMCID: PMC4172637 DOI: 10.1371/journal.pone.0107765] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/08/2014] [Indexed: 12/27/2022] Open
Abstract
Chromatin insulators of higher eukaryotes functionally divide the genome into active and inactive domains. Furthermore, insulators regulate enhancer/promoter communication, which is evident from the Drosophila bithorax locus in which a multitude of regulatory elements control segment specific gene activity. Centrosomal protein 190 (CP190) is targeted to insulators by CTCF or other insulator DNA-binding factors. Chromatin analyses revealed that insulators are characterized by open and nucleosome depleted regions. Here, we wanted to identify chromatin modification and remodelling factors required for an enhancer blocking function. We used the well-studied Fab-8 insulator of the bithorax locus to apply a genome-wide RNAi screen for factors that contribute to the enhancer blocking function of CTCF and CP190. Among 78 genes required for optimal Fab-8 mediated enhancer blocking, all four components of the NURF complex as well as several subunits of the dREAM complex were most evident. Mass spectrometric analyses of CTCF or CP190 bound proteins as well as immune precipitation confirmed NURF and dREAM binding. Both co-localise with most CP190 binding sites in the genome and chromatin immune precipitation showed that CP190 recruits NURF and dREAM. Nucleosome occupancy and histone H3 binding analyses revealed that CP190 mediated NURF binding results in nucleosomal depletion at CP190 binding sites. Thus, we conclude that CP190 binding to CTCF or to other DNA binding insulator factors mediates recruitment of NURF and dREAM. Furthermore, the enhancer blocking function of insulators is associated with nucleosomal depletion and requires NURF and dREAM.
Collapse
|
30
|
Taniguchi H, Moore AW. Chromatin regulators in neurodevelopment and disease: Analysis of fly neural circuits provides insights. Bioessays 2014; 36:872-83. [DOI: 10.1002/bies.201400087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hiroaki Taniguchi
- Laboratory for Genetic Code; Graduate School of Life and Medical Sciences; Doshisha University; Kyotanabe Kyoto Japan
| | - Adrian W. Moore
- Laboratory for Genetic Control of Neuronal Architecture; RIKEN Brain Science Institute; Wako-shi Saitama Japan
| |
Collapse
|
31
|
Korenjak M, Kwon E, Morris RT, Anderssen E, Amzallag A, Ramaswamy S, Dyson NJ. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes. Nucleic Acids Res 2014; 42:8939-53. [PMID: 25053843 PMCID: PMC4132727 DOI: 10.1093/nar/gku609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains.
Collapse
Affiliation(s)
- Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eunjeong Kwon
- Massachusetts General Hospital, Cutaneous Biology Research Center, Charlestown, MA 02129, USA
| | - Robert T Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Endre Anderssen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Arnaud Amzallag
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
32
|
Lyons DB, Lomvardas S. Repressive histone methylation: a case study in deterministic versus stochastic gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1373-84. [PMID: 24859457 DOI: 10.1016/j.bbagrm.2014.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/09/2014] [Accepted: 05/13/2014] [Indexed: 01/21/2023]
Abstract
Transcriptionally repressive histone lysine methylation is used by eukaryotes to tightly control cell fate. Here we explore the importance of this form of regulation in the control of clustered genes in the genome. Two distinctly regulated gene families with important roles in vertebrates are discussed, namely the Hox genes and olfactory receptor genes. Major recent advances in these two fields are compared and contrasted, with an emphasis on the roles of the two different forms of histone trimethylation. We discuss how this repression may impact both the transcriptional output of these loci and the way higher-order chromatin organization is related to their unique control.
Collapse
Affiliation(s)
- David B Lyons
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stavros Lomvardas
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Anatomy, University of California San Francisco, CA 94920, USA.
| |
Collapse
|
33
|
Abstract
Mammalian DREAM is a conserved protein complex that functions in cellular quiescence. DREAM contains an E2F, a retinoblastoma (RB)-family protein, and the MuvB core (LIN9, LIN37, LIN52, LIN54, and RBBP4). In mammals, MuvB can alternatively bind to BMYB to form a complex that promotes mitotic gene expression. Because BMYB-MuvB is essential for proliferation, loss-of-function approaches to study MuvB have generated limited insight into DREAM function. Here, we report a gene-targeted mouse model that is uniquely deficient for DREAM complex assembly. We have targeted p107 (Rbl1) to prevent MuvB binding and combined it with deficiency for p130 (Rbl2). Our data demonstrate that cells from these mice preferentially assemble BMYB-MuvB complexes and fail to repress transcription. DREAM-deficient mice show defects in endochondral bone formation and die shortly after birth. Micro-computed tomography and histology demonstrate that in the absence of DREAM, chondrocytes fail to arrest proliferation. Since DREAM requires DYRK1A (dual-specificity tyrosine phosphorylation-regulated protein kinase 1A) phosphorylation of LIN52 for assembly, we utilized an embryonic bone culture system and pharmacologic inhibition of (DYRK) kinase to demonstrate a similar defect in endochondral bone growth. This reveals that assembly of mammalian DREAM is required to induce cell cycle exit in chondrocytes.
Collapse
|
34
|
Laktionov PP, White-Cooper H, Maksimov DA, Belyakin SN. Transcription factor Comr acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster. Mol Biol 2014. [DOI: 10.1134/s0026893314010087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Yi T, Weng J, Siwko S, Luo J, Li D, Liu M. LGR4/GPR48 inactivation leads to aniridia-genitourinary anomalies-mental retardation syndrome defects. J Biol Chem 2014; 289:8767-80. [PMID: 24519938 DOI: 10.1074/jbc.m113.530816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AGR syndrome (the clinical triad of aniridia, genitourinary anomalies, and mental retardation, a subgroup of WAGR syndrome for Wilm's tumor, aniridia, genitourinary anomalies, and mental retardation) is a rare syndrome caused by a contiguous gene deletion in the 11p13-14 region. However, the mechanisms of WAGR syndrome pathogenesis are elusive. In this study we provide evidence that LGR4 (also named GPR48), the only G-protein-coupled receptor gene in the human chromosome 11p12-11p14.4 fragment, is the key gene responsible for the diseases of AGR syndrome. Deletion of Lgr4 in mouse led to aniridia, polycystic kidney disease, genitourinary anomalies, and mental retardation, similar to the pathological defects of AGR syndrome. Furthermore, Lgr4 inactivation significantly increased cell apoptosis and decreased the expression of multiple important genes involved in the development of WAGR syndrome related organs. Specifically, deletion of Lgr4 down-regulated the expression of histone demethylases Jmjd2a and Fbxl10 through cAMP-CREB signaling pathways both in mouse embryonic fibroblast cells and in urinary and reproductive system mouse tissues. Our data suggest that Lgr4, which regulates eye, kidney, testis, ovary, and uterine organ development as well as mental development through genetic and epigenetic surveillance, is a novel candidate gene for the pathogenesis of AGR syndrome.
Collapse
Affiliation(s)
- Tingfang Yi
- From the Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030 and
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Ants and other social insects offer a natural experimental system to investigate the molecular bases of epigenetic processes that influence the whole organism. Epigenetics is defined as the inheritance of biological variation independent of changes in the DNA sequence. As such, epigenetic research focuses on the mechanisms by which multiple phenotypes arise from a single genome. In social insects, whole individuals belong to alternative phenotypic classes (known as castes) that vary in morphology, behavior, reproductive biology and longevity. It has been proposed that the same epigenetic pathways that maintain different cell identities in vertebrates might determine the different phenotypes observed in social insects. Here, I review the current progress on investigating the role of classic epigenetic signals, such as DNA methylation and histone posttranslational modification, in the relatively unexplored paradigm of ant polyphenism.
Collapse
|
37
|
Alkhori L, Öst A, Alenius M. The corepressor Atrophin specifies odorant receptor expression in Drosophila. FASEB J 2013; 28:1355-64. [PMID: 24334704 DOI: 10.1096/fj.13-240325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In both insects and vertebrates, each olfactory sensory neuron (OSN) expresses one odorant receptor (OR) from a large genomic repertoire. How a receptor is specified is a tantalizing question addressing fundamental aspects of cell differentiation. Here, we demonstrate that the corepressor Atrophin (Atro) segregates OR gene expression between OSN classes in Drosophila. We show that the knockdown of Atro result in either loss or gain of a broad set of ORs. Each OR phenotypic group correlated with one of two opposing Notch fates, Notch responding, Nba (N(on)), and nonresponding, Nab (N(off)) OSNs. Our data show that Atro segregates ORs expressed in the Nba OSN classes and helps establish the Nab fate during OSN development. Consistent with a role in recruiting histone deacetylates, immunohistochemistry revealed that Atro regulates global histone 3 acetylation (H3ac) in OSNs and requires Hdac3 to segregate OR gene expression. We further found that Nba OSN classes exhibit variable but higher H3ac levels than the Nab OSNs. Together, these data suggest that Atro determines the level of H3ac, which ensures correct OR gene expression within the Nba OSNs. We propose a mechanism by which a single corepressor can specify a large number of neuron classes.
Collapse
Affiliation(s)
- Liza Alkhori
- 1Department of Clinical and Experimental Medicine, Linköping University, S-581 83 Linköping, Sweden.
| | | | | |
Collapse
|
38
|
Li Q, Ha TS, Okuwa S, Wang Y, Wang Q, Millard SS, Smith DP, Volkan PC. Combinatorial rules of precursor specification underlying olfactory neuron diversity. Curr Biol 2013; 23:2481-90. [PMID: 24268416 DOI: 10.1016/j.cub.2013.10.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/18/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Sensory neuron diversity ensures optimal detection of the external world and is a hallmark of sensory systems. An extreme example is the olfactory system, as individual olfactory receptor neurons (ORNs) adopt unique sensory identities by typically expressing a single receptor gene from a large genomic repertoire. In Drosophila, about 50 different ORN classes are generated from a field of precursor cells, giving rise to spatially restricted and distinct clusters of ORNs on the olfactory appendages. Developmental strategies spawning ORN diversity from an initially homogeneous population of precursors are largely unknown. RESULTS Here we unravel the nested and binary logic of the combinatorial code that patterns the decision landscape of precursor states underlying ORN diversity in the Drosophila olfactory system. The transcription factor Rotund (Rn) is a critical component of this code that is expressed in a subset of ORN precursors. Addition of Rn to preexisting transcription factors that assign zonal identities to precursors on the antenna subdivides each zone and almost exponentially increases ORN diversity by branching off novel precursor fates from default ones within each zone. In rn mutants, rn-positive ORN classes are converted to rn-negative ones in a zone-specific manner. CONCLUSIONS We provide a model describing how nested and binary changes in combinations of transcription factors could coordinate and pattern a large number of distinct precursor identities within a population to modulate the level of ORN diversity during development and evolution.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Tal Soo Ha
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yiping Wang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Qian Wang
- The Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - S Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dean P Smith
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA; Duke Institute for Brain Sciences, Durham, NC 27708, USA.
| |
Collapse
|
39
|
Abstract
The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.
Collapse
Affiliation(s)
- Subhashini Sadasivam
- Institute for Stem Cell Biology and Regenerative Medicine National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560065, India
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA 02215 USA Department of Medicine, Brigham and Women's Hospital, Boston MA 02115 USA Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
- Corresponding author James A. DeCaprio Dana-Farber Cancer Institute 450 Brookline Avenue Boston, MA 02215 Tel: 617-632-3825 Fax: 617-582-8601
| |
Collapse
|
40
|
Abstract
The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.
Collapse
|
41
|
Tharadra SK, Medina A, Ray A. Advantage of the Highly Restricted Odorant Receptor Expression Pattern in Chemosensory Neurons of Drosophila. PLoS One 2013; 8:e66173. [PMID: 23840419 PMCID: PMC3686798 DOI: 10.1371/journal.pone.0066173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/07/2013] [Indexed: 01/05/2023] Open
Abstract
A fundamental molecular feature of olfactory systems is that individual neurons express only one receptor from a large odorant receptor gene family. While numerous theories have been proposed, the functional significance and evolutionary advantage of generating a sophisticated one-receptor-per neuron expression pattern is not well understood. Using the genetically tractable Drosophila melanogaster as a model, we demonstrate that the breakdown of this highly restricted expression pattern of an odorant receptor in neurons leads to a deficit in the ability to exploit new food sources. We show that animals with ectopic co-expression of odorant receptors also have a competitive disadvantage in a complex environment with limiting food sources. At the level of the olfactory system, we find changes in both the behavioral and electrophysiological responses to odorants that are detected by endogenous receptors when an olfactory receptor is broadly misexpressed in chemosensory neurons. Taken together these results indicate that restrictive expression patterns and segregation of odorant receptors to individual neuron classes are important for sensitive odor-detection and appropriate olfactory behaviors.
Collapse
Affiliation(s)
- Sana Khalid Tharadra
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Adriana Medina
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Anandasankar Ray
- Department of Entomology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Rinker DC, Pitts RJ, Zhou X, Suh E, Rokas A, Zwiebel LJ. Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae. Proc Natl Acad Sci U S A 2013; 110:8260-5. [PMID: 23630291 PMCID: PMC3657813 DOI: 10.1073/pnas.1302562110] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Olfactory-driven behaviors are central to the lifecycle of the malaria vector mosquito Anopheles gambiae and are initiated by peripheral signaling in the antenna and other olfactory tissues. To continue gaining insight into the relationship between gene expression and olfaction, we have performed cohort comparisons of antennal transcript abundances at five time points after a blood meal, a key event in both reproduction and disease transmission cycles. We found that more than 5,000 transcripts displayed significant abundance differences, many of which were correlated by cluster analysis. Within the chemosensory gene families, we observed a general reduction in the level of chemosensory gene transcripts, although a subset of odorant receptors (AgOrs) was modestly enhanced in post-blood-fed samples. Integration of AgOr transcript abundance data with previously characterized AgOr excitatory odorant response profiles revealed potential changes in antennal odorant receptivity that coincided with the shift from host-seeking to oviposition behaviors in blood-fed female mosquitoes. Behavioral testing of ovipositing females to odorants highlighted by this synthetic analysis identified two unique, unitary oviposition cues for An. gambiae, 2-propylphenol and 4-methylcyclohexanol. We posit that modest, yet cumulative, alterations of AgOr transcript levels modulate peripheral odor coding resulting in biologically relevant behavioral effects. Moreover, these results demonstrate that highly quantitative, RNAseq transcript abundance data can be successfully integrated with functional data to generate testable hypotheses.
Collapse
Affiliation(s)
- David C. Rinker
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235
| | - R. Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Eunho Suh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Antonis Rokas
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Laurence J. Zwiebel
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
- Department of Pharmacology, Vanderbilt Brain Institute, Program in Developmental Biology, and Institutes of Chemical Biology and Global Health, Vanderbilt University Medical Center, Nashville, TN 37235
| |
Collapse
|
43
|
EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003511. [PMID: 23671427 PMCID: PMC3650002 DOI: 10.1371/journal.pgen.1003511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2) and carbon dioxide (CO2). In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral responses to exquisite changes in O2 or CO2 levels via different sensory receptors. How the diversification of the O2- and CO2-sensing neurons is established is poorly understood. We show here that the molecular identity of both the BAG (O2/CO2-sensing) and the URX (O2-sensing) neurons is controlled by the phylogenetically conserved SoxD transcription factor homolog EGL-13. egl-13 mutant animals fail to fully express the distinct terminal gene batteries of the BAG and URX neurons and, as such, are unable to mount behavioral responses to changes in O2 and CO2. We found that the expression of egl-13 is regulated in the BAG and URX neurons by two conserved transcription factors-ETS-5(Ets factor) in the BAG neurons and AHR-1(bHLH factor) in the URX neurons. In addition, we found that EGL-13 acts in partially parallel pathways with both ETS-5 and AHR-1 to direct BAG and URX neuronal fate respectively. Finally, we found that EGL-13 is sufficient to induce O2- and CO2-sensing cell fates in some cellular contexts. Thus, the same core regulatory factor, egl-13, is required and sufficient to specify the distinct fates of O2- and CO2-sensing neurons in C. elegans. These findings extend our understanding of mechanisms of neuronal diversification and the regulation of molecular factors that may be conserved in higher organisms.
Collapse
|
44
|
Rister J, Desplan C, Vasiliauskas D. Establishing and maintaining gene expression patterns: insights from sensory receptor patterning. Development 2013; 140:493-503. [PMID: 23293281 DOI: 10.1242/dev.079095] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In visual and olfactory sensory systems with high discriminatory power, each sensory neuron typically expresses one, or very few, sensory receptor genes, excluding all others. Recent studies have provided insights into the mechanisms that generate and maintain sensory receptor expression patterns. Here, we review how this is achieved in the fly retina and compare it with the mechanisms controlling sensory receptor expression patterns in the mouse retina and in the mouse and fly olfactory systems.
Collapse
Affiliation(s)
- Jens Rister
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003-6688, USA
| | | | | |
Collapse
|