1
|
Behvarmanesh A, Kozlov G, Wagner JP, Chen YS, Gehring K. Deep Mutational Scanning of an Engineered High-affinity Ligand of the poly(A) Binding Protein MLLE Domain. J Mol Biol 2025; 437:169120. [PMID: 40180125 DOI: 10.1016/j.jmb.2025.169120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The MLLE domain is a peptide-binding domain found in the poly(A) binding protein (PABP) and the ubiquitin protein E3 ligase N-recognin 5 (UBR5) that recognizes a conserved motif, named PABP-interacting motif 2 (PAM2). The majority of PAM2 sequences bind to MLLE domains with low-micromolar affinity. Here, we designed a chimeric PAM2 peptide termed super PAM2 (sPAM2) by combining classical and trinucleotide repeat-containing 6 (TNRC6)-like binding modes to create a superior binder for the MLLE domain. The crystal structure of the PABPC1 MLLE-sPAM2 complex shows a crucial role of conserved sPAM2 leucine, phenylalanine and tryptophan residues in the interaction. We used deep mutational scanning (DMS) coupled with isothermal titration calorimetry (ITC) to characterize the specificity profiles for PABPC1 and UBR5 MLLE. The best sPAM2 sequence binds to PABPC1 MLLE with low-nanomolar affinity and nearly 20-fold more tightly than the best natural PAM2 sequence. This suggests that the affinities of natural PAM2 sequences are tuned to control their binding to PABPC1 and UBR5. Our study will aid in the discovery of new PAM2-containing proteins (PACs) and facilitate in vivo studies of PAM2-mediated cellular pathways.
Collapse
Affiliation(s)
- Ali Behvarmanesh
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Julian P Wagner
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Yu Seby Chen
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
2
|
Wang Y, Niu K, Shi Y, Zhou F, Li X, Li Y, Chen T, Zhang Y. A review: targeting UBR5 domains to mediate emerging roles and mechanisms - chance or necessity? Int J Surg 2024; 110:4947-4964. [PMID: 38701508 PMCID: PMC11326040 DOI: 10.1097/js9.0000000000001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Ubiquitinases are known to catalyze ubiquitin chains on target proteins to regulate various physiological functions like cell proliferation, autophagy, apoptosis, and cell cycle progression. As a member of E3 ligase, ubiquitin protein ligase E3 component n-recognin 5 (UBR5) belongs to the HECT E3 ligase and has been reported to be correlated with various pathophysiological processes. In this review, the authors give a comprehensive insight into the structure and function of UBR5. The authors discuss the specific domains of UBR5 and explore their biological functions separately. Furthermore, the authors describe the involvement of UBR5 in different pathophysiological conditions, including immune response, virus infection, DNA damage response, and protein quality control. Moreover, the authors provide a thorough summary of the important roles and regulatory mechanisms of UBR5 in cancers and other diseases. On the whole, investigating the domains and functions of UBR5, elucidating the underlying mechanisms of UBR5 with various substrates in detail may provide new theoretical basis for the treatment of diseases, including cancers, which could improve future studies to construct novel UBR5-targeted therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
3
|
Mihalič F, Simonetti L, Giudice G, Sander MR, Lindqvist R, Peters MBA, Benz C, Kassa E, Badgujar D, Inturi R, Ali M, Krystkowiak I, Sayadi A, Andersson E, Aronsson H, Söderberg O, Dobritzsch D, Petsalaki E, Överby AK, Jemth P, Davey NE, Ivarsson Y. Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs. Nat Commun 2023; 14:2409. [PMID: 37100772 PMCID: PMC10132805 DOI: 10.1038/s41467-023-38015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Viruses mimic host short linear motifs (SLiMs) to hijack and deregulate cellular functions. Studies of motif-mediated interactions therefore provide insight into virus-host dependencies, and reveal targets for therapeutic intervention. Here, we describe the pan-viral discovery of 1712 SLiM-based virus-host interactions using a phage peptidome tiling the intrinsically disordered protein regions of 229 RNA viruses. We find mimicry of host SLiMs to be a ubiquitous viral strategy, reveal novel host proteins hijacked by viruses, and identify cellular pathways frequently deregulated by viral motif mimicry. Using structural and biophysical analyses, we show that viral mimicry-based interactions have similar binding strength and bound conformations as endogenous interactions. Finally, we establish polyadenylate-binding protein 1 as a potential target for broad-spectrum antiviral agent development. Our platform enables rapid discovery of mechanisms of viral interference and the identification of potential therapeutic targets which can aid in combating future epidemics and pandemics.
Collapse
Affiliation(s)
- Filip Mihalič
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Marie Berit Akpiroro Peters
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eszter Kassa
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Dilip Badgujar
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Izabella Krystkowiak
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Ahmed Sayadi
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Hanna Aronsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Doreen Dobritzsch
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
4
|
Qi Y, Wang M, Jiang Q. PABPC1--mRNA stability, protein translation and tumorigenesis. Front Oncol 2022; 12:1025291. [PMID: 36531055 PMCID: PMC9753129 DOI: 10.3389/fonc.2022.1025291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Mammalian poly A-binding proteins (PABPs) are highly conserved multifunctional RNA-binding proteins primarily involved in the regulation of mRNA translation and stability, of which PABPC1 is considered a central regulator of cytoplasmic mRNA homing and is involved in a wide range of physiological and pathological processes by regulating almost every aspect of RNA metabolism. Alterations in its expression and function disrupt intra-tissue homeostasis and contribute to the development of various tumors. There is increasing evidence that PABPC1 is aberrantly expressed in a variety of tumor tissues and cancers such as lung, gastric, breast, liver, and esophageal cancers, and PABPC1 might be used as a potential biomarker for tumor diagnosis, treatment, and clinical application in the future. In this paper, we review the abnormal expression, functional role, and molecular mechanism of PABPC1 in tumorigenesis and provide directions for further understanding the regulatory role of PABPC1 in tumor cells.
Collapse
Affiliation(s)
- Ya Qi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Qi Jiang
- Second Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Abstract
Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses' common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs' roles during viral infection. This review summarizes a comprehensive perspective of PABPs' roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.
Collapse
Affiliation(s)
- Jie Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Hu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
6
|
Sagae T, Yokogawa M, Sawazaki R, Ishii Y, Hosoda N, Hoshino SI, Imai S, Shimada I, Osawa M. Paip2A inhibits translation by competitively binding to the RNA recognition motifs of PABPC1 and promoting its dissociation from the poly(A) tail. J Biol Chem 2022; 298:101844. [PMID: 35307347 PMCID: PMC9019252 DOI: 10.1016/j.jbc.2022.101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic mRNAs possess a poly(A) tail at their 3′-end, to which poly(A)-binding protein C1 (PABPC1) binds and recruits other proteins that regulate translation. Enhanced poly(A)-dependent translation, which is also PABPC1 dependent, promotes cellular and viral proliferation. PABP-interacting protein 2A (Paip2A) effectively represses poly(A)-dependent translation by causing the dissociation of PABPC1 from the poly(A) tail; however, the underlying mechanism remains unknown. This study was conducted to investigate the functional mechanisms of Paip2A action by characterizing the PABPC1–poly(A) and PABPC1–Paip2A interactions. Isothermal titration calorimetry and NMR analyses indicated that both interactions predominantly occurred at the RNA recognition motif (RRM)2–RRM3 regions of PABPC1, which have comparable affinities for poly(A) and Paip2A (dissociation constant, Kd = 1 nM). However, the Kd values of isolated RRM2 were 200 and 4 μM in their interactions with poly(A) and Paip2A, respectively; Kd values of 5 and 1 μM were observed for the interactions of isolated RRM3 with poly(A) and Paip2A, respectively. NMR analyses also revealed that Paip2A can bind to the poly(A)-binding interfaces of the RRM2 and RRM3 regions of PABPC1. Based on these results, we propose the following functional mechanism for Paip2A: Paip2A initially binds to the RRM2 region of poly(A)-bound PABPC1, and RRM2-anchored Paip2A effectively displaces the RRM3 region from poly(A), resulting in dissociation of the whole PABPC1 molecule. Together, our findings provide insight into the translation repression effect of Paip2A and may aid in the development of novel anticancer and/or antiviral drugs.
Collapse
Affiliation(s)
- Takeru Sagae
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Ryoichi Sawazaki
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Yuichiro Ishii
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Nao Hosoda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Shin-Ichi Hoshino
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Center for Biosystems Dynamics Research, RIKEN, Tsurumi-ku, Yokohama, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Center for Biosystems Dynamics Research, RIKEN, Tsurumi-ku, Yokohama, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
8
|
Murine cytomegaloviruses m139 targets DDX3 to curtail interferon production and promote viral replication. PLoS Pathog 2020; 16:e1008546. [PMID: 33031466 PMCID: PMC7575108 DOI: 10.1371/journal.ppat.1008546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Cytomegaloviruses (CMV) infect many different cell types and tissues in their respective hosts. Monocytes and macrophages play an important role in CMV dissemination from the site of infection to target organs. Moreover, macrophages are specialized in pathogen sensing and respond to infection by secreting cytokines and interferons. In murine cytomegalovirus (MCMV), a model for human cytomegalovirus, several genes required for efficient replication in macrophages have been identified, but their specific functions remain poorly understood. Here we show that MCMV m139, a gene of the conserved US22 gene family, encodes a protein that interacts with the DEAD box helicase DDX3, a protein involved in pathogen sensing and interferon (IFN) induction, and the E3 ubiquitin ligase UBR5. DDX3 and UBR5 also participate in the transcription, processing, and translation of a subset of cellular mRNAs. We show that m139 inhibits DDX3-mediated IFN-α and IFN-β induction and is necessary for efficient viral replication in bone-marrow derived macrophages. In vivo, m139 is crucial for viral dissemination to local lymph nodes and to the salivary glands. An m139-deficient MCMV also replicated to lower titers in SVEC4-10 endothelial cells. This replication defect was not accompanied by increased IFN-β transcription, but was rescued by knockout of either DDX3 or UBR5. Moreover, m139 co-localized with DDX3 and UBR5 in viral replication compartments in the cell nucleus. These results suggest that m139 inhibits DDX3-mediated IFN production in macrophages and antagonizes DDX3 and UBR5-dependent functions related to RNA metabolism in endothelial cells. Human cytomegalovirus is an opportunistic pathogen that causes severe infections in immunocompromised individuals. The virus infects certain cell types, such as macrophages and endothelial cells, to ensure its dissemination within the body. Little is known about the viral factors that promote a productive infection of these cell types. The identification of critical viral factors and the molecular pathways they target can lead to the development of novel antiviral treatment strategies. Using the mouse cytomegalovirus as a model, we studied the viral m139 gene, which is important for virus replication in macrophages and endothelial cells and for dissemination in the mouse. This gene encodes a protein that interacts with the host proteins DDX3 and UBR5. Both proteins are involved in gene expression, and the RNA helicase DDX3 also participates in mounting an innate antiviral response. By interacting with DDX3 and UBR5, m139 ensures efficient viral replication in endothelial cells. Importantly, we identify m139 as a new viral DDX3 inhibitor, which curtails the production of interferon by macrophages.
Collapse
|
9
|
Xue Q, Liu H, Zhu Z, Xue Z, Liu X, Zheng H. Seneca Valley Virus 3C pro Cleaves PABPC1 to Promote Viral Replication. Pathogens 2020; 9:pathogens9060443. [PMID: 32512928 PMCID: PMC7350346 DOI: 10.3390/pathogens9060443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Seneca Valley Virus (SVV) is an oncolytic virus of the Picornaviridae family, which has emerged in recent years. The impact of SVV on host cell translation remains unknown. Here, we showed, for the first time, that SVV infection cleaved poly(A) binding protein cytoplasmic 1 (PABPC1). In SVV-infected cells, 50 kDa of the N terminal cleaved band and 25 kDa of the C terminal cleaved band of PABPC1 were detected. Further study showed that the viral protease, 3Cpro induced the cleavage of PABPC1 by its protease activity. The SVV strains with inactive point mutants of 3Cpro (H48A, C160A or H48A/C160A) can not be rescued by reverse genetics, suggesting that sites 48 and 160 of 3Cpro were essential for SVV replication. SVV 3Cpro induced the cleavage of PABPC1 at residue 437. A detailed data analysis showed that SVV infection and the overexpression of 3Cpro decreased the protein synthesis rates. The protease activity of 3Cpro was essential for inhibiting the protein synthesis. Our results also indicated that PABPC1 inhibited SVV replication. These data reveal a novel antagonistic mechanism and pathogenesis mediated by SVV and highlight the importance of 3Cpro on SVV replication.
Collapse
|
10
|
Huang MS, Yuan FQ, Gao Y, Liu JY, Chen YX, Wang CJ, He BM, Zhou HH, Liu ZQ. Circular RNA screening from EIF3a in lung cancer. Cancer Med 2019; 8:4159-4168. [PMID: 31197975 PMCID: PMC6675731 DOI: 10.1002/cam4.2338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic initiation factor 3 (EIF3) is one of the largest and most complex translation initiation factors, which consists of 13 subunits named eukaryotic translation initiation factor 3 subunit A (EIF3a) to EIF3m. EIF3a is the largest subunit of EIF3. Previous studies suggested that EIF3a is a housekeeping gene, recent results have found that EIF3a is closely related to the tumorigenesis and drug resistance. Circular RNAs (circRNAs) derived from biologically important gene can play an important role in gene regulation. However, the mechanism underlying circRNAs’ biological functions is not well understood yet. In this work, we screened 31 EIF3a‐derived circRNAs, in which two circEIF3as were identified to be correlated with cisplatin drug sensitivity in lung cancer. Two circEIF3as were found involved in RNA‐binding proteins‐mediated biological processes and may be related to translational regulation according to bioinformatics analyses. CircEIF3as, the transcriptional initiation factor EIF3a transcribed circRNAs, are associated with both drug sensitivity and translation regulation. These findings mean that they may have a functional synergy effect with EIF3a or be valuable therapeutic targets for treatment like EIF3a. This is the first study that exploits circRNAs screening from EIF3a in lung cancer, our findings provide a novel perspective on the function of EIF3a and circEIF3as in lung cancer.
Collapse
Affiliation(s)
- Ma-Sha Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Fu-Qiang Yuan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Yang Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Jun-Yan Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Yi-Xin Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Chen-Jing Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Bai-Mei He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
11
|
Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. Translational Control in Virus-Infected Cells. Cold Spring Harb Perspect Biol 2019; 11:a033001. [PMID: 29891561 PMCID: PMC6396331 DOI: 10.1101/cshperspect.a033001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As obligate intracellular parasites, virus reproduction requires host cell functions. Despite variations in genome size and configuration, nucleic acid composition, and their repertoire of encoded functions, all viruses remain unconditionally dependent on the protein synthesis machinery resident within their cellular hosts to translate viral messenger RNAs (mRNAs). A complex signaling network responsive to physiological stress, including infection, regulates host translation factors and ribosome availability. Furthermore, access to the translation apparatus is patrolled by powerful host immune defenses programmed to restrict viral invaders. Here, we review the tactics and mechanisms used by viruses to appropriate control over host ribosomes, subvert host defenses, and dominate the infected cell translational landscape. These not only define aspects of infection biology paramount for virus reproduction, but continue to drive fundamental discoveries into how cellular protein synthesis is controlled in health and disease.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
12
|
Adler B, Sattler C, Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol 2017; 25:229-241. [DOI: 10.1016/j.tim.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
|
13
|
Abstract
Circular RNAs (CircRNAs) were first identified as a viroid and later found to also be an endogenous RNA splicing product in eukaryotes. In recent years, a series of RNA-sequencing analyses from a diverse range of eukaryotes have shed new light on these eukaryotic circRNAs, revealing dynamic expression patterns in various developmental stages and physiological conditions. In this review, we focus on circRNAs implicated in stress response pathways and explore potential mechanisms underlying their regulation. To date, circRNAs have been shown to act as scaffolds in the assembly of protein complexes, sequester proteins from native subcellular localization, activate transcription of parental genes, inhibit RNA-protein interactions, and function as regulators of microRNA activity. Although the mechanism modulating circRNA levels during stress remains unclear, circRNAs are shown to be regulated during biogenesis, degradation, and exportation. As circRNAs do not have 5' and 3' ends, there are no entry points for exoribonucleases to initiate degradation. Such inherent stability makes this class of RNA a strong candidate to maintain homeostasis in the face of environmental challenges.
Collapse
Affiliation(s)
- Joseph W Fischer
- a McKusick-Nathans Institute of Genetic Medicine, School of Medicine , Johns Hopkins University , Baltimore , MD , USA.,b Department of Biochemistry and Molecular Biology , Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA
| | - Anthony K L Leung
- a McKusick-Nathans Institute of Genetic Medicine, School of Medicine , Johns Hopkins University , Baltimore , MD , USA.,b Department of Biochemistry and Molecular Biology , Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA.,c Department of Oncology , School of Medicine, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
14
|
Jan E, Mohr I, Walsh D. A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annu Rev Virol 2016; 3:283-307. [PMID: 27501262 DOI: 10.1146/annurev-virology-100114-055014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although viruses require cellular functions to replicate, their absolute dependence upon the host translation machinery to produce polypeptides indispensable for their reproduction is most conspicuous. Despite their incredible diversity, the mRNAs produced by all viruses must engage cellular ribosomes. This has proven to be anything but a passive process and has revealed a remarkable array of tactics for rapidly subverting control over and dominating cellular regulatory pathways that influence translation initiation, elongation, and termination. Besides enforcing viral mRNA translation, these processes profoundly impact host cell-intrinsic immune defenses at the ready to deny foreign mRNA access to ribosomes and block protein synthesis. Finally, genome size constraints have driven the evolution of resourceful strategies for maximizing viral coding capacity. Here, we review the amazing strategies that work to regulate translation in virus-infected cells, highlighting both virus-specific tactics and the tremendous insight they provide into fundamental translational control mechanisms in health and disease.
Collapse
Affiliation(s)
- Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Ian Mohr
- Department of Microbiology and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016;
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611;
| |
Collapse
|
15
|
Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication. PLoS Pathog 2016; 12:e1005357. [PMID: 26735137 PMCID: PMC4703206 DOI: 10.1371/journal.ppat.1005357] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.
Collapse
|
16
|
McManus KF, Kelley JL, Song S, Veeramah KR, Woerner AE, Stevison LS, Ryder OA, Ape Genome Project G, Kidd JM, Wall JD, Bustamante CD, Hammer MF. Inference of gorilla demographic and selective history from whole-genome sequence data. Mol Biol Evol 2014; 32:600-12. [PMID: 25534031 PMCID: PMC4327160 DOI: 10.1093/molbev/msu394] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although population-level genomic sequence data have been gathered extensively for humans, similar data from our closest living relatives are just beginning to emerge. Examination of genomic variation within great apes offers many opportunities to increase our understanding of the forces that have differentially shaped the evolutionary history of hominid taxa. Here, we expand upon the work of the Great Ape Genome Project by analyzing medium to high coverage whole-genome sequences from 14 western lowland gorillas (Gorilla gorilla gorilla), 2 eastern lowland gorillas (G. beringei graueri), and a single Cross River individual (G. gorilla diehli). We infer that the ancestors of western and eastern lowland gorillas diverged from a common ancestor approximately 261 ka, and that the ancestors of the Cross River population diverged from the western lowland gorilla lineage approximately 68 ka. Using a diffusion approximation approach to model the genome-wide site frequency spectrum, we infer a history of western lowland gorillas that includes an ancestral population expansion of 1.4-fold around 970 ka and a recent 5.6-fold contraction in population size 23 ka. The latter may correspond to a major reduction in African equatorial forests around the Last Glacial Maximum. We also analyze patterns of variation among western lowland gorillas to identify several genomic regions with strong signatures of recent selective sweeps. We find that processes related to taste, pancreatic and saliva secretion, sodium ion transmembrane transport, and cardiac muscle function are overrepresented in genomic regions predicted to have experienced recent positive selection.
Collapse
Affiliation(s)
- Kimberly F McManus
- Department of Biology, Stanford University Department of Biomedical Informatics, Stanford University
| | - Joanna L Kelley
- Department of Genetics, Stanford University School of Biological Sciences, Washington State University
| | - Shiya Song
- Department of Computational Medicine & Bioinformatics, University of Michigan
| | | | | | - Laurie S Stevison
- Institute for Human Genetics, University of California San Francisco
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | | | - Jeffrey M Kidd
- Department of Computational Medicine & Bioinformatics, University of Michigan Department of Human Genetics, University of Michigan
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California San Francisco
| | | | | |
Collapse
|
17
|
Watts FZ, Baldock R, Jongjitwimol J, Morley SJ. Weighing up the possibilities: Controlling translation by ubiquitylation and sumoylation. ACTA ACUST UNITED AC 2014; 2:e959366. [PMID: 26779408 DOI: 10.4161/2169074x.2014.959366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022]
Abstract
Regulation of protein synthesis is of fundamental importance to cells. It has a critical role in the control of gene expression, and consequently cell growth and proliferation. The importance of this control is supported by the fact that protein synthesis is frequently upregulated in tumor cells. The major point at which regulation occurs is the initiation stage. Initiation of translation involves the interaction of several proteins to form the eIF4F complex, the recognition of the mRNA by this complex, and the subsequent recruitment of the 40S ribosomal subunit to the mRNA. This results in the formation of the 48S complex that then scans the mRNA for the start codon, engages the methionyl-tRNA and eventually forms the mature 80S ribosome which is elongation-competent. Formation of the 48S complex is regulated by the availability of individual initiation factors and through specific protein-protein interactions. Both of these events can be regulated by post-translational modification by ubiquitin or Ubls (ubiquitin-like modifiers) such as SUMO or ISG15. We provide here a summary of translation initiation factors that are modified by ubiquitin or Ubls and, where they have been studied in detail, describe the role of these modifications and their effects on regulating protein synthesis.
Collapse
Affiliation(s)
- Felicity Z Watts
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Robert Baldock
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Jirapas Jongjitwimol
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Simon J Morley
- Department of Biochemistry and Biomedical Science; School of Life Sciences; University of Sussex ; Brighton, UK
| |
Collapse
|
18
|
The "tale" of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1062-8. [PMID: 25120199 DOI: 10.1016/j.bbagrm.2014.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/11/2014] [Accepted: 08/04/2014] [Indexed: 11/21/2022]
Abstract
The cytoplasmic poly(A) binding protein 1 (PABPC1) is an essential eukaryotic translational initiation factor first described over 40 years ago. Most studies of PABPC1 have focused on its N-terminal RRM domains, which bind the mRNA 3' poly(A) tail and 5' translation complex eIF4F via eIF4G; however, the protein also contains a C-terminal MLLE domain that binds a peptide motif, termed PAM2, found in many proteins involved in translation regulation and mRNA metabolism. Studies over the past decade have revealed additional functions of PAM2-containing proteins (PACs) in neurodegenerative diseases, circadian rhythms, innate defense, and ubiquitin-mediated protein degradation. Here, we summarize functional and structural studies of the MLLE/PAM2 interaction and discuss the diverse roles of PACs.
Collapse
|
19
|
Au HHT, Jan E. Novel viral translation strategies. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:779-801. [PMID: 25045163 PMCID: PMC7169809 DOI: 10.1002/wrna.1246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 01/06/2023]
Abstract
Viral genomes are compact and encode a limited number of proteins. Because they do not encode components of the translational machinery, viruses exhibit an absolute dependence on the host ribosome and factors for viral messenger RNA (mRNA) translation. In order to recruit the host ribosome, viruses have evolved unique strategies to either outcompete cellular transcripts that are efficiently translated by the canonical translation pathway or to reroute translation factors and ribosomes to the viral genome. Furthermore, viruses must evade host antiviral responses and escape immune surveillance. This review focuses on some recent major findings that have revealed unconventional strategies that viruses utilize, which include usurping the host translational machinery, modulating canonical translation initiation factors to specifically enhance or repress overall translation for the purpose of viral production, and increasing viral coding capacity. The discovery of these diverse viral strategies has provided insights into additional translational control mechanisms and into the viral host interactions that ensure viral protein synthesis and replication. WIREs RNA 2014, 5:779–801. doi: 10.1002/wrna.1246 This article is categorized under:
Translation > Translation Mechanisms Translation > Translation Regulation
Collapse
Affiliation(s)
- Hilda H T Au
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
20
|
McKinney C, Zavadil J, Bianco C, Shiflett L, Brown S, Mohr I. Global reprogramming of the cellular translational landscape facilitates cytomegalovirus replication. Cell Rep 2013; 6:9-17. [PMID: 24373965 DOI: 10.1016/j.celrep.2013.11.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/31/2013] [Accepted: 11/26/2013] [Indexed: 12/27/2022] Open
Abstract
Unlike many viruses that suppress cellular protein synthesis, host mRNA translation and polyribosome formation are stimulated by human cytomegalovirus (HCMV). How HCMV impacts the translationally regulated cellular mRNA repertoire and its contribution to virus biology remains unknown. Using polysome profiling, we show that HCMV presides over the cellular translational landscape, selectively accessing the host genome to extend its own coding capacity and regulate virus replication. Expression of the HCMV UL38 mTORC1-activator partially recapitulates these translational alterations in uninfected cells. The signature of cellular mRNAs translationally stimulated by HCMV resembles pathophysiological states (such as cancer) where translation initiation factor levels or activity increase. In contrast, cellular mRNAs repressed by HCMV include those involved in differentiation and the immune response. Surprisingly, interfering with the virus-induced activation of cellular mRNA translation can either limit or enhance HCMV growth. The unanticipated extent to which HCMV specifically manipulates host mRNA translation may aid in understanding its association with complex inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Caleb McKinney
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jiri Zavadil
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; NYU Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Christopher Bianco
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Lora Shiflett
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Stuart Brown
- NYU Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|