1
|
Torre-Cea I, Berlana-Galán P, Guerra-Paes E, Cáceres-Calle D, Carrera-Aguado I, Marcos-Zazo L, Sánchez-Juanes F, Muñoz-Félix JM. Basement membranes in lung metastasis growth and progression. Matrix Biol 2025; 135:135-152. [PMID: 39719224 DOI: 10.1016/j.matbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies. These basement membranes play a critical role in the progression of lung metastases, influencing multiple stages of the metastatic cascade, from the acquisition of an aggressive phenotype to intravasation, extravasation and colonization of secondary sites. This review examines the biological composition of basement membranes, focusing on their core components-collagens, fibronectin, and laminin-and their specific roles in cancer progression. Additionally, we discuss the function of integrins as primary mediators of cell adhesion and signaling between tumor cells, basement membranes and the extracellular matrix, as well as their implications for metastatic growth in the lung. We also explore vascular co-option (VCO) as a form of tumor growth resistance linked to basement membranes and tumor vasculature. Finally, the review covers current clinical therapies targeting tumor adhesion, extracellular matrix remodeling, and vascular development, aiming to improve the precision and effectiveness of treatments against lung metastases.
Collapse
Affiliation(s)
- Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| | - José M Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| |
Collapse
|
2
|
Luo H, Hu B, Gu XR, Chen J, Fan XQ, Zhang W, Wang RT, He XD, Guo W, Dai N, Jian D, Li Q, Xu CX, Jin H. The miR-23a/27a/24 - 2 cluster drives immune evasion and resistance to PD-1/PD-L1 blockade in non-small cell lung cancer. Mol Cancer 2024; 23:285. [PMID: 39736629 DOI: 10.1186/s12943-024-02201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025] Open
Abstract
Programmed cell death protein ligand-1 (PD-L1) and major histocompatibility complex I (MHC-I) are key molecules related to tumor immune evasion and resistance to programmed cell death protein 1 (PD-1)/PD-L1 blockade. Here, we demonstrated that the upregulation of all miRNAs in the miR-23a/27a/24 - 2 cluster was correlated with poor survival, immune evasion and PD-1/PD-L1 blockade resistance in patients with non-small cell lung cancer (NSCLC). The overexpression of all miRNAs in the miR-23a/27a/24 - 2 cluster upregulated PD-L1 expression by targeting Cbl proto-oncogene B (CBLB) and downregulated MHC-I expression by increasing the level of eukaryotic initiation factor 3B (eIF3B) via the targeting of microphthalmia-associated transcription factor (MITF). In addition, we demonstrated that the expression of the miR-23a/27a/24 - 2 cluster of miRNAs is maintained in NSCLC through increased Wnt/β-catenin signaling-regulated interaction of transcription factor 4 (TCF4) and the miR-23a/27a/24 - 2 cluster promoter. Notably, pharmacologic targeting of the eIF3B pathway dramatically increased sensitivity to PD-1/PD-L1 blockade in patients with high expression of the miR-23a/27a/24 - 2 cluster in NSCLC. This effect was achieved by increasing MHC-I expression while maintaining high expression of PD-L1 induced by the miR-23a/27a/24 - 2 cluster. In summary, we elucidate the mechanism by which the miR-23a/27a/24 - 2 cluster miRNAs maintain their own expression and the molecular mechanism by which the miR-23a/27a/24 - 2 cluster miRNAs promote tumor immune evasion and PD-1/PD-L1 blockade resistance. In addition, we provide a novel strategy for the treatment of NSCLC expressing high levels of the miR-23a/27a/24 - 2 cluster.
Collapse
Affiliation(s)
- Hao Luo
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Bin Hu
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Xiang-Rong Gu
- Department of Radiology, Daping Hospital, Army Military Medical University, Chongqing, 400042, China
| | - Jing Chen
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xiao-Qing Fan
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Zhang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Ren-Tao Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xian-Dong He
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Guo
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Nan Dai
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dan Jian
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, 400030, China.
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Zheng Y, Wu L, Hu Z, Liao H, Li X. Role of the Forkhead box family protein FOXF2 in the progression of solid tumor: systematic review. J Cancer Res Clin Oncol 2024; 151:14. [PMID: 39724282 PMCID: PMC11671575 DOI: 10.1007/s00432-024-06047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND FOXF2 was reported to involve in a variety of biological behaviors that include the development of the central nervous system, tissue homeostasis, epithelia-mesenchymal interactions, regulation of embryonic development, and organogenesis. PURPOSE Understanding how FOXF2 influences the growth and development of cancer could provide valuable insights for researchers to develop novel therapeutic strategies. RESULTS In this review, we investigate the underlying impact of FOXF2 on tumor cells, including the transformation of cellular phenotype, capacity for migration, invasion, and proliferation, colonization of circulating cells, and formation of metastatic nodules. In addition, we discuss the molecular mechanisms of FOXF2 in different cancers, including hepatocellular, esophageal, breast, colon, lung, prostate gland, as well as its role in embryonic development. CONCLUSION FOXF2 is a gene encoding a forkhead transcription factor belonging to the Forkhead Box family. The protein functions by recruiting activation transcription factors and basic components to activate the transcription of genes that interact with the complex. This review provides an in-depth analysis of the FOXF2's function and pleiotropic roles in cancer development and progression.
Collapse
Affiliation(s)
- Yuzhen Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liusheng Wu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Zhenyu Hu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongying Liao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
4
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
5
|
Stefanović M, Jovanović I, Živković M, Stanković A. Pathway analysis of peripheral blood CD8+ T cell transcriptome shows differential regulation of sphingolipid signaling in multiple sclerosis and glioblastoma. PLoS One 2024; 19:e0305042. [PMID: 38861512 PMCID: PMC11166308 DOI: 10.1371/journal.pone.0305042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple sclerosis (MS) and glioblastoma (GBM) are CNS diseases in whose development and progression immune privilege is intimately important, but in a relatively opposite manner. Maintenance and strengthening of immune privilege have been shown to be an important mechanism in glioblastoma immune evasion, while the breakdown of immune privilege leads to MS initiation and exacerbation. We hypothesize that molecular signaling pathways can be oppositely regulated in peripheral blood CD8+ T cells of MS and glioblastoma patients at a transcriptional level. We analyzed publicly available data of the peripheral blood CD8+ T cell MS vs. control (MSvsCTRL) and GBM vs. control (GBMvsCTRL) differentially expressed gene (DEG) contrasts with Qiagen's Ingenuity pathway analysis software (IPA). We have identified sphingolipid signaling pathway which was significantly downregulated in the GBMvsCTRL and upregulated in the MSvsCTRL. As the pathway is important for the CD8+ T lymphocytes CNS infiltration, this result is in line with our previously stated hypothesis. Comparing publicly available lists of differentially expressed serum exosomal miRNAs from MSvsCTRL and GBMvsCTRL contrasts, we have identified that hsa-miR-182-5p has the greatest potential effect on sphingolipid signaling regarding the number of regulated DEGs in the GBMvsCTRL contrast, while not being able to find any relevant potential sphingolipid signaling target transcripts in the MSvsCTRL contrast. We conclude that the sphingolipid signaling pathway is a top oppositely regulated pathway in peripheral blood CD8+ T cells from GBM and MS, and might be crucial for the differences in CNS immune privilege maintenance of investigated diseases, but further experimental research is necessary.
Collapse
Affiliation(s)
- Milan Stefanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivan Jovanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Huang Z, Xiao Z, Yu L, Liu J, Yang Y, Ouyang W. Tumor-associated macrophages in non-small-cell lung cancer: From treatment resistance mechanisms to therapeutic targets. Crit Rev Oncol Hematol 2024; 196:104284. [PMID: 38311012 DOI: 10.1016/j.critrevonc.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-related deaths worldwide. Different treatment approaches are typically employed based on the stage of NSCLC. Common clinical treatment methods include surgical resection, drug therapy, and radiation therapy. However, with the introduction and utilization of immune checkpoint inhibitors, cancer treatment has entered a new era, completely revolutionizing the treatment landscape for various cancers and significantly improving overall patient survival. Concurrently, treatment resistance often poses a critical challenge, with many patients experiencing disease progression following an initial response due to treatment resistance. Increasing evidence suggests that the tumor microenvironment (TME) plays a pivotal role in treatment resistance. Tumor-associated macrophages (TAMs) within the TME can promote treatment resistance in NSCLC by secreting various cytokines activating signaling pathways, and interacting with other immune cells. Therefore, this article will focus on elucidating the key mechanisms of TAMs in treatment resistance and analyze how targeting TAMs can reduce the levels of treatment resistance in NSCLC, providing a comprehensive understanding of the principles and approaches to overcome treatment resistance in NSCLC.
Collapse
Affiliation(s)
- Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ziqi Xiao
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liqing Yu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayu Liu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yihan Yang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang 330006, Jiangxi Province, China.
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
7
|
Yang Y, Wang S, Wang XX, Guo S, Wang H, Shi Q, Tian Y, Wang H, Zhao T, Zhang H, Zhang B, Gao T, Li C, Yi X, Guo W. Tumorous IRE1α facilitates CD8 +T cells-dependent anti-tumor immunity and improves immunotherapy efficacy in melanoma. Cell Commun Signal 2024; 22:83. [PMID: 38291473 PMCID: PMC10826282 DOI: 10.1186/s12964-024-01470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Tumor cells frequently suffer from endoplasmic reticulum (ER) stress. Previous studies have extensively elucidated the role of tumorous unfolded protein response in melanoma cells, whereas the effect on tumor immunology and the underlying mechanism remain elusive. METHODS Bioinformatics, biochemical assays and pre-clinical mice model were employed to demonstrate the role of tumorous inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in anti-tumor immunity and the underlying mechanism. RESULTS We firstly found that IRE1α signaling activation was positively associated with the feature of tumor-infiltrating lymphocytes. Then, pharmacological ER stress induction by HA15 exerted prominent anti-tumor effect in immunocompetent mice and was highly dependent on CD8+T cells, paralleled with the reshape of immune cells in tumor microenvironment via tumorous IRE1α-XBP1 signal. Subsequently, tumorous IRE1α facilitated the expression and secretion of multiple chemokines and cytokines via XBP1-NF-κB axis, leading to increased infiltration and anti-tumor capacity of CD8+T cells. Ultimately, pharmacological induction of tumorous ER stress by HA15 brought potentiated therapeutic effect along with anti-PD-1 antibody on melanoma in vivo. CONCLUSIONS Tumorous IRE1α facilitates CD8+T cells-dependent anti-tumor immunity and improves immunotherapy efficacy by regulating chemokines and cytokines via XBP1-NF-κB axis. The combination of ER stress inducer and anti-PD-1 antibody could be promising for increasing the efficacy of melanoma immunotherapy.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang-Xu Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Tan X, Xiao GY, Wang S, Shi L, Zhao Y, Liu X, Yu J, Russell WK, Creighton CJ, Kurie JM. EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer. J Clin Invest 2023; 133:e165863. [PMID: 36757799 PMCID: PMC10065074 DOI: 10.1172/jci165863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Hypersecretory malignant cells underlie therapeutic resistance, metastasis, and poor clinical outcomes. However, the molecular basis for malignant hypersecretion remains obscure. Here, we showed that epithelial-mesenchymal transition (EMT) initiates exocytic and endocytic vesicular trafficking programs in lung cancer. The EMT-activating transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) executed a PI4KIIIβ-to-PI4KIIα (PI4K2A) dependency switch that drove PI4P synthesis in the Golgi and endosomes. EMT enhanced the vulnerability of lung cancer cells to PI4K2A small-molecule antagonists. PI4K2A formed a MYOIIA-containing protein complex that facilitated secretory vesicle biogenesis in the Golgi, thereby establishing a hypersecretory state involving osteopontin (SPP1) and other prometastatic ligands. In the endosomal compartment, PI4K2A accelerated recycling of SPP1 receptors to complete an SPP1-dependent autocrine loop and interacted with HSP90 to prevent lysosomal degradation of AXL receptor tyrosine kinase, a driver of cell migration. These results show that EMT coordinates exocytic and endocytic vesicular trafficking to establish a therapeutically actionable hypersecretory state that drives lung cancer progression.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Shike Wang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanbin Zhao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad J. Creighton
- Department of Medicine and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioinformatics and Computational Biology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol 2023; 20:318-340. [PMID: 36823234 PMCID: PMC10066239 DOI: 10.1038/s41423-023-00980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a powerful option for cancer treatment. Despite demonstrable progress, most patients fail to respond or achieve durable responses due to primary or acquired ICB resistance. Recently, tumor epithelial-to-mesenchymal plasticity (EMP) was identified as a critical determinant in regulating immune escape and immunotherapy resistance in cancer. In this review, we summarize the emerging role of tumor EMP in ICB resistance and the tumor-intrinsic or extrinsic mechanisms by which tumors exploit EMP to achieve immunosuppression and immune escape. We discuss strategies to modulate tumor EMP to alleviate immune resistance and to enhance the efficiency of ICB therapy. Our discussion provides new prospects to enhance the ICB response for therapeutic gain in cancer patients.
Collapse
|
10
|
St-Cyr G, Penarroya D, Daniel L, Giguère H, Alkayyal AA, Tai LH. Remodeling the tumor immune microenvironment with oncolytic viruses expressing miRNAs. Front Immunol 2023; 13:1071223. [PMID: 36685574 PMCID: PMC9846254 DOI: 10.3389/fimmu.2022.1071223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
MiRNAs (miRNA, miR) play important functions in the tumor microenvironment (TME) by silencing gene expression through RNA interference. They are involved in regulating both tumor progression and tumor suppression. The pathways involved in miRNA processing and the miRNAs themselves are dysregulated in cancer. Consequently, they have become attractive therapeutic targets as underscored by the plethora of miRNA-based therapies currently in pre-clinical and clinical studies. It has been shown that miRNAs can be used to improve oncolytic viruses (OVs) and enable superior viral oncolysis, tumor suppression and immune modulation. In these cases, miRNAs are empirically selected to improve viral oncolysis, which translates into decreased tumor growth in multiple murine models. While this infectious process is critical to OV therapy, optimal immunomodulation is crucial for the establishment of a targeted and durable effect, resulting in cancer eradication. Through numerous mechanisms, OVs elicit a strong antitumor immune response that can also be further improved by miRNAs. They are known to regulate components of the immune TME and promote effector functions, antigen presentation, phenotypical polarization, and varying levels of immunosuppression. Reciprocally, OVs have the power to overcome the limitations encountered in canonical miRNA-based therapies. They deliver therapeutic payloads directly into the TME and facilitate their amplification through selective tumoral tropism and abundant viral replication. This way, off-target effects can be minimized. This review will explore the ways in which miRNAs can synergistically enhance OV immunotherapy to provide the basis for future therapeutics based on this versatile combination platform.
Collapse
Affiliation(s)
- Guillaume St-Cyr
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphné Penarroya
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauren Daniel
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre of the Centre Hospitalier de l'Universite de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| |
Collapse
|
11
|
Li X, Ma S, Gao T, Mai Y, Song Z, Yang J. The main battlefield of mRNA vaccine – Tumor immune microenvironment. Int Immunopharmacol 2022; 113:109367. [DOI: 10.1016/j.intimp.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
12
|
Knockdown of RhoQ, a member of Rho GTPase, accelerates TGF-β-induced EMT in human lung adenocarcinoma. Biochem Biophys Rep 2022; 32:101346. [PMID: 36120491 PMCID: PMC9474329 DOI: 10.1016/j.bbrep.2022.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and the most common subtype of lung cancer is adenocarcinoma. RhoQ is a Rho family GTPase with primary sequence and structural similarities to Cdc42 and RhoJ. RhoQ is involved in neurite outgrowth via membrane trafficking and is essential for insulin-stimulated glucose uptake in mature adipocytes. However, the function of RhoQ in lung adenocarcinoma (LUAD) remains unclear. In this study, RhoQ siRNAs were introduced into A549 and PC-9 cells. Expression level of EMT-related genes and invasion ability were investigated using Western blot and transwell assay. To examine the relationship between RhoQ expression and prognosis of LUAD, Kaplan–Meier plotter was used. We discovered that suppressing RhoQ expression promoted TGF-β-mediated EMT and invasion in LUAD cell lines. Furthermore, RhoQ knockdown increased Smad3 phosphorylation and Snail expression, indicating that RhoQ was involved in TGF/Smad signaling during the EMT process. Moreover, Kaplan–Meier plotter analysis revealed that low RhoQ levels were associated with poor overall survival in patients with LUAD. In conclusion, these findings shed light on RhoQ's role as a negative regulator of TGF-β-mediated EMT in LUAD. Knockdown of RhoQ expression promoted TGF-β-mediated EMT and invasion in human lung adenocarcinoma cells. RhoQ knockdown increased Smad3 phosphorylation and Snail expression during the EMT process. Low RhoQ levels were associated with poor overall survival in patients with lung adenocarcinoma.
Collapse
|
13
|
Bajaj R, Rodriguez BL, Russell WK, Warner AN, Diao L, Wang J, Raso MG, Lu W, Khan K, Solis LS, Batra H, Tang X, Fradette JF, Kundu ST, Gibbons DL. Impad1 and Syt11 work in an epistatic pathway that regulates EMT-mediated vesicular trafficking to drive lung cancer invasion and metastasis. Cell Rep 2022; 40:111429. [PMID: 36170810 PMCID: PMC9665355 DOI: 10.1016/j.celrep.2022.111429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is a highly aggressive and metastatic disease responsible for approximately 25% of all cancer-related deaths in the United States. Using high-throughput in vitro and in vivo screens, we have previously established Impad1 as a driver of lung cancer invasion and metastasis. Here we elucidate that Impad1 is a direct target of the epithelial microRNAs (miRNAs) miR-200 and miR∼96 and is de-repressed during epithelial-to-mesenchymal transition (EMT); thus, we establish a mode of regulation of the protein. Impad1 modulates Golgi apparatus morphology and vesicular trafficking through its interaction with a trafficking protein, Syt11. These changes in Golgi apparatus dynamics alter the extracellular matrix and the tumor microenvironment (TME) to promote invasion and metastasis. Inhibiting Impad1 or Syt11 disrupts the cancer cell secretome, regulates the TME, and reverses the invasive or metastatic phenotype. This work identifies Impad1 as a regulator of EMT and secretome-mediated changes during lung cancer progression.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amanda N Warner
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Khaja Khan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Luisa S Solis
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jared F Fradette
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|