1
|
Nguyen AL, Smith EM, Cheeseman IM. Co-essentiality analysis identifies PRR12 as a cohesin interacting protein and contributor to genomic integrity. Dev Cell 2025; 60:1217-1233.e7. [PMID: 39742660 PMCID: PMC12014375 DOI: 10.1016/j.devcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
The cohesin complex is critical for genome organization and regulation, relying on specialized co-factors to mediate its diverse functional activities. Here, by analyzing patterns of similar gene requirements across cell lines, we identify PRR12 as a mediator of cohesin and genome integrity. We show that PRR12 interacts with NIPBL/MAU2 and the cohesin complex, and that the loss of PRR12 results in reduced cohesin localization and a substantial increase in DNA double-strand breaks in mouse NIH-3T3 cells. Additionally, PRR12 co-localizes with NIPBL to sites of DNA damage in a NIPBL and cohesin-dependent manner. We find that the requirement for PRR12 differs across cell lines, with human HeLa cells exhibiting reduced sensitivity to PRR12 loss compared with mouse NIH-3T3 cells, indicating context-specific roles. Together, our work identifies PRR12 as a regulator of cohesin and provides insight into how genome integrity is maintained across diverse cellular contexts.
Collapse
Affiliation(s)
| | - Eric M Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Hellmuth S, Stemmann O. Requirement of Nek2a and cyclin A2 for Wapl-dependent removal of cohesin from prophase chromatin. EMBO J 2024; 43:5237-5259. [PMID: 39271794 PMCID: PMC11535040 DOI: 10.1038/s44318-024-00228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Sister chromatid cohesion is mediated by the cohesin complex. In mitotic prophase cohesin is removed from chromosome arms in a Wapl- and phosphorylation-dependent manner. Sgo1-PP2A protects pericentromeric cohesion by dephosphorylation of cohesin and its associated Wapl antagonist sororin. However, Sgo1-PP2A relocates to inner kinetochores well before sister chromatids are separated by separase, leaving pericentromeric regions unprotected. Why deprotected cohesin is not removed by Wapl remains enigmatic. By reconstituting Wapl-dependent cohesin removal from chromatin in vitro, we discovered a requirement for Nek2a and Cdk1/2-cyclin A2. These kinases phosphorylate cohesin-bound Pds5b, thereby converting it from a sororin- to a Wapl-interactor. Replacement of endogenous Pds5b by a phosphorylation mimetic variant causes premature sister chromatid separation (PCS). Conversely, phosphorylation-resistant Pds5b impairs chromosome arm separation in prometaphase-arrested cells and suppresses PCS in the absence of Sgo1. Early mitotic degradation of Nek2a and cyclin A2 may therefore explain why only separase, but not Wapl, can trigger anaphase.
Collapse
Affiliation(s)
- Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
3
|
Yan L, Yuan X, Liu M, Chen Q, Zhang M, Xu J, Zeng LH, Zhang L, Huang J, Lu W, He X, Yan H, Wang F. A non-canonical role of the inner kinetochore in regulating sister-chromatid cohesion at centromeres. EMBO J 2024; 43:2424-2452. [PMID: 38714893 PMCID: PMC11182772 DOI: 10.1038/s44318-024-00104-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 06/19/2024] Open
Abstract
The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset. This interaction is mediated by binding of the 5-subunit CENP-OPQUR sub-complex of CCAN to the Scc1-SA2 sub-complex of cohesin. Mutation in the CENP-U subunit of the CENP-OPQUR complex that abolishes its binding to the composite interface between Scc1 and SA2 weakens centromeric cohesion, leading to premature separation of sister chromatids during delayed metaphase. We further show that CENP-U competes with the cohesin release factor Wapl for binding the interface of Scc1-SA2, and that the cohesion-protecting role for CENP-U can be bypassed by depleting Wapl. Taken together, this study reveals an inner kinetochore-bound pool of cohesin, which strengthens centromeric sister-chromatid cohesion to resist metaphase spindle pulling forces.
Collapse
Affiliation(s)
- Lu Yan
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Xueying Yuan
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Mingjie Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qinfu Chen
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Miao Zhang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Long Zhang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jun Huang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Haiyan Yan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Fangwei Wang
- Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China.
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Ding Z, Peng L, Zeng J, Yuan K, Tang Y, Yi Q. Functions of HP1 in preventing chromosomal instability. Cell Biochem Funct 2024; 42:e4017. [PMID: 38603595 DOI: 10.1002/cbf.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Chromosomal instability (CIN), caused by errors in the segregation of chromosomes during mitosis, is a hallmark of many types of cancer. The fidelity of chromosome segregation is governed by a sophisticated cellular signaling network, one crucial orchestrator of which is Heterochromatin protein 1 (HP1). HP1 dynamically localizes to distinct sites at various stages of mitosis, where it regulates key mitotic events ranging from chromosome-microtubule attachment to sister chromatid cohesion to cytokinesis. Our evolving comprehension of HP1's multifaceted role has positioned it as a central protein in the orchestration of mitotic processes.
Collapse
Affiliation(s)
- Zexian Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Lei Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jinghua Zeng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Kejia Yuan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yan Tang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
Quadri R, Rotondo G, Sertic S, Pozzi S, dell’Oca MC, Guerrini L, Muzi-Falconi M. A Haspin-ARHGAP11A axis regulates epithelial morphogenesis through Rho-ROCK dependent modulation of LIMK1-Cofilin. iScience 2023; 26:108011. [PMID: 37841592 PMCID: PMC10570125 DOI: 10.1016/j.isci.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Throughout mitosis, a plethora of processes must be efficiently concerted to ensure cell proliferation and tissue functionality. The mitotic spindle does not only mediate chromosome segregation, but also defines the axis of cellular division, thus determining tissue morphology. Functional spindle orientation relies on precise actin dynamics, shaped in mitosis by the LIMK1-Cofilin axis. The kinase Haspin acts as a guardian of faithful chromosome segregation that ensures amphitelic chromosome attachment and prevents unscheduled cohesin cleavage. Here, we report an unprecedented role for Haspin in the determination of spindle orientation in mitosis. We show that, during mitosis, Haspin regulates Rho-ROCK activity through ARHGAP11A, a poorly characterized GAP, and that ROCK is in turn responsible for the mitotic activation of LIMK1 and stabilization of the actin cytoskeleton, thus supporting a functional spindle orientation. By exploiting 3D cell cultures, we show that this pathway is pivotal for the establishment of a morphologically functional tissue.
Collapse
Affiliation(s)
- Roberto Quadri
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Giuseppe Rotondo
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sarah Sertic
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sara Pozzi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | - Luisa Guerrini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Marco Muzi-Falconi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
6
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
González-Martín E, Jiménez J, Tallada VA. BiFCo: visualizing cohesin assembly/disassembly cycle in living cells. Life Sci Alliance 2023; 6:e202301945. [PMID: 37160310 PMCID: PMC10172768 DOI: 10.26508/lsa.202301945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Cohesin is a highly conserved, ring-shaped protein complex found in all eukaryotes. It consists of at least two structural maintenance of chromosomes (SMC) proteins, SMC1 and SMC3 in humans (Psm1 and Psm3 in fission yeast), and the kleisin RAD21 (Rad21 in fission yeast). Mutations in its components or regulators can lead to genetic syndromes, known as cohesinopathies, and various types of cancer. Studies in several organisms have shown that only a small fraction of each subunit assembles into complexes, making it difficult to investigate dynamic chromatin loading and unloading using fluorescent fusions in vivo because of excess soluble components. In this study, we introduce bimolecular fluorescent cohesin (BiFCo), based on bimolecular fluorescent complementation in the fission yeast Schizosaccharomyces pombe BiFCo selectively excludes signals from individual proteins, enabling the monitoring of complex assembly and disassembly within a physiological context throughout the entire cell cycle in living cells. This versatile system can be expanded and adapted for various genetic backgrounds and other eukaryotic models, including human cells.
Collapse
Affiliation(s)
- Emilio González-Martín
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Juan Jiménez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Víctor A Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| |
Collapse
|
8
|
Mitter M, Takacs Z, Köcher T, Micura R, Langer CCH, Gerlich DW. Sister chromatid-sensitive Hi-C to map the conformation of replicated genomes. Nat Protoc 2022; 17:1486-1517. [PMID: 35478248 DOI: 10.1038/s41596-022-00687-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022]
Abstract
Chromosome conformation capture (Hi-C) techniques map the 3D organization of entire genomes. How sister chromatids fold in replicated chromosomes, however, cannot be determined with conventional Hi-C because of the identical DNA sequences of sister chromatids. Here, we present a protocol for sister chromatid-sensitive Hi-C (scsHi-C) that enables the distinction of DNA contacts within individual sister chromatids (cis sister contacts) from those between sister chromatids (trans sister contacts), thereby allowing investigation of the organization of replicated genomes. scsHi-C is based on live-cell labeling of nascent DNA by the synthetic nucleoside 4-thio-thymidine (4sT), which incorporates into a distinct DNA strand on each sister chromatid because of semi-conservative DNA replication. After purification of genomic DNA and in situ Hi-C library preparation, 4sT is chemically converted into 5-methyl-cytosine in the presence of OsO4/NH4Cl to introduce T-to-C signature point mutations on 4sT-labeled DNA. The Hi-C library is then sequenced, and ligated fragments are assigned to sister chromatids on the basis of strand orientation and the presence of signature mutations. The ensemble of scsHi-C contacts thereby represents genome-wide contact probabilities within and across sister chromatids. scsHi-C can be completed in 2 weeks, has been successfully applied in HeLa cells and can potentially be established for any cell type that allows proper cell cycle synchronization and incorporation of sufficient amounts of 4sT. The genome-wide maps of replicated chromosomes detected by scsHi-C enable investigation of the molecular mechanisms shaping sister chromatid topologies and the relevance of sister chromatid conformation in crucial processes like DNA repair, mitotic chromosome formation and potentially other biological processes.
Collapse
Affiliation(s)
- Michael Mitter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| | - Zsuzsanna Takacs
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Thomas Köcher
- Vienna BioCenter Core Facilities, Campus-Vienna-BioCenter 1, Vienna, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Christoph C H Langer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
9
|
Choi EH, Yoon S, Koh YE, Hong TK, Do JT, Lee BK, Hahn Y, Kim KP. Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biol 2022; 23:70. [PMID: 35241136 PMCID: PMC8892811 DOI: 10.1186/s13059-022-02632-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cohesin is a chromosome-associated SMC-kleisin complex that mediates sister chromatid cohesion, recombination, and most chromosomal processes during mitosis and meiosis. However, it remains unclear whether meiosis-specific cohesin complexes are functionally active in mitotic chromosomes. RESULTS Through high-resolution 3D-structured illumination microscopy (3D-SIM) and functional analyses, we report multiple biological processes associated with the meiosis-specific cohesin components, α-kleisin REC8 and STAG3, and the distinct loss of function of meiotic cohesin during the cell cycle of embryonic stem cells (ESCs). First, we show that STAG3 is required for the efficient localization of REC8 to the nucleus by interacting with REC8. REC8-STAG3-containing cohesin regulates topological properties of chromosomes and maintains sister chromatid cohesion. Second, REC8-cohesin has additional sister chromatid cohesion roles in concert with mitotic RAD21-cohesin on ESC chromosomes. SIM imaging of REC8 and RAD21 co-staining revealed that the two types of α-kleisin subunits exhibited distinct loading patterns along ESC chromosomes. Third, knockdown of REC8 or RAD21-cohesin not only leads to higher rates of premature sister chromatid separation and delayed replication fork progression, which can cause proliferation and developmental defects, but also enhances chromosome compaction by hyperloading of retinoblastoma protein-condensin complexes from the prophase onward. CONCLUSIONS Our findings indicate that the delicate balance between mitotic and meiotic cohesins may regulate ESC-specific chromosomal organization and the mitotic program.
Collapse
Affiliation(s)
- Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University of Albany-State University of New York, Rensselaer, NY, USA
| | - Yoonsoo Hahn
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
10
|
Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cell Signal 2022; 93:110303. [DOI: 10.1016/j.cellsig.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/15/2023]
|
11
|
Tane S, Shintomi K, Kinoshita K, Tsubota Y, Yoshida MM, Nishiyama T, Hirano T. Cell cycle-specific loading of condensin I is regulated by the N-terminal tail of its kleisin subunit. eLife 2022; 11:84694. [PMID: 36511239 PMCID: PMC9797191 DOI: 10.7554/elife.84694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Condensin I is a pentameric protein complex that plays an essential role in mitotic chromosome assembly in eukaryotic cells. Although it has been shown that condensin I loading is mitosis specific, it remains poorly understood how the robust cell cycle regulation of condensin I is achieved. Here, we set up a panel of in vitro assays to demonstrate that cell cycle-specific loading of condensin I is regulated by the N-terminal tail (N-tail) of its kleisin subunit CAP-H. Deletion of the N-tail accelerates condensin I loading and chromosome assembly in Xenopus egg mitotic extracts. Phosphorylation-deficient and phosphorylation-mimetic mutations in the CAP-H N-tail decelerate and accelerate condensin I loading, respectively. Remarkably, deletion of the N-tail enables condensin I to assemble mitotic chromosome-like structures even in interphase extracts. Together with other extract-free functional assays in vitro, our results uncover one of the multilayered mechanisms that ensure cell cycle-specific loading of condensin I onto chromosomes.
Collapse
Affiliation(s)
- Shoji Tane
- Chromosome Dynamics Laboratory, RIKENWakoJapan
| | | | | | - Yuko Tsubota
- Division of Biological Sciences, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | | | - Tomoko Nishiyama
- Division of Biological Sciences, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | | |
Collapse
|
12
|
Yueh WT, Singh VP, Gerton JL. Maternal Smc3 protects the integrity of the zygotic genome through DNA replication and mitosis. Development 2021; 148:dev199800. [PMID: 34935904 PMCID: PMC8722392 DOI: 10.1242/dev.199800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Abstract
Aneuploidy is frequently observed in oocytes and early embryos, begging the question of how genome integrity is monitored and preserved during this crucial period. SMC3 is a subunit of the cohesin complex that supports genome integrity, but its role in maintaining the genome during this window of mammalian development is unknown. We discovered that, although depletion of Smc3 following meiotic S phase in mouse oocytes allowed accurate meiotic chromosome segregation, adult females were infertile. We provide evidence that DNA lesions accumulated following S phase in SMC3-deficient zygotes, followed by mitosis with lagging chromosomes, elongated spindles, micronuclei, and arrest at the two-cell stage. Remarkably, although centromeric cohesion was defective, the dosage of SMC3 was sufficient to enable embryogenesis in juvenile mutant females. Our findings suggest that, despite previous reports of aneuploidy in early embryos, chromosome missegregation in zygotes halts embryogenesis at the two-cell stage. Smc3 is a maternal gene with essential functions in the repair of spontaneous damage associated with DNA replication and subsequent chromosome segregation in zygotes, making cohesin a key protector of the zygotic genome.
Collapse
Affiliation(s)
- Wei-Ting Yueh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
Chanboonyasitt P, Chan YW. Regulation of mitotic chromosome architecture and resolution of ultrafine anaphase bridges by PICH. Cell Cycle 2021; 20:2077-2090. [PMID: 34530686 PMCID: PMC8565832 DOI: 10.1080/15384101.2021.1970877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
To ensure genome stability, chromosomes need to undergo proper condensation into two linked sister chromatids from prophase to prometaphase, followed by equal segregation at anaphase. Emerging evidence has shown that persistent DNA entanglements connecting the sister chromatids lead to the formation of ultrafine anaphase bridges (UFBs). If UFBs are not resolved soon after anaphase, they can induce chromosome missegregation. PICH (PLK1-interacting checkpoint helicase) is a DNA translocase that localizes on chromosome arms, centromeres and UFBs. It plays multiple essential roles in mitotic chromosome organization and segregation. PICH also recruits other associated proteins to UFBs, and together they mediate UFB resolution. Here, the proposed mechanism behind PICH's functions in chromosome organization and UFB resolution will be discussed. We summarize the regulation of PICH action at chromosome arms and centromeres, how PICH recognizes UFBs and recruits other UFB-associated factors, and finally how PICH promotes UFB resolution together with other DNA processing enzymes.
Collapse
Affiliation(s)
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
14
|
Beverley R, Snook ML, Brieño-Enríquez MA. Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease. Front Cell Dev Biol 2021; 9:710033. [PMID: 34409039 PMCID: PMC8365356 DOI: 10.3389/fcell.2021.710033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Successful human reproduction relies on the well-orchestrated development of competent gametes through the process of meiosis. The loading of cohesin, a multi-protein complex, is a key event in the initiation of mammalian meiosis. Establishment of sister chromatid cohesion via cohesin rings is essential for ensuring homologous recombination-mediated DNA repair and future proper chromosome segregation. Cohesin proteins loaded during female fetal life are not replenished over time, and therefore are a potential etiology of age-related aneuploidy in oocytes resulting in decreased fecundity and increased infertility and miscarriage rates with advancing maternal age. Herein, we provide a brief overview of meiotic cohesin and summarize the human genetic studies which have identified genetic variants of cohesin proteins and the associated reproductive phenotypes including primary ovarian insufficiency, trisomy in offspring, and non-obstructive azoospermia. The association of cohesion defects with cancer predisposition and potential impact on aging are also described. Expansion of genetic testing within clinical medicine, with a focus on cohesin protein-related genes, may provide additional insight to previously unknown etiologies of disorders contributing to gamete exhaustion in females, and infertility and reproductive aging in both men and women.
Collapse
Affiliation(s)
- Rachel Beverley
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L Snook
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
16
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
17
|
Hwang S, Kim MH, Lee CW. Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases. Int J Mol Sci 2021; 22:3791. [PMID: 33917542 PMCID: PMC8038829 DOI: 10.3390/ijms22073791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
More than 70% of eukaryotic proteins are regulated by phosphorylation. However, the mechanism of dephosphorylation that counteracts phosphorylation is less studied. Phosphatases are classified into 104 distinct groups based on substrate-specific features and the sequence homologies in their catalytic domains. Among them, dual-specificity phosphatases (DUSPs) that dephosphorylate both phosphoserine/threonine and phosphotyrosine are important for cellular homeostasis. Ssu72 is a newly studied phosphatase with dual specificity that can dephosphorylate both phosphoserine/threonine and phosphotyrosine. It is important for cell-growth signaling, metabolism, and immune activation. Ssu72 was initially identified as a phosphatase for the Ser5 and Ser7 residues of the C-terminal domain of RNA polymerase II. It prefers the cis configuration of the serine-proline motif within its substrate and regulates Pin1, different from other phosphatases. It has recently been reported that Ssu72 can regulate sister chromatid cohesion and the separation of duplicated chromosomes during the cell cycle. Furthermore, Ssu72 appears to be involved in the regulation of T cell receptor signaling, telomere regulation, and even hepatocyte homeostasis in response to a variety of stress and damage signals. In this review, we aim to summarize various functions of the Ssu72 phosphatase, their implications in diseases, and potential therapeutic indications.
Collapse
Affiliation(s)
- Soeun Hwang
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
| | - Min-Hee Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Curogen Technology, Suwon 16419, Korea
| |
Collapse
|
18
|
Sharp JA, Perea-Resa C, Wang W, Blower MD. Cell division requires RNA eviction from condensing chromosomes. J Cell Biol 2021; 219:211450. [PMID: 33053167 PMCID: PMC7549315 DOI: 10.1083/jcb.201910148] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
During mitosis, the genome is transformed from a decondensed, transcriptionally active state to a highly condensed, transcriptionally inactive state. Mitotic chromosome reorganization is marked by the general attenuation of transcription on chromosome arms, yet how the cell regulates nuclear and chromatin-associated RNAs after chromosome condensation and nuclear envelope breakdown is unknown. SAF-A/hnRNPU is an abundant nuclear protein with RNA-to-DNA tethering activity, coordinated by two spatially distinct nucleic acid–binding domains. Here we show that RNA is evicted from prophase chromosomes through Aurora-B–dependent phosphorylation of the SAF-A DNA-binding domain; failure to execute this pathway leads to accumulation of SAF-A–RNA complexes on mitotic chromosomes, defects in metaphase chromosome alignment, and elevated rates of chromosome missegregation in anaphase. This work reveals a role for Aurora-B in removing chromatin-associated RNAs during prophase and demonstrates that Aurora-B–dependent relocalization of SAF-A during cell division contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Judith A Sharp
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Wei Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Almacellas E, Pelletier J, Day C, Ambrosio S, Tauler A, Mauvezin C. Lysosomal degradation ensures accurate chromosomal segregation to prevent chromosomal instability. Autophagy 2021; 17:796-813. [PMID: 32573315 PMCID: PMC8032240 DOI: 10.1080/15548627.2020.1764727] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Lysosomes, as primary degradative organelles, are the endpoint of different converging pathways, including macroautophagy. To date, lysosome degradative function has been mainly studied in interphase cells, while their role during mitosis remains controversial. Mitosis dictates the faithful transmission of genetic material among generations, and perturbations of mitotic division lead to chromosomal instability, a hallmark of cancer. Heretofore, correct mitotic progression relies on the orchestrated degradation of mitotic factors, which was mainly attributed to ubiquitin-triggered proteasome-dependent degradation. Here, we show that mitotic transition also relies on lysosome-dependent degradation, as impairment of lysosomes increases mitotic timing and leads to mitotic errors, thus promoting chromosomal instability. Furthermore, we identified several putative lysosomal targets in mitotic cells. Among them, WAPL, a cohesin regulatory protein, emerged as a novel SQSTM1-interacting protein for targeted lysosomal degradation. Finally, we characterized an atypical nuclear phenotype, the toroidal nucleus, as a novel biomarker for genotoxic screenings. Our results establish lysosome-dependent degradation as an essential event to prevent chromosomal instability.Abbreviations: 3D: three-dimensional; APC/C: anaphase-promoting complex; ARL8B: ADP ribosylation factor like GTPase 8B; ATG: autophagy-related; BORC: BLOC-one-related complex; CDK: cyclin-dependent kinase; CENPE: centromere protein E; CIN: chromosomal instability; ConcA: concanamycin A; CQ: chloroquine; DAPI: 4,6-diamidino-2-penylinole; FTI: farnesyltransferase inhibitors; GFP: green fluorescent protein; H2B: histone 2B; KIF: kinesin family member; LAMP2: lysosomal associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; PDS5B: PDS5 cohesin associated factor B; SAC: spindle assembly checkpoint; PLEKHM2: pleckstrin homology and RUN domain containing M2; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system; v-ATPase: vacuolar-type H+-translocating ATPase; WAPL: WAPL cohesion release factor.
Collapse
Affiliation(s)
- Eugènia Almacellas
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
- Metabolism and Cancer Laboratory, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell, Institut d’Investigació Biomèdica de Bellvitge ‐ IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Joffrey Pelletier
- Metabolism and Cancer Laboratory, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell, Institut d’Investigació Biomèdica de Bellvitge ‐ IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Charles Day
- Hormel Institute, University of Minnesota, Austin, MN, USA
- Neuro-Oncology Program, Mayo Clinic, Rochester, MN, USA
| | - Santiago Ambrosio
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Tauler
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
- Metabolism and Cancer Laboratory, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell, Institut d’Investigació Biomèdica de Bellvitge ‐ IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Caroline Mauvezin
- Metabolism and Cancer Laboratory, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell, Institut d’Investigació Biomèdica de Bellvitge ‐ IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
20
|
Functioning mechanisms of Shugoshin-1 in centromeric cohesion during mitosis. Essays Biochem 2021; 64:289-297. [PMID: 32451529 DOI: 10.1042/ebc20190077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Proper regulation of centromeric cohesion is required for faithful chromosome segregation that prevents chromosomal instability. Extensive studies have identified and established the conserved protein Shugoshin (Sgo1/2) as an essential protector for centromeric cohesion. In this review, we summarize the current understanding of how Shugoshin-1 (Sgo1) protects centromeric cohesion at the molecular level. Targeting of Sgo1 to inner centromeres is required for its proper function of cohesion protection. We therefore discuss about the molecular mechanisms that install Sgo1 onto inner centromeres. At metaphase-to-anaphase transition, Sgo1 at inner centromeres needs to be disabled for the subsequent sister-chromatid segregation. A few recent studies suggest interesting models to explain how it is achieved. These models are discussed as well.
Collapse
|
21
|
Zhang M, Liang C, Chen Q, Yan H, Xu J, Zhao H, Yuan X, Liu J, Lin S, Lu W, Wang F. Histone H2A phosphorylation recruits topoisomerase IIα to centromeres to safeguard genomic stability. EMBO J 2020; 39:e101863. [PMID: 31769059 PMCID: PMC6996575 DOI: 10.15252/embj.2019101863] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023] Open
Abstract
Chromosome segregation in mitosis requires the removal of catenation between sister chromatids. Timely decatenation of sister DNAs at mitotic centromeres by topoisomerase IIα (TOP2A) is crucial to maintain genomic stability. The chromatin factors that recruit TOP2A to centromeres during mitosis remain unknown. Here, we show that histone H2A Thr-120 phosphorylation (H2ApT120), a modification generated by the mitotic kinase Bub1, is necessary and sufficient for the centromeric localization of TOP2A. Phosphorylation at residue-120 enhances histone H2A binding to TOP2A in vitro. The C-gate and the extreme C-terminal region are important for H2ApT120-dependent localization of TOP2A at centromeres. Preventing H2ApT120-mediated accumulation of TOP2A at mitotic centromeres interferes with sister chromatid disjunction, as evidenced by increased frequency of anaphase ultra-fine bridges (UFBs) that contain catenated DNA. Tethering TOP2A to centromeres bypasses the requirement for H2ApT120 in suppressing anaphase UFBs. These results demonstrate that H2ApT120 acts as a landmark that recruits TOP2A to mitotic centromeres to decatenate sister DNAs. Our study reveals a fundamental role for histone phosphorylation in resolving centromere DNA entanglements and safeguarding genomic stability during mitosis.
Collapse
Affiliation(s)
- Miao Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Cai Liang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Qinfu Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Haiyan Yan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Junfen Xu
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Hongxia Zhao
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xueying Yuan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jingbo Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Shixian Lin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Weiguo Lu
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Women's Reproductive Health Key Research Laboratory of Zhejiang ProvinceWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
22
|
Abramo K, Valton AL, Venev SV, Ozadam H, Fox AN, Dekker J. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. Nat Cell Biol 2019; 21:1393-1402. [PMID: 31685986 PMCID: PMC6858582 DOI: 10.1038/s41556-019-0406-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/19/2019] [Indexed: 01/09/2023]
Abstract
Chromosome folding is modulated as cells progress through the cell cycle. During mitosis, condensins fold chromosomes into helical loop arrays. In interphase, the cohesin complex generates loops and topologically associating domains (TADs), while a separate process of compartmentalization drives segregation of active and inactive chromatin. We used synchronized cell cultures to determine how the mitotic chromosome conformation transforms into the interphase state. Using high-throughput chromosome conformation capture (Hi-C) analysis, chromatin binding assays and immunofluorescence, we show that, by telophase, condensin-mediated loops are lost and a transient folding intermediate is formed that is devoid of most loops. By cytokinesis, cohesin-mediated CTCF-CTCF loops and the positions of TADs emerge. Compartment boundaries are also established early, but long-range compartmentalization is a slow process and proceeds for hours after cells enter G1. Our results reveal the kinetics and order of events by which the interphase chromosome state is formed and identify telophase as a critical transition between condensin- and cohesin-driven chromosome folding.
Collapse
Affiliation(s)
- Kristin Abramo
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anne-Laure Valton
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sergey V Venev
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - A Nicole Fox
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
23
|
Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochem J 2019; 476:2141-2156. [DOI: 10.1042/bcj20180512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
AbstractThe spatial configuration of chromatin is fundamental to ensure any given cell can fulfil its functional duties, from gene expression to specialised cellular division. Significant technological innovations have facilitated further insights into the structure, function and regulation of three-dimensional chromatin organisation. To date, the vast majority of investigations into chromatin organisation have been conducted in interphase and mitotic cells leaving meiotic chromatin relatively unexplored. In combination, cytological and genome-wide contact frequency analyses in mammalian germ cells have recently demonstrated that large-scale chromatin structures in meiotic prophase I are reminiscent of the sequential loop arrays found in mitotic cells, although interphase-like segmentation of transcriptionally active and inactive regions are also evident along the length of chromosomes. Here, we discuss the similarities and differences of such large-scale chromatin architecture, between interphase, mitotic and meiotic cells, as well as their functional relevance and the proposed modulatory mechanisms which underlie them.
Collapse
|
24
|
Batty P, Gerlich DW. Mitotic Chromosome Mechanics: How Cells Segregate Their Genome. Trends Cell Biol 2019; 29:717-726. [PMID: 31230958 DOI: 10.1016/j.tcb.2019.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023]
Abstract
During mitosis, replicated chromosomes segregate such that each daughter cell receives one copy of the genome. Faithful mechanical transport during mitosis requires that chromosomes undergo extensive structural changes as the cell cycle progresses, resulting in the formation of compact, cylindrical bodies. Such structural changes encompass a range of different activities, including longitudinal condensation of the chromosome axis, global chromatin compaction, resolution of sister chromatids, and individualisation of chromosomes into separate bodies. After mitosis, chromosomes undergo further reorganisation to rebuild interphase cell nuclei. Here we review the requirements for mitotic chromosomes to successfully transmit genetic information to daughter cells and the biophysical principles that underpin such requirements.
Collapse
Affiliation(s)
- Paul Batty
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
25
|
Vallardi G, Cordeiro MH, Saurin AT. A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:457-484. [PMID: 28840249 DOI: 10.1007/978-3-319-58592-5_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Giulia Vallardi
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
26
|
Moronta-Gines M, van Staveren TRH, Wendt KS. One ring to bind them - Cohesin's interaction with chromatin fibers. Essays Biochem 2019; 63:167-176. [PMID: 31015387 DOI: 10.1042/ebc20180064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2023]
Abstract
In the nuclei of eukaryotic cells, the genetic information is organized at several levels. First, the DNA is wound around the histone proteins, to form a structure termed as chromatin fiber. This fiber is then arranged into chromatin loops that can cluster together and form higher order structures. This packaging of chromatin provides on one side compaction but also functional compartmentalization. The cohesin complex is a multifunctional ring-shaped multiprotein complex that organizes the chromatin fiber to establish functional domains important for transcriptional regulation, help with DNA damage repair, and ascertain stable inheritance of the genome during cell division. Our current model for cohesin function suggests that cohesin tethers chromatin strands by topologically entrapping them within its ring. To achieve this, cohesin's association with chromatin needs to be very precisely regulated in timing and position on the chromatin strand. Here we will review the current insight in when and where cohesin associates with chromatin and which factors regulate this. Further, we will discuss the latest insights into where and how the cohesin ring opens to embrace chromatin and also the current knowledge about the 'exit gates' when cohesin is released from chromatin.
Collapse
Affiliation(s)
| | | | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
28
|
Liang C, Zhang Z, Chen Q, Yan H, Zhang M, Xiang X, Yi Q, Pan X, Cheng H, Wang F. A positive feedback mechanism ensures proper assembly of the functional inner centromere during mitosis in human cells. J Biol Chem 2019; 294:1437-1450. [PMID: 30498087 PMCID: PMC6364785 DOI: 10.1074/jbc.ra118.006046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
The inner centromere region of a mitotic chromosome critically regulates sister chromatid cohesion and kinetochore-microtubule attachments. However, the molecular mechanism underlying inner centromere assembly remains elusive. Here, using CRISPR/Cas9-based gene editing in HeLa cells, we disrupted the interaction of Shugoshin 1 (Sgo1) with histone H2A phosphorylated on Thr-120 (H2ApT120) to selectively release Sgo1 from mitotic centromeres. Interestingly, cells expressing the H2ApT120-binding defective mutant of Sgo1 have an elevated rate of chromosome missegregation accompanied by weakened centromeric cohesion and decreased centromere accumulation of the chromosomal passenger complex (CPC), an integral part of the inner centromere and a key player in the correction of erroneous kinetochore-microtubule attachments. When artificially tethered to centromeres, a Sgo1 mutant defective in binding protein phosphatase 2A (PP2A) is not able to support proper centromeric cohesion and CPC accumulation, indicating that the Sgo1-PP2A interaction is essential for the integrity of mitotic centromeres. We further provide evidence indicating that Sgo1 protects centromeric cohesin to create a binding site for the histone H3-associated protein kinase Haspin, which not only inhibits the cohesin release factor Wapl and thereby strengthens centromeric cohesion but also phosphorylates histone H3 at Thr-3 to position CPC at inner centromeres. Taken together, our findings reveal a positive feedback-based mechanism that ensures proper assembly of the functional inner centromere during mitosis. They further suggest a causal link between centromeric cohesion defects and chromosomal instability in cancer cells.
Collapse
Affiliation(s)
- Cai Liang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhenlei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qinfu Chen
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Yan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xingfeng Xiang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qi Yi
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Pan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hankun Cheng
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Del Rosario BC, Kriz AJ, Del Rosario AM, Anselmo A, Fry CJ, White FM, Sadreyev RI, Lee JT. Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition. eLife 2019; 8:e42341. [PMID: 30676316 PMCID: PMC6361588 DOI: 10.7554/elife.42341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/23/2019] [Indexed: 01/05/2023] Open
Abstract
The zinc finger CCCTC-binding protein (CTCF) carries out many functions in the cell. Although previous studies sought to explain CTCF multivalency based on sequence composition of binding sites, few examined how CTCF post-translational modification (PTM) could contribute to function. Here, we performed CTCF mass spectrometry, identified a novel phosphorylation site at Serine 224 (Ser224-P), and demonstrate that phosphorylation is carried out by Polo-like kinase 1 (PLK1). CTCF Ser224-P is chromatin-associated, mapping to at least a subset of known CTCF sites. CTCF Ser224-P accumulates during the G2/M transition of the cell cycle and is enriched at pericentric regions. The phospho-obviation mutant, S224A, appeared normal. However, the phospho-mimic mutant, S224E, is detrimental to mouse embryonic stem cell colonies. While ploidy and chromatin architecture appear unaffected, S224E mutants differentially express hundreds of genes, including p53 and p21. We have thus identified a new CTCF PTM and provided evidence of biological function.
Collapse
Affiliation(s)
- Brian C Del Rosario
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Andrea J Kriz
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Amanda M Del Rosario
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| | - Anthony Anselmo
- Department of Molecular BiologyMassachusetts General HospitalBostonUnited States
| | | | - Forest M White
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| | - Ruslan I Sadreyev
- Department of Molecular BiologyMassachusetts General HospitalBostonUnited States
| | - Jeannie T Lee
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| |
Collapse
|
30
|
Oomen ME, Hansen AS, Liu Y, Darzacq X, Dekker J. CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning. Genome Res 2019; 29:236-249. [PMID: 30655336 PMCID: PMC6360813 DOI: 10.1101/gr.241547.118] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
CCCTC-binding factor (CTCF) plays a key role in the formation of topologically associating domains (TADs) and loops in interphase. During mitosis TADs are absent, but how TAD formation is dynamically controlled during the cell cycle is not known. Several contradicting observations have been made regarding CTCF binding to mitotic chromatin using both genomics- and microscopy-based techniques. Here, we have used four different assays to address this debate. First, using 5C, we confirmed that TADs and CTCF loops are readily detected in interphase, but absent during prometaphase. Second, ATAC-seq analysis showed that CTCF sites display greatly reduced accessibility and lose the CTCF footprint in prometaphase, suggesting loss of CTCF binding and rearrangement of the nucleosomal array around the binding motif. In contrast, transcription start sites remain accessible in prometaphase, although adjacent nucleosomes can also become repositioned and occupy at least a subset of start sites during mitosis. Third, loss of site-specific CTCF binding was directly demonstrated using CUT&RUN. Histone modifications and histone variants are maintained in mitosis, suggesting a role in bookmarking of active CTCF sites. Finally, live-cell imaging, fluorescence recovery after photobleaching, and single molecule tracking showed that almost all CTCF chromatin binding is lost in prometaphase. Combined, our results demonstrate loss of CTCF binding to CTCF sites during prometaphase and rearrangement of the chromatin landscape around CTCF motifs. This, combined with loss of cohesin, would contribute to the observed loss of TADs and CTCF loops during mitosis and reveals that CTCF sites, key architectural cis-elements, display cell cycle stage–dependent dynamics in factor binding and nucleosome positioning.
Collapse
Affiliation(s)
- Marlies E Oomen
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Anders S Hansen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, California 94720, USA
| | - Yu Liu
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, California 94720, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
31
|
Yi Q, Chen Q, Yan H, Zhang M, Liang C, Xiang X, Pan X, Wang F. Aurora B kinase activity-dependent and -independent functions of the chromosomal passenger complex in regulating sister chromatid cohesion. J Biol Chem 2018; 294:2021-2035. [PMID: 30523151 DOI: 10.1074/jbc.ra118.005978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/28/2018] [Indexed: 11/06/2022] Open
Abstract
The chromosomal passenger complex (CPC) is a master regulator of mitosis. CPC consists of inner centromere protein (INCENP), Survivin, Borealin, and the kinase Aurora B and plays key roles in regulating kinetochore-microtubule attachments and spindle assembly checkpoint signaling. However, the role of CPC in sister chromatid cohesion, mediated by the cohesin complex, remains incompletely understood. Here, we show that Aurora B kinase activity contributes to centromeric cohesion protection partly through promoting kinetochore localization of the kinase Bub1. Interestingly, disrupting the interaction of INCENP with heterochromatin protein 1 (HP1) in HeLa cells selectively weakens cohesion at mitotic centromeres without detectably reducing the kinase activity of Aurora B. Thus, through this INCENP-HP1 interaction, the CPC also protects centromeric cohesion independently of Aurora B kinase activity. Moreover, the requirement for the INCENP-HP1 interaction in centromeric cohesion protection can be bypassed by tethering HP1 to centromeres or by depleting the cohesin release factor Wapl. We provide further evidence suggesting that the INCENP-HP1 interaction protects centromeric cohesion by promoting the centromere localization of Haspin, a protein kinase that antagonizes Wapl activity at centromeres. Taken together, this study identifies Aurora B kinase activity-dependent and -independent roles for the CPC in regulating centromeric cohesion during mitosis in human cells.
Collapse
Affiliation(s)
- Qi Yi
- From the Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qinfu Chen
- From the Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiyan Yan
- From the Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Miao Zhang
- From the Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cai Liang
- From the Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xingfeng Xiang
- From the Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuan Pan
- From the Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fangwei Wang
- From the Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
32
|
Villa-Hernández S, Bermejo R. Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet 2018; 64:1005-1013. [PMID: 29549581 DOI: 10.1007/s00294-018-0824-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
Proliferating cells need to accurately duplicate and pass their genetic material on to daughter cells. Problems during replication and partition challenge the structural and numerical integrity of chromosomes. Diverse mechanisms, as the DNA replication checkpoint, survey the correct progression of replication and couple it with other cell cycle events to preserve genome integrity. The structural maintenance of chromosomes (SMC) cohesin complex primarily contributes to chromosome duplication by mediating the tethering of newly replicated sister chromatids, thus assisting their equal segregation in mitosis. In addition, cohesin exerts important functions in genome organization, gene expression and DNA repair. These are determined by cohesin's ability to bring together different DNA segments and, hence, by the fashion and dynamics of its interaction with chromatin. It recently emerged that cohesin contributes to the protection of stalled replication forks through a mechanism requiring its timely mobilization from unreplicated DNA and relocation to nascent strands. This mechanism relies on DNA replication checkpoint-dependent cohesin ubiquitylation and promotes nascent sister chromatid entrapment, likely contributing to preserve stalled replisome-fork architectural integrity. Here we review how cohesin dynamic association to chromatin is controlled through post-translational modifications to dictate its functions during chromosome duplication. We also discuss recent insights on the mechanism that mediates interfacing of replisome components with chromatin-bound cohesin and its contribution to the establishment of sister chromatid cohesion and the protection of stalled replication forks.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
33
|
Morales C, Losada A. Establishing and dissolving cohesion during the vertebrate cell cycle. Curr Opin Cell Biol 2018; 52:51-57. [PMID: 29433064 DOI: 10.1016/j.ceb.2018.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/28/2023]
Abstract
Replicated chromatids are held together from the time they emerge from the replication fork until their separation in anaphase. This process, known as cohesion, promotes faithful DNA repair by homologous recombination in interphase and ensures accurate chromosome segregation in mitosis. Identification of cohesin thirty years ago solved a long-standing question about the nature of the linkage keeping together the sister chromatids. Cohesin is an evolutionarily conserved complex composed of a heterodimer of the Structural Maintenance of Chromosomes (SMC) family of ATPases, Smc1 and Smc3, the kleisin subunit Rad21 and a Huntingtin/EF3/PP2A/Tor1 (HEAT) repeat domain-containing subunit named SA/STAG. In addition to mediating cohesion, cohesin plays a major role in genome organization. Cohesin functions rely on the ability of the complex to entrap DNA topologically and in a dynamic manner. Establishment of cohesion during S phase requires coordination with the DNA replication machinery and restricts the dynamic behaviour of at least a fraction of cohesin. Dissolution of cohesion in subsequent mitosis is regulated by multiple mechanisms that ensure that daughter cells receive the correct number of intact chromosomes. We here review recent progress on our understanding of how these processes are regulated in somatic vertebrate cells.
Collapse
Affiliation(s)
- Carmen Morales
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
34
|
Eot-Houllier G, Magnaghi-Jaulin L, Fulcrand G, Moyroud FX, Monier S, Jaulin C. Aurora A-dependent CENP-A phosphorylation at inner centromeres protects bioriented chromosomes against cohesion fatigue. Nat Commun 2018; 9:1888. [PMID: 29760389 PMCID: PMC5951908 DOI: 10.1038/s41467-018-04089-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022] Open
Abstract
Sustained spindle tension applied to sister centromeres during mitosis eventually leads to uncoordinated loss of sister chromatid cohesion, a phenomenon known as “cohesion fatigue.” We report that Aurora A-dependent phosphorylation of serine 7 of the centromere histone variant CENP-A (p-CENP-AS7) protects bioriented chromosomes against cohesion fatigue. Expression of a non-phosphorylatable version of CENP-A (CENP-AS7A) weakens sister chromatid cohesion only when sister centromeres are under tension, providing the first evidence of a regulated mechanism involved in protection against passive cohesion loss. Consistent with this observation, p-CENP-AS7 is detected at the inner centromere where it forms a discrete domain. The depletion or inhibition of Aurora A phenocopies the expression of CENP-AS7A and we show that Aurora A is recruited to centromeres in a Bub1-dependent manner. We propose that Aurora A-dependent phosphorylation of CENP-A at the inner centromere protects chromosomes against tension-induced cohesion fatigue until the last kinetochore is attached to spindle microtubules. Sustained spindle tension applied to sister centromeres during mitosis leads to loss of sister chromatid cohesion which is known as cohesion fatigue. Here the authors show that Aurora A-dependent phosphorylation of CENP-A at the inner centromeres protects bioriented chromosomes against cohesion fatigue.
Collapse
Affiliation(s)
- Grégory Eot-Houllier
- Institut de Génétique et Développement de Rennes, Epigenetics and Cancer group, Université Rennes 1, UMR 6290 CNRS, 35043, Rennes cedex, France.
| | - Laura Magnaghi-Jaulin
- Institut de Génétique et Développement de Rennes, Epigenetics and Cancer group, Université Rennes 1, UMR 6290 CNRS, 35043, Rennes cedex, France
| | - Géraldine Fulcrand
- Institut de Génétique et Développement de Rennes, Epigenetics and Cancer group, Université Rennes 1, UMR 6290 CNRS, 35043, Rennes cedex, France
| | - François-Xavier Moyroud
- Institut de Génétique et Développement de Rennes, Epigenetics and Cancer group, Université Rennes 1, UMR 6290 CNRS, 35043, Rennes cedex, France
| | - Solange Monier
- Institut de Génétique et Développement de Rennes, Epigenetics and Cancer group, Université Rennes 1, UMR 6290 CNRS, 35043, Rennes cedex, France
| | - Christian Jaulin
- Institut de Génétique et Développement de Rennes, Epigenetics and Cancer group, Université Rennes 1, UMR 6290 CNRS, 35043, Rennes cedex, France.
| |
Collapse
|
35
|
Hernandez MR, Davis MB, Jiang J, Brouhard EA, Severson AF, Csankovszki G. Condensin I protects meiotic cohesin from WAPL-1 mediated removal. PLoS Genet 2018; 14:e1007382. [PMID: 29768402 PMCID: PMC5973623 DOI: 10.1371/journal.pgen.1007382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/29/2018] [Accepted: 04/27/2018] [Indexed: 11/22/2022] Open
Abstract
Condensin complexes are key determinants of higher-order chromatin structure and are required for mitotic and meiotic chromosome compaction and segregation. We identified a new role for condensin in the maintenance of sister chromatid cohesion during C. elegans meiosis. Using conventional and stimulated emission depletion (STED) microscopy we show that levels of chromosomally-bound cohesin were significantly reduced in dpy-28 mutants, which lack a subunit of condensin I. SYP-1, a component of the synaptonemal complex central region, was also diminished, but no decrease in the axial element protein HTP-3 was observed. Surprisingly, the two key meiotic cohesin complexes of C. elegans were both depleted from meiotic chromosomes following the loss of condensin I, and disrupting condensin I in cohesin mutants increased the frequency of detached sister chromatids. During mitosis and meiosis in many organisms, establishment of cohesion is antagonized by cohesin removal by Wapl, and we found that condensin I binds to C. elegans WAPL-1 and counteracts WAPL-1-dependent cohesin removal. Our data suggest that condensin I opposes WAPL-1 to promote stable binding of cohesin to meiotic chromosomes, thereby ensuring linkages between sister chromatids in early meiosis.
Collapse
Affiliation(s)
- Margarita R. Hernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael B. Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jianhao Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Elizabeth A. Brouhard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Aaron F. Severson
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
36
|
Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, Earnshaw WC, Mirny LA, Dekker J. A pathway for mitotic chromosome formation. Science 2018; 359:eaao6135. [PMID: 29348367 PMCID: PMC5924687 DOI: 10.1126/science.aao6135] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022]
Abstract
Mitotic chromosomes fold as compact arrays of chromatin loops. To identify the pathway of mitotic chromosome formation, we combined imaging and Hi-C analysis of synchronous DT40 cell cultures with polymer simulations. Here we show that in prophase, the interphase organization is rapidly lost in a condensin-dependent manner, and arrays of consecutive 60-kilobase (kb) loops are formed. During prometaphase, ~80-kb inner loops are nested within ~400-kb outer loops. The loop array acquires a helical arrangement with consecutive loops emanating from a central "spiral staircase" condensin scaffold. The size of helical turns progressively increases to ~12 megabases during prometaphase. Acute depletion of condensin I or II shows that nested loops form by differential action of the two condensins, whereas condensin II is required for helical winding.
Collapse
Affiliation(s)
- Johan H Gibcus
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Anton Goloborodko
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Itaru Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Natalia Naumova
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Johannes Nuebler
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Masato T Kanemaki
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems, and Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
- Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
37
|
Liang C, Chen Q, Yi Q, Zhang M, Yan H, Zhang B, Zhou L, Zhang Z, Qi F, Ye S, Wang F. A kinase-dependent role for Haspin in antagonizing Wapl and protecting mitotic centromere cohesion. EMBO Rep 2018; 19:43-56. [PMID: 29138236 PMCID: PMC5757254 DOI: 10.15252/embr.201744737] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 11/09/2022] Open
Abstract
Sister-chromatid cohesion mediated by the cohesin complex is fundamental for precise chromosome segregation in mitosis. Through binding the cohesin subunit Pds5, Wapl releases the bulk of cohesin from chromosome arms in prophase, whereas centromeric cohesin is protected from Wapl until anaphase onset. Strong centromere cohesion requires centromeric localization of the mitotic histone kinase Haspin, which is dependent on the interaction of its non-catalytic N-terminus with Pds5B. It remains unclear how Haspin fully blocks the Wapl-Pds5B interaction at centromeres. Here, we show that the C-terminal kinase domain of Haspin (Haspin-KD) binds and phosphorylates the YSR motif of Wapl (Wapl-YSR), thereby directly inhibiting the YSR motif-dependent interaction of Wapl with Pds5B. Cells expressing a Wapl-binding-deficient mutant of Haspin or treated with Haspin inhibitors show centromeric cohesion defects. Phospho-mimetic mutation in Wapl-YSR prevents Wapl from binding Pds5B and releasing cohesin. Forced targeting Haspin-KD to centromeres partly bypasses the need for Haspin-Pds5B interaction in cohesion protection. Taken together, these results indicate a kinase-dependent role for Haspin in antagonizing Wapl and protecting centromeric cohesion in mitosis.
Collapse
Affiliation(s)
- Cai Liang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Qinfu Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Qi Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Miao Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Haiyan Yan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Linli Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Zhenlei Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Feifei Qi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Sheng Ye
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Inner centromere localization of the CPC maintains centromere cohesion and allows mitotic checkpoint silencing. Nat Commun 2017; 8:15542. [PMID: 28561035 PMCID: PMC5460030 DOI: 10.1038/ncomms15542] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Faithful chromosome segregation during mitosis requires that the kinetochores of all sister chromatids become stably connected to microtubules derived from opposite spindle poles. How stable chromosome bi-orientation is accomplished and coordinated with anaphase onset remains incompletely understood. Here we show that stable chromosome bi-orientation requires inner centromere localization of the non-enzymatic subunits of the chromosomal passenger complex (CPC) to maintain centromeric cohesion. Precise inner centromere localization of the CPC appears less relevant for Aurora B-dependent resolution of erroneous kinetochore-microtubule (KT-MT) attachments and for the stabilization of bi-oriented KT-MT attachments once sister chromatid cohesion is preserved via knock-down of WAPL. However, Aurora B inner centromere localization is essential for mitotic checkpoint silencing to allow spatial separation from its kinetochore substrate KNL1. Our data infer that the CPC is localized at the inner centromere to sustain centromere cohesion on bi-oriented chromosomes and to coordinate mitotic checkpoint silencing with chromosome bi-orientation.
Collapse
|
39
|
Yamada T, Tahara E, Kanke M, Kuwata K, Nishiyama T. Drosophila Dalmatian combines sororin and shugoshin roles in establishment and protection of cohesion. EMBO J 2017; 36:1513-1527. [PMID: 28483815 DOI: 10.15252/embj.201695607] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Sister chromatid cohesion is crucial to ensure chromosome bi-orientation and equal chromosome segregation. Cohesin removal via mitotic kinases and Wapl has to be prevented in pericentromeric regions in order to protect cohesion until metaphase, but the mechanisms of mitotic cohesion protection remain elusive in Drosophila Here, we show that dalmatian (Dmt), an ortholog of the vertebrate cohesin-associated protein sororin, is required for protection of mitotic cohesion in flies. Dmt is essential for cohesion establishment during interphase and is enriched on pericentromeric heterochromatin. Dmt is recruited through direct association with heterochromatin protein-1 (HP1), and this interaction is required for cohesion. During mitosis, Dmt interdependently recruits protein phosphatase 2A (PP2A) to pericentromeric regions, and PP2A binding is required for Dmt to protect cohesion. Intriguingly, Dmt is sufficient to protect cohesion upon heterologous expression in human cells. Our findings of a hybrid system, in which Dmt exerts both sororin-like establishment functions and shugoshin-like heterochromatin-based protection roles, provide clues to the evolutionary modulation of eukaryotic cohesion regulation systems.
Collapse
Affiliation(s)
- Takashi Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Eri Tahara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Mai Kanke
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| |
Collapse
|
40
|
Zhou L, Liang C, Chen Q, Zhang Z, Zhang B, Yan H, Qi F, Zhang M, Yi Q, Guan Y, Xiang X, Zhang X, Ye S, Wang F. The N-Terminal Non-Kinase-Domain-Mediated Binding of Haspin to Pds5B Protects Centromeric Cohesion in Mitosis. Curr Biol 2017; 27:992-1004. [PMID: 28343965 DOI: 10.1016/j.cub.2017.02.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 12/18/2022]
Abstract
Sister-chromatid cohesion, mediated by the multi-subunit cohesin complex, must be precisely regulated to prevent chromosome mis-segregation. In prophase and prometaphase, whereas the bulk of cohesin on chromosome arms is removed by its antagonist Wapl, cohesin at centromeres is retained to ensure chromosome biorientation until anaphase onset. It remains incompletely understood how centromeric cohesin is protected against Wapl in mitosis. Here we show that the mitotic histone kinase Haspin binds to the cohesin regulatory subunit Pds5B through a conserved YGA/R motif in its non-catalytic N terminus, which is similar to the recently reported YSR-motif-dependent binding of Wapl to Pds5B. Knockout of Haspin or disruption of Haspin-Pds5B interaction causes weakened centromeric cohesion and premature chromatid separation, which can be reverted by centromeric targeting of a N-terminal short fragment of Haspin containing the Pds5B-binding motif or by prevention of Wapl-dependent cohesin removal. Conversely, excessive Haspin capable of binding Pds5B displaces Wapl from Pds5B and suppresses Wapl activity, and it largely bypasses the Wapl antagonist Sgo1 for cohesion protection. Taken together, these data indicate that the Haspin-Pds5B interaction is required to ensure proper sister-chromatid cohesion, most likely through antagonizing Wapl-mediated cohesin release from mitotic centromeres.
Collapse
Affiliation(s)
- Linli Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Cai Liang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qinfu Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zhenlei Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Yan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Feifei Qi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qi Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Youchen Guan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xingfeng Xiang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Kumar R. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene. J Cell Biochem 2017; 118:1283-1299. [PMID: 27966791 DOI: 10.1002/jcb.25835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 118: 1283-1299, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India
| |
Collapse
|
42
|
Bolaños-Villegas P, De K, Pradillo M, Liu D, Makaroff CA. In Favor of Establishment: Regulation of Chromatid Cohesion in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:846. [PMID: 28588601 PMCID: PMC5440745 DOI: 10.3389/fpls.2017.00846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/05/2017] [Indexed: 05/07/2023]
Abstract
In eukaryotic organisms, the correct regulation of sister chromatid cohesion, whereby sister chromatids are paired and held together, is essential for accurate segregation of the sister chromatids and homologous chromosomes into daughter cells during mitosis and meiosis, respectively. Sister chromatid cohesion requires a cohesin complex comprised of structural maintenance of chromosome adenosine triphosphatases and accessory proteins that regulate the association of the complex with chromosomes or that are involved in the establishment or release of cohesion. The cohesin complex also plays important roles in the repair of DNA double-strand breaks, regulation of gene expression and chromosome condensation. In this review, we summarize progress in understanding cohesion dynamics in plants, with the aim of uncovering differences at specific stages. We also highlight dissimilarities between plants and other eukaryotes with respect to the key players involved in the achievement of cohesion, pointing out areas that require further study.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Laboratory of Molecular and Cell Biology, Fabio Baudrit Agricultural Research Station, University of Costa RicaAlajuela, Costa Rica
- *Correspondence: Christopher A. Makaroff, Pablo Bolaños-Villegas,
| | - Kuntal De
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, ColumbusOH, United States
| | - Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - Desheng Liu
- Hughes Laboratories, Department of Chemistry and Biochemistry, Miami University, OxfordOH, United States
| | - Christopher A. Makaroff
- Hughes Laboratories, Department of Chemistry and Biochemistry, Miami University, OxfordOH, United States
- *Correspondence: Christopher A. Makaroff, Pablo Bolaños-Villegas,
| |
Collapse
|
43
|
Abstract
Cell-free extracts made from Xenopus laevis eggs enable us to recapitulate many chromosomal events associated with cell cycle progression in a test tube. When sperm chromatin is incubated with these extracts, it is first duplicated within an assembled nucleus, and is then transformed into mitotic chromosomes, in each of which sister chromatids are juxtaposed with each other in a cohesin-dependent manner. Here we describe our protocols for assembling duplicated chromosomes using egg extracts, along with cytological and biochemical assays for addressing the molecular mechanisms of sister chromatid cohesion. A powerful approach involving immunodepletion of cohesin and its regulators is also included.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
44
|
Kanke M, Tahara E, Huis In't Veld PJ, Nishiyama T. Cohesin acetylation and Wapl-Pds5 oppositely regulate translocation of cohesin along DNA. EMBO J 2016; 35:2686-2698. [PMID: 27872142 PMCID: PMC5167340 DOI: 10.15252/embj.201695756] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/17/2023] Open
Abstract
Cohesin is a ring-shaped protein complex that plays a crucial role in sister chromatid cohesion and gene expression. The dynamic association of cohesin with chromatin is essential for these functions. However, the exact nature of cohesin dynamics, particularly cohesin translocation, remains unclear. We evaluated the dynamics of individual cohesin molecules on DNA and found that the cohesin core complex possesses an intrinsic ability to traverse DNA in an adenosine triphosphatase (ATPase)-dependent manner. Translocation ability is suppressed in the presence of Wapl-Pds5 and Sororin; this suppression is alleviated by the acetylation of cohesin and the action of mitotic kinases. In Xenopus laevis egg extracts, cohesin is translocated on unreplicated DNA in an ATPase- and Smc3 acetylation-dependent manner. Cohesin movement changes from bidirectional to unidirectional when cohesin faces DNA replication; otherwise, it is incorporated into replicating DNA without being translocated or is dissociated from replicating DNA This study provides insight into the nature of individual cohesin dynamics and the mechanisms by which cohesin achieves cohesion in different chromatin contexts.
Collapse
Affiliation(s)
- Mai Kanke
- Division of Biological Science, Graduate School of Science Nagoya University, Nagoya, Japan
| | - Eri Tahara
- Division of Biological Science, Graduate School of Science Nagoya University, Nagoya, Japan
| | | | - Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science Nagoya University, Nagoya, Japan
| |
Collapse
|
45
|
Molina O, Carmena M, Maudlin IE, Earnshaw WC. PREditOR: a synthetic biology approach to removing heterochromatin from cells. Chromosome Res 2016; 24:495-509. [PMID: 27924426 PMCID: PMC5167778 DOI: 10.1007/s10577-016-9539-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
It is widely accepted that heterochromatin is necessary to maintain genomic stability. However, direct experimental evidence supporting this is slim. Previous studies using either enzyme inhibitors, gene knockout or knockdown studies all are subject to the caveat that drugs may have off-target effects and enzymes that modify chromatin proteins to support heterochromatin formation may also have numerous other cellular targets as well. Here, we describe PREditOR (protein reading and editing of residues), a synthetic biology approach that allows us to directly remove heterochromatin from cells without either drugs or global interference with gene function. We find that removal of heterochromatin perturbs mitotic progression and causes a dramatic increase in chromosome segregation defects, possibly as a result of interfering with the normal centromeric localization of the chromosomal passenger complex.
Collapse
Affiliation(s)
- Oscar Molina
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Mar Carmena
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Isabella E Maudlin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
46
|
Abstract
Cohesin is a large ring-shaped protein complex, conserved from yeast to human, which participates in most DNA transactions that take place in the nucleus. It mediates sister chromatid cohesion, which is essential for chromosome segregation and homologous recombination (HR)-mediated DNA repair. Together with architectural proteins and transcriptional regulators, such as CTCF and Mediator, respectively, it contributes to genome organization at different scales and thereby affects transcription, DNA replication, and locus rearrangement. Although cohesin is essential for cell viability, partial loss of function can affect these processes differently in distinct cell types. Mutations in genes encoding cohesin subunits and regulators of the complex have been identified in several cancers. Understanding the functional significance of these alterations may have relevant implications for patient classification, risk prediction, and choice of treatment. Moreover, identification of vulnerabilities in cancer cells harboring cohesin mutations may provide new therapeutic opportunities and guide the design of personalized treatments.
Collapse
Affiliation(s)
- Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| |
Collapse
|
47
|
Sen N, Leonard J, Torres R, Garcia-Luis J, Palou-Marin G, Aragón L. Physical Proximity of Sister Chromatids Promotes Top2-Dependent Intertwining. Mol Cell 2016; 64:134-147. [PMID: 27716481 PMCID: PMC5065527 DOI: 10.1016/j.molcel.2016.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/01/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023]
Abstract
Sister chromatid intertwines (SCIs), or catenanes, are topological links between replicated chromatids that interfere with chromosome segregation. The formation of SCIs is thought to be a consequence of fork swiveling during DNA replication, and their removal is thought to occur because of the intrinsic feature of type II topoisomerases (Top2) to simplify DNA topology. Here, we report that SCIs are also formed independently of DNA replication during G2/M by Top2-dependent concatenation of cohesed chromatids due to their physical proximity. We demonstrate that, in contrast to G2/M, Top2 removes SCIs from cohesed chromatids at the anaphase onset. Importantly, SCI removal in anaphase requires condensin and coincides with the hyperactivation of condensin DNA supercoiling activity. This is consistent with the longstanding proposal that condensin provides a bias in Top2 function toward decatenation. A comprehensive model for the formation and resolution of toxic SCI entanglements on eukaryotic genomes is proposed.
Collapse
Affiliation(s)
- Nicholas Sen
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Joanne Leonard
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Raul Torres
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jonay Garcia-Luis
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Gloria Palou-Marin
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Luis Aragón
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
48
|
Ma W, Schubert V, Martis MM, Hause G, Liu Z, Shen Y, Conrad U, Shi W, Scholz U, Taudien S, Cheng Z, Houben A. The distribution of α-kleisin during meiosis in the holocentromeric plant Luzula elegans. Chromosome Res 2016; 24:393-405. [PMID: 27294972 DOI: 10.1007/s10577-016-9529-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022]
Abstract
Holocentric chromosomes occur in a number of independent eukaryotic lineages, and they form holokinetic kinetochores along the entire poleward chromatid surfaces. Due to this alternative chromosome structure, Luzula elegans sister chromatids segregate already in anaphase I followed by the segregation of the homologues in anaphase II. However, not yet known is the localization and dynamics of cohesin and the structure of the synaptonemal complex (SC) during meiosis. We show here that the α-kleisin subunit of cohesin localizes at the centromeres of both mitotic and meiotic metaphase chromosomes and that it, thus, may contribute to assemble the centromere in L. elegans. This localization and the formation of a tripartite SC structure indicate that the prophase I behaviour of L. elegans is similar as in monocentric species.
Collapse
Affiliation(s)
- Wei Ma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Mihaela Maria Martis
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Bioinformatics Infrastructure for Life Sciences, Linköping University, 558185, Linköping, Sweden
| | - Gerd Hause
- Biocenter, Microscopy Unit, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle, Germany
| | - Zhaojun Liu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Stefan Taudien
- Leibniz Institute on Aging-Fritz-Lipmann-Institut e.V. (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
| |
Collapse
|
49
|
Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei. PLoS Genet 2016; 12:e1006169. [PMID: 27541002 PMCID: PMC4991795 DOI: 10.1371/journal.pgen.1006169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other’s functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. As cells grow, they replicate their DNA to give rise to two copies of each chromosome, known as sister chromatids, which separate from each other once the cell divides. To ensure that sister chromatids end up in different daughter cells, they are kept together from DNA replication until mitosis via a connection known as cohesion. A protein complex known as cohesin is essential for this process. Our work in Drosophila cells suggests that factors other than cohesin also contribute to sister chromatid cohesion in interphase. Additionally, we observed that the alignment of sister chromatids is regulated by condensin II, a protein complex involved in the compaction of chromosomes prior to division as well as the regulation of inter-chromosomal associations. These findings highlight that, in addition to their important individual functions, cohesin and condensin II proteins may interact to organize chromosomes over the course of the cell cycle. Finally, building on prior observations that condensin II is involved in the regulation of somatic homolog pairing in Drosophila, our work suggests that the mechanisms underlying homolog pairing may also contribute to sister chromatid cohesion.
Collapse
|
50
|
Mross K, Richly H, Frost A, Scharr D, Nokay B, Graeser R, Lee C, Hilbert J, Goeldner RG, Fietz O, Scheulen ME. A phase I study of BI 811283, an Aurora B kinase inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2016; 78:405-17. [PMID: 27349901 PMCID: PMC5080318 DOI: 10.1007/s00280-016-3095-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE This phase I study investigated the maximum tolerated dose (MTD), safety, pharmacokinetics, pharmacodynamics, and antitumor activity of the Aurora B kinase inhibitor BI 811283 in patients with advanced solid tumors. METHODS BI 811283 was administered via 24-h infusion on Days 1 and 15 of a 4-week cycle (schedule A) or Day 1 of a 3-week cycle (schedule B) in a modified 3 + 3 dose-escalation design. Pharmacodynamic assessments included immunohistochemistry for phosphorylated histone H3 (pHH3) on skin biopsies to determine Aurora B kinase inhibition and plasma concentrations of caspase-cleaved CK-18 (apoptosis marker). RESULTS A total of 121 patients were treated. The MTDs of BI 811283 were 125 mg (schedule A) and 230 mg (schedule B). Dose-limiting toxicities were primarily hematological (febrile neutropenia and grade 4 neutropenia); the most common drug-related adverse effects included neutropenia, fatigue, leukopenia, nausea, alopecia, diarrhea, and decreased appetite. A trend toward a decrease in pHH3 was observed, with increasing BI 811283 doses, indicating target engagement; there was no consistent trend regarding caspase-cleaved CK-18 levels. No objective response was observed although 19 patients in each schedule achieved clinical benefit (stable disease). CONCLUSIONS BI 811283 demonstrated a generally manageable safety profile and disease stabilization in some patients. TRIAL REGISTRATION EudraCT No: 2007-000191-17, ClinicalTrials.gov Identifier: NCT00701324.
Collapse
Affiliation(s)
- Klaus Mross
- Department of Medical Oncology, Tumour Biology Center, Breisacherstrasse 117, 79106, Freiburg, Germany. .,, Waldhofstrasse 50, 19117, Freiburg, Germany.
| | - Heike Richly
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Annette Frost
- Department of Medical Oncology, Tumour Biology Center, Breisacherstrasse 117, 79106, Freiburg, Germany.,Department of Hematology and Oncology, University Hospital, Breisacherstr. 117, 79106, Freiburg, Germany
| | - Dirk Scharr
- Department of Medical Oncology, Tumour Biology Center, Breisacherstrasse 117, 79106, Freiburg, Germany
| | - Bahar Nokay
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Ralph Graeser
- ProQinase GmbH, Breisacherstrasse 117, 79106, Freiburg, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG., Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Chooi Lee
- Boehringer Ingelheim Ltd., Ellesfield Avenue, Bracknell, Berkshire, RG12 8YS, UK
| | - James Hilbert
- Boehringer Ingelheim Pharmaceuticals, Inc, 900 Ridgebury Road, Ridgefield, CT, 06877, USA.,Applied Biomath LLC, Wincester, MA, USA
| | - Rainer-George Goeldner
- Boehringer Ingelheim Pharma GmbH & Co. KG., Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Oliver Fietz
- Boehringer Ingelheim Pharma GmbH & Co. KG., Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Max E Scheulen
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| |
Collapse
|