1
|
Wang Y, Zhang Z, Xi L, Wang H, Dong F. BEND4: a novel prognostic biomarker in diffuse large B-cell lymphoma. Discov Oncol 2025; 16:674. [PMID: 40327257 PMCID: PMC12055718 DOI: 10.1007/s12672-025-02519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND BEN domain-containing protein 4 (BEND4) is implicated in various cancer-related processes, but its role in diffuse large B-cell lymphoma (DLBCL) remains unclear. This study examined BEND4's impact on DLBCL prognosis through bioinformatics analysis. METHODS BEND4 expression was analyzed across the cancer cell line encyclopedia (CCLE), human protein atlas (HPA), and the cancer genome atlas (TCGA) databases. Associations between BEND4 expression and survival outcomes, prognosis, and immune infiltration levels of DLBCL were evaluated via TCGA. Gene set enrichment analysis (GSEA) identified potential BEND4 biological functions. The predictive value of BEND4 and related genes for DLBCL mortality was assessed using time-dependent receiver operating characteristic curve (ROC) analysis. Findings were validated through qRT-PCR and cell proliferation assays. RESULTS BEND4 was overexpressed at mRNA and protein levels in DLBCL. High BEND4 expression correlated with shorter survival, higher disease-specific mortality, and poor prognosis, emerging as an independent risk factor. GSEA revealed associations between BEND4 and chromatin remodeling, immune response, epigenetic regulation, and signal transduction. Immune infiltration analysis showed BEND4 expression was inversely correlated with eosinophils, cytotoxic cells, and Tgd cells infiltration. ROC analysis confirmed BEND4 and related genes as key predictors of DLBCL mortality at 1, 3, and 5 years. In vitro, BEND4 inhibition did not alter Riva cells proliferation but enhanced sensitivity of Riva cells to chemotherapy, including doxorubicin. CONCLUSION Elevated BEND4 levels were linked to poor prognosis and chemoresistance in DLBCL, potentially due to transcriptional regulation and immune suppression roles. BEND4 may represent a viable therapeutic target in DLBCL.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
| | - Zhenhao Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
| | - Lianyong Xi
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
| | - Hua Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
| | - Fei Dong
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China.
| |
Collapse
|
2
|
Zhang X, Blumenthal R, Cheng X. DNA-binding proteins from MBD through ZF to BEN: recognition of cytosine methylation status by one arginine with two conformations. Nucleic Acids Res 2024; 52:11442-11454. [PMID: 39329271 PMCID: PMC11514455 DOI: 10.1093/nar/gkae832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Maintenance methylation, of palindromic CpG dinucleotides at DNA replication forks, is crucial for the faithful mitotic inheritance of genomic 5-methylcytosine (5mC) methylation patterns. MBD proteins use two arginine residues to recognize symmetrically-positioned methyl groups in fully-methylated 5mCpG/5mCpG and 5mCpA/TpG dinucleotides. In contrast, C2H2 zinc finger (ZF) proteins recognize CpG and CpA, whether methylated or not, within longer specific sequences in a site- and strand-specific manner. Unmethylated CpG sites, often within CpG island (CGI) promoters, need protection by protein factors to maintain their hypomethylated status. Members of the BEN domain proteins bind CGCG or CACG elements within CGIs to regulate gene expression. Despite their overall structural diversity, MBD, ZF and BEN proteins all use arginine residues to recognize guanine, adopting either a 'straight-on' or 'oblique' conformation. The straight-on conformation accommodates a methyl group in the (5mC/T)pG dinucleotide, while the oblique conformation can clash with the methyl group of 5mC, leading to preferential binding of unmethylated sequences.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Ren J, Wang J, Ren Y, Zhang Y, Wei P, Wang M, Zhang Y, Li M, Yuan C, Gong H, Jiang J, Wang Z. Structural basis of DNA recognition by BEN domain proteins reveals a role for oligomerization in unmethylated DNA selection by BANP. Nucleic Acids Res 2024; 52:11349-11361. [PMID: 39225042 PMCID: PMC11472053 DOI: 10.1093/nar/gkae762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The BEN domain is a newly discovered type of DNA-binding domain that exists in a variety of species. There are nine BEN domain-containing proteins in humans, and most have been shown to have chromatin-related functions. NACC1 preferentially binds to CATG motif-containing sequences and functions primarily as a transcriptional coregulator. BANP and BEND3 preferentially bind DNA bearing unmethylated CpG motifs, and they function as CpG island-binding proteins. To date, the DNA recognition mechanism of quite a few of these proteins remains to be determined. In this study, we solved the crystal structures of the BEN domains of NACC1 and BANP in complex with their cognate DNA substrates. We revealed the details of DNA binding by these BEN domain proteins and unexpectedly revealed that oligomerization is required for BANP to select unmethylated CGCG motif-containing DNA substrates. Our study clarifies the controversies surrounding DNA recognition by BANP and demonstrates a new mechanism by which BANP selects unmethylated CpG motifs and functions as a CpG island-binding protein. This understanding will facilitate further exploration of the physiological functions of the BEN domain proteins in the future.
Collapse
Affiliation(s)
- Jiahao Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Junmeng Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Yuyang Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 30 Shuangqing Road, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, 30 Shuangqing Road, Beijing 100084, China
| | - Pengshuai Wei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Meng Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Yimeng Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Meng Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Chuyan Yuan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 30 Shuangqing Road, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, 30 Shuangqing Road, Beijing 100084, China
| | - Junyi Jiang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| |
Collapse
|
4
|
Jia F, Shi Y, Yu Y. Structural homology-based identification of BEN domain proteins in Poxviruses. Biochem Biophys Res Commun 2024; 712-713:149933. [PMID: 38640730 DOI: 10.1016/j.bbrc.2024.149933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
BEND family transcription factors directly interact with DNA through BEN domains and have been found across metazoan species. Interestingly, certain insect and mammalian viruses have also hijacked Bend genes into their genome. However, the phylogenetic classification and evolution of these viral BEN domains remain unclear. Building on our previous finding that in silico method accurately determine the 3D model of BEN domains, we used AlphaFold2 to predict the tertiary structures of poxviral BEN domains for comprehensive homologous comparison. We revealed that the majority of poxviral BEN modules exhibit characteristics of type II BEN. Additionally, electrostatic surface potential analysis found various poxviral BEN domains, including the first BEN of OPG067 in Orthopoxvirus, the third BEN of OPG067 in Yatapoxvirus and the third BEN of MC036R in MCV, have positively charged protein surfaces, indicating a structural basis for DNA loading. Notably, MC036R shares structural resemblance with human BEND3, as they both contain four BEN domains and an intrinsically disordered region. In summary, our discoveries provide deeper insights into the functional roles of BEN proteins within poxviruses.
Collapse
Affiliation(s)
- Fuchuan Jia
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yixing Shi
- Chinese Institute for Brain Research, Beijing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
| | - Yang Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
5
|
Deehan MA, Kothuis JM, Sapp E, Chase K, Ke Y, Seeley C, Iuliano M, Kim E, Kennington L, Miller R, Boudi A, Shing K, Li X, Pfister E, Anaclet C, Brodsky M, Kegel-Gleason K, Aronin N, DiFiglia M. Nacc1 Mutation in Mice Models Rare Neurodevelopmental Disorder with Underlying Synaptic Dysfunction. J Neurosci 2024; 44:e1610232024. [PMID: 38388424 PMCID: PMC10993038 DOI: 10.1523/jneurosci.1610-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/05/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
A missense mutation in the transcription repressor Nucleus accumbens-associated 1 (NACC1) gene at c.892C>T (p.Arg298Trp) on chromosome 19 causes severe neurodevelopmental delay ( Schoch et al., 2017). To model this disorder, we engineered the first mouse model with the homologous mutation (Nacc1+/R284W ) and examined mice from E17.5 to 8 months. Both genders had delayed weight gain, epileptiform discharges and altered power spectral distribution in cortical electroencephalogram, behavioral seizures, and marked hindlimb clasping; females displayed thigmotaxis in an open field. In the cortex, NACC1 long isoform, which harbors the mutation, increased from 3 to 6 months, whereas the short isoform, which is not present in humans and lacks aaR284 in mice, rose steadily from postnatal day (P) 7. Nuclear NACC1 immunoreactivity increased in cortical pyramidal neurons and parvalbumin containing interneurons but not in nuclei of astrocytes or oligodendroglia. Glial fibrillary acidic protein staining in astrocytic processes was diminished. RNA-seq of P14 mutant mice cortex revealed over 1,000 differentially expressed genes (DEGs). Glial transcripts were downregulated and synaptic genes upregulated. Top gene ontology terms from upregulated DEGs relate to postsynapse and ion channel function, while downregulated DEGs enriched for terms relating to metabolic function, mitochondria, and ribosomes. Levels of synaptic proteins were changed, but number and length of synaptic contacts were unaltered at 3 months. Homozygosity worsened some phenotypes including postnatal survival, weight gain delay, and increase in nuclear NACC1. This mouse model simulates a rare form of autism and will be indispensable for assessing pathophysiology and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark A Deehan
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Josine M Kothuis
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kathryn Chase
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Connor Seeley
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Maria Iuliano
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Emily Kim
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Lori Kennington
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Rachael Miller
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kai Shing
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Edith Pfister
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, California 95817
| | - Michael Brodsky
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Kimberly Kegel-Gleason
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Neil Aronin
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
6
|
Yakhou L, Azogui A, Gupta N, Richard Albert J, Miura F, Ferry L, Yamaguchi K, Battault S, Therizols P, Bonhomme F, Bethuel E, Sarkar A, Greenberg MC, Arimondo P, Cristofari G, Kirsh O, Ito T, Defossez PA. A genetic screen identifies BEND3 as a regulator of bivalent gene expression and global DNA methylation. Nucleic Acids Res 2023; 51:10292-10308. [PMID: 37650637 PMCID: PMC10602864 DOI: 10.1093/nar/gkad719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Epigenetic mechanisms are essential to establish and safeguard cellular identities in mammals. They dynamically regulate the expression of genes, transposable elements and higher-order chromatin structures. Consequently, these chromatin marks are indispensable for mammalian development and alterations often lead to disease, such as cancer. Bivalent promoters are especially important during differentiation and development. Here we used a genetic screen to identify new regulators of a bivalent repressed gene. We identify BEND3 as a regulator of hundreds of bivalent promoters, some of which it represses, and some of which it activates. We show that BEND3 is recruited to a CpG-containg consensus site that is present in multiple copies in many bivalent promoters. Besides having direct effect on the promoters it binds, the loss of BEND3 leads to genome-wide gains of DNA methylation, which are especially marked at regions normally protected by the TET enzymes. DNA hydroxymethylation is reduced in Bend3 mutant cells, possibly as consequence of altered gene expression leading to diminished alpha-ketoglutarate production, thus lowering TET activity. Our results clarify the direct and indirect roles of an important chromatin regulator, BEND3, and, more broadly, they shed light on the regulation of bivalent promoters.
Collapse
Affiliation(s)
- Lounis Yakhou
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Anaelle Azogui
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | | | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Sarah Battault
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Pierre Therizols
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Elouan Bethuel
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Arpita Sarkar
- Université Côte d’Azur, Inserm, CNRS, IRCAN, Nice, France
| | | | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | | | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | | |
Collapse
|
7
|
Khan A, Prasanth S. BENDing with Polycomb in pluripotency and cancer. Bioessays 2023; 45:e2300046. [PMID: 37194980 PMCID: PMC10524657 DOI: 10.1002/bies.202300046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Three recent publications on BEND3 firmly establish its role as a novel sequence-specific transcription factor that is essential for PRC2 recruitment and maintenance of pluripotency. Here, we briefly review our current understanding of the BEND3-PRC2 axis in the regulation of pluripotency and also explore the possibility of a similar connection in cancer.
Collapse
Affiliation(s)
- Abid Khan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Supriya Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801 USA
- Cancer center at Illinois, UIUC
| |
Collapse
|
8
|
Naiyer S, Dwivedi L, Singh N, Phulera S, Mohan V, Kamran M. Role of Transcription Factor BEND3 and Its Potential Effect on Cancer Progression. Cancers (Basel) 2023; 15:3685. [PMID: 37509346 PMCID: PMC10377563 DOI: 10.3390/cancers15143685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BEND3 is a transcription factor that plays a critical role in the regulation of gene expression in mammals. While there is limited research on the role of BEND3 as a tumor suppressor or an oncogene and its potential role in cancer therapy is still emerging, several studies suggest that it may be involved in both the processes. Its interaction and regulation with multiple other factors via p21 have already been reported to play a significant role in cancer development, which serves as an indication of its potential role in oncogenesis. Its interaction with chromatin modifiers such as NuRD and NoRC and its role in the recruitment of polycomb repressive complex 2 (PRC2) are some of the additional events indicative of its potential role in cancer development. Moreover, a few recent studies indicate BEND3 as a potential target for cancer therapy. Since the specific mechanisms by which BEND3 may contribute to cancer progression are not yet fully elucidated, in this review, we have discussed the possible pathways BEND3 may take to serve as an oncogenic driver or suppressor.
Collapse
Affiliation(s)
- Sarah Naiyer
- Department of Biomedical Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lalita Dwivedi
- Faculty of Science, Department of Biotechnology, Invertis University, Bareilly 243122, UP, India
| | - Nishant Singh
- Cell and Gene Therapy Division Absorption System, Exton, PA 19341, USA
| | - Swastik Phulera
- Initium Therapeutics, 22 Strathmore Rd., STE 453, Natick, MA 01760, USA
| | - Vijay Mohan
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, UP, India
| | - Mohammad Kamran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
9
|
Pan A, Zeng Y, Liu J, Zhou M, Lai EC, Yu Y. Unanticipated broad phylogeny of BEN DNA-binding domains revealed by structural homology searches. Curr Biol 2023; 33:2270-2282.e2. [PMID: 37236184 PMCID: PMC10348805 DOI: 10.1016/j.cub.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Organization of protein sequences into domain families is a foundation for cataloging and investigating protein functions. However, long-standing strategies based on primary amino acid sequences are blind to the possibility that proteins with dissimilar sequences could have comparable tertiary structures. Building on our recent findings that in silico structural predictions of BEN family DNA-binding domains closely resemble their experimentally determined crystal structures, we exploited the AlphaFold2 database for comprehensive identification of BEN domains. Indeed, we identified numerous novel BEN domains, including members of new subfamilies. For example, while no BEN domain factors had previously been annotated in C. elegans, this species actually encodes multiple BEN proteins. These include key developmental timing genes of orphan domain status, sel-7 and lin-14, the latter being the central target of the founding miRNA lin-4. We also reveal that the domain of unknown function 4806 (DUF4806), which is widely distributed across metazoans, is structurally similar to BEN and comprises a new subtype. Surprisingly, we find that BEN domains resemble both metazoan and non-metazoan homeodomains in 3D conformation and preserve characteristic residues, indicating that despite their inability to be aligned by conventional methods, these DNA-binding modules are probably evolutionarily related. Finally, we broaden the application of structural homology searches by revealing novel human members of DUF3504, which exists on diverse proteins with presumed or known nuclear functions. Overall, our work strongly expands this recently identified family of transcription factors and illustrates the value of 3D structural predictions to annotate protein domains and interpret their functions.
Collapse
Affiliation(s)
- Anyu Pan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yangfan Zeng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jingjing Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mengjie Zhou
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
10
|
Palsgrove DN, Manucha V, Park JY, Bishop JA. A Low-grade Sinonasal Sarcoma Harboring EWSR1::BEND2: Expanding the Differential Diagnosis of Sinonasal Spindle Cell Neoplasms. Head Neck Pathol 2023; 17:571-575. [PMID: 36646985 PMCID: PMC10293148 DOI: 10.1007/s12105-023-01527-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Molecular diagnostics has greatly refined sinonasal tumor pathology over the past decade. While much of the attention has focused on carcinomas, it is becoming clear that there are emerging mesenchymal neoplasms which have previously defied classification. METHODS Here, we present a 33-year-old woman with a multiply recurrent sinonasal spindle cell tumor exhibiting distinctive features, and not easily classifiable into a specific category. RESULTS The hypercellular tumor was composed of plump spindled cells, with uniform vesicular chromatin arranged as vague fascicles around a prominent hemangiopericytoma-like vasculature. The mitotic rate was brisk at 10 per 10 high power fields. By immunohistochemistry, it was only positive for EMA (focal) and SATB2 (diffuse, weak). Fusion analysis uncovered EWSR1::BEND2, a fusion which is best known for being seen in astroblastoma, but which has not yet been reported in sarcomas. CONCLUSION This case underscores the utility of fusion analysis when confronted with a sinonasal spindle cell neoplasm which does not neatly fit into any specific category. It remains to be seen if EWSR1::BEND2 sinonasal sarcoma represents a distinct entity.
Collapse
Affiliation(s)
- Doreen N Palsgrove
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Varsha Manucha
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jason Y Park
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd Room UH04.250, 75390, Dallas, TX, USA.
| |
Collapse
|
11
|
Liu K, Zhang J, Xiao Y, Yang A, Song X, Li Y, Chen Y, Hughes TR, Min J. Structural insights into DNA recognition by the BEN domain of the transcription factor BANP. J Biol Chem 2023; 299:104734. [PMID: 37086783 DOI: 10.1016/j.jbc.2023.104734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023] Open
Abstract
The BEN domain-containing transcription factors regulate transcription by recruiting chromatin-modifying factors to specific chromatin regions via their DNA-binding BEN domains. The BEN domain of BANP has been shown to bind to a CGCG DNA sequence or an AAA-containing MARs (matrix attachment regions) DNA sequence. Consistent with these in vivo observations, we identified an optimal DNA binding sequence of AAATCTCG by PBM (protein binding microarray), which was also confirmed by our ITC (Isothermal Titration Calorimetry) and mutagenesis results to uncover additional mechanistic details about DNA binding by the BEN domain of BANP. We then determined crystal structures of the BANP BEN domain in apo form and in complex with a CGCG-containing DNA, respectively, which revealed that the BANP BEN domain mainly used the electrostatic interactions to bind DNA with some base-specific interactions with the TC motifs. Our ITC results also showed that BANP bound to unmethylated and methylated DNAs with comparable binding affinities. Our complex structure of BANP-mCGCG revealed that the BANP BEN domain bound to the unmethylated and methylated DNAs in a similar mode and cytosine methylation did not get involved in binding, which is also consistent with our observations from the complex structures of the BEND6 BEN domain with the CGCG or CGmCG DNAs. Taken together, our results further elucidate the elements important for DNA recognition and transcriptional regulation by the BANP BEN domain-containing transcription factor.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| | - Jin Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yuqing Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Xiaosheng Song
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yanjun Li
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yunxia Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
12
|
Greene S, Huang J, Hamilton K, Tong L, Hobert O, Sun H. The heterochronic LIN-14 protein is a BEN domain transcription factor. Curr Biol 2023; 33:R217-R218. [PMID: 36977380 PMCID: PMC10080584 DOI: 10.1016/j.cub.2023.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Heterochrony is a foundational concept in animal development and evolution, first introduced by Ernst Haeckel in 1875 and later popularized by Stephen J. Gould1. A molecular understanding of heterochrony was first established by genetic mutant analysis in the nematode C. elegans, revealing a genetic pathway that controls the proper timing of cellular patterning events executed during distinct postembryonic juvenile and adult stages2. This genetic pathway is composed of a complex temporal cascade of multiple regulatory factors, including the first-ever discovered miRNA, lin-4, and its target gene, lin-14, which encodes a nuclear, DNA-binding protein2,3,4. While all core members of the pathway have homologs based on primary sequences in other organisms, homologs for LIN-14 have never been identified by sequence homology. We report that the AlphaFold-predicted structure of the LIN-14 DNA binding domain is homologous to the BEN domain, found in a family of DNA binding proteins previously thought to have no nematode homologs5. We confirmed this prediction through targeted mutations of predicted DNA-contacting residues, which disrupt in vitro DNA binding and in vivo function. Our findings shed new light on potential mechanisms of LIN-14 function and suggest that BEN domain-containing proteins may have a conserved role in developmental timing.
Collapse
Affiliation(s)
- Sharrell Greene
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ji Huang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute.
| | - HaoSheng Sun
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
13
|
Yang Z, Zeng X, Zhao Y, Chen R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct Target Ther 2023; 8:115. [PMID: 36918529 PMCID: PMC10011802 DOI: 10.1038/s41392-023-01381-z] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
AlphaFold2 (AF2) is an artificial intelligence (AI) system developed by DeepMind that can predict three-dimensional (3D) structures of proteins from amino acid sequences with atomic-level accuracy. Protein structure prediction is one of the most challenging problems in computational biology and chemistry, and has puzzled scientists for 50 years. The advent of AF2 presents an unprecedented progress in protein structure prediction and has attracted much attention. Subsequent release of structures of more than 200 million proteins predicted by AF2 further aroused great enthusiasm in the science community, especially in the fields of biology and medicine. AF2 is thought to have a significant impact on structural biology and research areas that need protein structure information, such as drug discovery, protein design, prediction of protein function, et al. Though the time is not long since AF2 was developed, there are already quite a few application studies of AF2 in the fields of biology and medicine, with many of them having preliminarily proved the potential of AF2. To better understand AF2 and promote its applications, we will in this article summarize the principle and system architecture of AF2 as well as the recipe of its success, and particularly focus on reviewing its applications in the fields of biology and medicine. Limitations of current AF2 prediction will also be discussed.
Collapse
Affiliation(s)
- Zhenyu Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yi Zhao
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Runsheng Chen
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| |
Collapse
|
14
|
A multimorphic mutation in IRF4 causes human autosomal dominant combined immunodeficiency. Sci Immunol 2023; 8:eade7953. [PMID: 36662884 PMCID: PMC10825898 DOI: 10.1126/sciimmunol.ade7953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
Interferon regulatory factor 4 (IRF4) is a transcription factor (TF) and key regulator of immune cell development and function. We report a recurrent heterozygous mutation in IRF4, p.T95R, causing an autosomal dominant combined immunodeficiency (CID) in seven patients from six unrelated families. The patients exhibited profound susceptibility to opportunistic infections, notably Pneumocystis jirovecii, and presented with agammaglobulinemia. Patients' B cells showed impaired maturation, decreased immunoglobulin isotype switching, and defective plasma cell differentiation, whereas their T cells contained reduced TH17 and TFH populations and exhibited decreased cytokine production. A knock-in mouse model of heterozygous T95R showed a severe defect in antibody production both at the steady state and after immunization with different types of antigens, consistent with the CID observed in these patients. The IRF4T95R variant maps to the TF's DNA binding domain, alters its canonical DNA binding specificities, and results in a simultaneous multimorphic combination of loss, gain, and new functions for IRF4. IRF4T95R behaved as a gain-of-function hypermorph by binding to DNA with higher affinity than IRF4WT. Despite this increased affinity for DNA, the transcriptional activity on IRF4 canonical genes was reduced, showcasing a hypomorphic activity of IRF4T95R. Simultaneously, IRF4T95R functions as a neomorph by binding to noncanonical DNA sites to alter the gene expression profile, including the transcription of genes exclusively induced by IRF4T95R but not by IRF4WT. This previously undescribed multimorphic IRF4 pathophysiology disrupts normal lymphocyte biology, causing human disease.
Collapse
|
15
|
Yu Y. BEND3 takes the rein. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1210-1212. [PMID: 36648610 DOI: 10.1007/s11427-022-2134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Yang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
16
|
Kurniawan F, Prasanth SG. A BEN-domain protein and polycomb complex work coordinately to regulate transcription. Transcription 2022; 13:82-87. [PMID: 35904285 PMCID: PMC9467525 DOI: 10.1080/21541264.2022.2105128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Transcription regulation is an important mechanism that controls pluripotency and differentiation. Transcription factors dictate cell fate decisions by functioning cooperatively with chromatin regulators. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein regulates the expression of differentiation-associated genes by modulating the chromatin architecture at promoters. We highlight the collaboration of BEND3 with the polycomb repressive complex in coordinating transcription repression and propose a model highlighting the relevance of the BEND3-PRC2 axis in gene regulation and chromatin organization.Abbreviations: BEND3, BANP, E5R and Nac1 domain; rDNA, ribosomal DNA; PRC2, Polycomb Repressive Complex 2; H3K27me3, Histone H3 Lysine 27 methylation; PcG, Polycomb group.
Collapse
Affiliation(s)
- Fredy Kurniawan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL,USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL,USA
| |
Collapse
|