1
|
Comparative Mitogenomic Analysis Reveals Gene and Intron Dynamics in Rubiaceae and Intra-Specific Diversification in Damnacanthus indicus. Int J Mol Sci 2021; 22:ijms22137237. [PMID: 34281291 PMCID: PMC8268409 DOI: 10.3390/ijms22137237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The dynamic evolution of mitochondrial gene and intron content has been reported across the angiosperms. However, a reference mitochondrial genome (mitogenome) is not available in Rubiaceae. The phylogenetic utility of mitogenome data at a species level is rarely assessed. Here, we assembled mitogenomes of six Damnacanthus indicus (Rubiaceae, Rubioideae) representing two varieties (var. indicus and var. microphyllus). The gene and intron content of D. indicus was compared with mitogenomes from representative angiosperm species and mitochondrial contigs from the other Rubiaceae species. Mitogenome structural rearrangement and sequence divergence in D. indicus were analyzed in six individuals. The size of the mitogenome in D. indicus varied from 417,661 to 419,435 bp. Comparing the number of intact mitochondrial protein-coding genes in other Gentianales taxa (38), D. indicus included 32 genes representing several losses. The intron analysis revealed a shift from cis to trans splicing of a nad1 intron (nad1i728) in D. indicus and it is a shared character with the other four Rubioideae taxa. Two distinct mitogenome structures (type A and B) were identified. Two-step direct repeat-mediated recombination was proposed to explain structural changes between type A and B mitogenomes. The five individuals from two varieties in D. indicus diverged well in the whole mitogenome-level comparison with one exception. Collectively, our study elucidated the mitogenome evolution in Rubiaceae along with D. indicus and showed the reliable phylogenetic utility of the whole mitogenome data at a species-level evolution.
Collapse
|
2
|
Bentolila S, Gipson AB, Kehl AJ, Hamm LN, Hayes ML, Mulligan RM, Hanson MR. A RanBP2-type zinc finger protein functions in intron splicing in Arabidopsis mitochondria and is involved in the biogenesis of respiratory complex I. Nucleic Acids Res 2021; 49:3490-3506. [PMID: 33660772 PMCID: PMC8034646 DOI: 10.1093/nar/gkab066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
The RanBP2 zinc finger (Znf) domain is a prevalent domain that mediates protein interaction and RNA binding. In Arabidopsis, a clade of four RanBP2 Znf-containing proteins, named the Organelle Zinc (OZ) finger family, are known or predicted to be targeted to either the mitochondria or the plastids. Previously we reported that OZ1 is absolutely required for the editing of 14 sites in chloroplasts. We now have investigated the function of OZ2, whose null mutation is embryo lethal. We rescued the null mutant by expressing wild-type OZ2 under the control of the seed-specific ABSCISIC ACID-INSENSITIVE3 (ABI3) promoter. Rescued mutant plants exhibit severely delayed development and a distinctive morphological phenotype. Genetic and biochemical analyses demonstrated that OZ2 promotes the splicing of transcripts of several mitochondrial nad genes and rps3. The splicing defect of nad transcripts results in the destabilization of complex I, which in turn affects the respiratory ability of oz2 mutants, turning on the alternative respiratory pathway, and impacting the plant development. Protein-protein interaction assays demonstrated binding of OZ2 to several known mitochondrial splicing factors targeting the same splicing events. These findings extend the known functional repertoire of the RanBP2 zinc finger domain in nuclear splicing to include plant organelle splicing.
Collapse
Affiliation(s)
- Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew B Gipson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Alexander J Kehl
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Lauren N Hamm
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - R Michael Mulligan
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 90032, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Abstract
In eukaryotes, RNA trans-splicing is an important RNA-processing form for the end-to-end ligation of primary transcripts that are derived from separately transcribed exons. So far, three different categories of RNA trans-splicing have been found in organisms as diverse as algae to man. Here, we review one of these categories: the trans-splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. Trans-spliced exons can be predicted from DNA sequences derived from a large number of sequenced organelle genomes. Further molecular genetic analysis of mutants has unravelled proteins, some of which being part of high-molecular-weight complexes that promote the splicing process. Based on data derived from the alga Chlamydomonas reinhardtii, a model is provided which defines the composition of an organelle spliceosome. This will have a general relevance for understanding the function of RNA-processing machineries in eukaryotic organelles.
Collapse
Affiliation(s)
- Stephanie Glanz
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | |
Collapse
|
4
|
Qiu YL, Palmer JD. Many independent origins of trans splicing of a plant mitochondrial group II intron. J Mol Evol 2005; 59:80-9. [PMID: 15383910 DOI: 10.1007/s00239-004-2606-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
We examined the cis- vs. trans-splicing status of the mitochondrial group II intron nad1i728 in 439 species (427 genera) of land plants, using both Southern hybridization results (for 416 species) and intron sequence data from the literature. A total of 164 species (157 genera), all angiosperms, was found to have a trans-spliced form of the intron. Using a multigene land plant phylogeny, we infer that the intron underwent a transition from cis to trans splicing 15 times among the sampled angiosperms. In 10 cases, the intron was fractured between its 5' end and the intron-encoded matR gene, while in the other 5 cases the fracture occurred between matR and the 3' end of the intron. The 15 intron fractures took place at different time depths during the evolution of angiosperms, with those in Nymphaeales, Austrobaileyales, Chloranthaceae, and eumonocots occurring early in angiosperm evolution and those in Syringodium filiforme, Hydrocharis morsus- ranae, Najas, and Erodium relatively recently. The trans-splicing events uncovered in Austrobaileyales, eumonocots, Polygonales, Caryophyllales, Sapindales, and core Rosales reinforce the naturalness of these major clades of angiosperms, some of which have been identified solely on the basis of recent DNA sequence analyses.
Collapse
Affiliation(s)
- Yin-Long Qiu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
5
|
Dombrovska O, Qiu YL. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol Phylogenet Evol 2005; 32:246-63. [PMID: 15186811 DOI: 10.1016/j.ympev.2003.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 12/17/2003] [Indexed: 10/26/2022]
Abstract
Forty-six species of diverse land plants were investigated by sequencing for their intron content in the mitochondrial gene nad1. A total of seven introns, all belonging to group II, were found, and two were newly discovered in this study. All 13 liverworts examined contain no intron, the same condition as in green algae. Mosses and hornworts, however, share one intron by themselves and another one with vascular plants. These intron distribution patterns are consistent with the hypothesis that liverworts represent the basal-most land plants and that the two introns were gained in the common ancestor of mosses-hornworts-vascular plants after liverworts had diverged. Hornworts also possess a unique intron of their own. A fourth intron was found only in Equisetum L., Marattiaceae, Ophioglossum L., Osmunda L., Asplenium L., and Adiantum L., and was likely acquired in their common ancestor, which supports the monophyly of moniliformopses. Three introns that were previously characterized in angiosperms and a few pteridophytes are now all extended to lycopods, and were likely gained in the common ancestor of vascular plants. Phylogenetic analyses of the intron sequences recovered topologies mirroring those of the plants, suggesting that the introns have all been vertically inherited. All seven nad1 group II introns show broad phylogenetic distribution patterns, with the narrowest being in moniliformopses and hornworts, lineages that date back to at least the Devonian (345 million years ago) and Silurian (435 million years ago), respectively. Hence, these introns must have invaded the genes via ancient transpositional events during the early stage of land plant evolution. Potentially heavy RNA editing was observed in nad1 of Haplomitrium Dedecek, Takakia Hatt. & Inoue, hornworts, Isoetes L., Ophioglossum, and Asplenium. A new nomenclature is proposed for group II introns.
Collapse
Affiliation(s)
- Olena Dombrovska
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
6
|
Knoop V. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 2004; 46:123-39. [PMID: 15300404 DOI: 10.1007/s00294-004-0522-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Revised: 07/06/2004] [Accepted: 07/07/2004] [Indexed: 11/25/2022]
Abstract
Land plants exhibit a significant evolutionary plasticity in their mitochondrial DNA (mtDNA), which contrasts with the more conservative evolution of their chloroplast genomes. Frequent genomic rearrangements, the incorporation of foreign DNA from the nuclear and chloroplast genomes, an ongoing transfer of genes to the nucleus in recent evolutionary times and the disruption of gene continuity in introns or exons are the hallmarks of plant mtDNA, at least in flowering plants. Peculiarities of gene expression, most notably RNA editing and trans-splicing, are significantly more pronounced in land plant mitochondria than in chloroplasts. At the same time, mtDNA is generally the most slowly evolving of the three plant cell genomes on the sequence level, with unique exceptions in only some plant lineages. The slow sequence evolution and a variable occurrence of introns in plant mtDNA provide an attractive reservoir of phylogenetic information to trace the phylogeny of older land plant clades, which is as yet not fully resolved. This review attempts to summarize the unique aspects of land plant mitochondrial evolution from a phylogenetic perspective.
Collapse
Affiliation(s)
- Volker Knoop
- IZMB--Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, Bonn, Germany.
| |
Collapse
|
7
|
Abstract
Although horizontal gene transfer is well documented in microbial genomes, no case has been reported in higher plants. We discovered horizontal transfer of the mitochondrial nad1 intron 2 and adjacent exons b and c from an asterid to Gnetum (Gnetales, gymnosperms). Gnetum has two copies of intron 2, a group II intron, that differ in their exons, nucleotide composition, domain lengths, and structural characteristics. One of the copies, limited to an Asian clade of Gnetum, is almost identical to the homologous locus in angiosperms, and partial sequences of its exons b and c show characteristic substitutions unique to angiosperms. Analyses of 70 seed plant nad1 exons b and c and intron 2 sequences, including representatives of all angiosperm clades, support that this copy originated from a euasterid and was horizontally transferred to Gnetum. Molecular clock dating, using calibrations provided by gnetalean macrofossils, suggests an age of 5 to 2 million years for the Asian clade that received the horizontal transfer.
Collapse
Affiliation(s)
- Hyosig Won
- Department of Biology, University of Missouri, 8001 Natural Bridge Road, St. Louis, MO 63121, USA
| | | |
Collapse
|
8
|
Hoffmann M, Kuhn J, Däschner K, Binder S. The RNA world of plant mitochondria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:119-54. [PMID: 11642360 DOI: 10.1016/s0079-6603(01)70015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mitochondria are well known as the cellular power factory. Much less is known about these organelles as a genetic system. This is particularly true for mitochondria of plants, which subsist with respect to attention by the scientific community in the shadow of the chloroplasts. Nevertheless the mitochondrial genetic system is essential for the function of mitochondria and thus for the survival of the plant. In plant mitochondria the pathway from the genetic information encoded in the DNA to the functional protein leads through a very diverse RNA world. How the RNA is generated and what kinds of regulation and control mechanisms are operative in transcription are current topics in research. Furthermore, the modes of posttranscriptional alterations and their consequences for RNA stability and thus for gene expression in plant mitochondria are currently objects of intensive investigations. In this article current results obtained in the examination of plant mitochondrial transcription, RNA processing, and RNA stability are illustrated. Recent developments in the characterization of promoter structure and the respective transcription apparatus as well as new aspects of RNA processing steps including mRNA 3' processing and stability, mRNA polyadenylation, RNA editing, and tRNA maturation are presented. We also consider new suggestions concerning the endosymbiont hypothesis and evolution of mitochondria. These novel considerations may yield important clues for the further analysis of the plant mitochondrial genetic system. Conversely, an increasing knowledge about the mechanisms and components of the organellar genetic system might reveal new aspects of the evolutionary history of mitochondria.
Collapse
Affiliation(s)
- M Hoffmann
- Molekulare Botanik, Universität Ulm, Germany
| | | | | | | |
Collapse
|
9
|
Edqvist J, Burger G, Gray MW. Expression of mitochondrial protein-coding genes in Tetrahymena pyriformis. J Mol Biol 2000; 297:381-93. [PMID: 10715208 DOI: 10.1006/jmbi.2000.3530] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the ciliate protozoon, Tetrahymena pyriformis, mitochondrial protein-coding genes are highly divergent in sequence, and in a number of cases they lack AUG initiation codons. We asked whether RNA editing might be acting to generate protein sequences that are more conventional than those inferred from the corresponding gene sequences, and/or to create standard AUG initiation codons where these are absent. However, comparison of genomic and cDNA sequences (the latter generated by reverse transcriptase sequencing of T. pyriformis mitochondrial mRNAs) yielded no evidence of mitochondrial RNA editing in this organism. To delineate the 5' ends of mitochondrial protein-coding transcripts, primer extension experiments were conducted. In all cases, 5' termini were found to map within a few nucleotides of potential initiation codons, indicating that T. pyriformis mitochondrial mRNAs have little or no 5' untranslated leader sequence. The pattern of strong primer extension stops suggested that both standard (AUG) and non-standard (AUU, AUA, GUG, UUG) initiation codons are utilized by the Tetrahymena mitochondrial translation system. We also investigated expression of the nad1 gene, which in both T. pyriformis and Paramecium aurelia is split into two portions that are encoded by and transcribed from different DNA strands. Northern hybridization analysis showed that the corresponding transcripts are not trans-spliced, implying that separate N-terminal and C-terminal portions of Nad1 are made in this system. Finally, in a search for primary transcripts, we isolated from a T. pyriformis mitochondrial fraction several small RNAs that were reproducibly labeled by incubation in the presence of [alpha-(32)P]GTP and guanylyltransferase. Partial sequence information revealed that none of these cappable RNAs is encoded in the T. pyriformis mitochondrial genome.
Collapse
Affiliation(s)
- J Edqvist
- Department of Biochemistry and Molecular Biology, Program in Evolutionary Biology, Nova Scotia, Halifax, B3H 4H7, Canada
| | | | | |
Collapse
|
10
|
Kawasaki T, Okumura S, Kishimoto N, Shimada H, Higo K, Ichikawa N. RNA maturation of the rice SPK gene may involve trans-splicing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:625-632. [PMID: 10417713 DOI: 10.1046/j.1365-313x.1999.00493.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A gene encoding a calcium-dependent seed-specific protein kinase (SPK) is abundantly expressed in developing rice seeds (Kawasaki, T et al. Gene (1993) 129, 183-189). Rice genomic clones encoding SPK were isolated using the entire cDNA fragment as a probe. Physical mapping of these genomic clones indicated that the genomic region corresponding to the entire cDNA was divided into two different regions, SPK-A and SPK-B, located on different rice chromosomes. The results of RACE-PCR analyses showed that the respective transcripts from SPK-A and SPK-B contained additional sequences which were not found in the SPK cDNA, and that these sequences were removed like introns during maturation of the SPK mRNA. These results suggest that two different RNAs were independently transcribed from SPK-A and SPK-B and joined, possibly by trans-splicing.
Collapse
Affiliation(s)
- T Kawasaki
- Mitsui Plant Biotehcnology Research Institute, TCI D-21, Sengen, Tsukuba, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Gutierres S, Combettes B, De Paepe R, Mirande M, Lelandais C, Vedel F, Chétrit P. In the Nicotiana sylvestris CMSII mutant, a recombination-mediated change 5' to the first exon of the mitochondrial nad1 gene is associated with lack of the NADH:ubiquinone oxidoreductase (complex I) NAD1 subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:361-70. [PMID: 10215845 DOI: 10.1046/j.1432-1327.1999.00310.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously reported that the Nicotiana sylvestris CMSII mutant mitochondrial DNA carried a large deletion. Several expressed sequences, most of which are duplicated, and the unique copy of the nad7 gene encoding the NAD7 subunit of the NADH:ubiquinone oxidoreductase complex (complex I) are found in the deletion. Here, we show that the orf87-nad3-nad1/A cotranscription unit transcribed from a unique promoter element in the wild-type, is disrupted in CMSII. Nad3, orf87 and the promoter element are part of the deleted sequence, whilst the nad1/A sequence is present and transcribed from a new promoter brought by the recombination event, as indicated by Northern and primer extension experiments. However, Western analyses of mitochondrial protein fractions and of complex I purified using anti-NAD9 affinity columns, revealed that NAD1 is lacking in CMSII mitochondria. Our results suggest that translation of nad1 transcripts rather than transcription itself could be altered in the mutant. Consequences of lack of this submit belonging the membrane arm of complex I and thought to contain the ubiquinone-binding site, are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- DNA, Mitochondrial/genetics
- Electron Transport Complex I
- Exons/genetics
- Gene Expression Regulation, Plant/genetics
- Genes, Plant
- Mitochondrial Proteins
- Molecular Sequence Data
- NADH, NADPH Oxidoreductases/chemistry
- NADH, NADPH Oxidoreductases/genetics
- Open Reading Frames/genetics
- Plant Proteins/genetics
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombination, Genetic/genetics
- Sequence Homology
- Nicotiana/enzymology
- Nicotiana/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- S Gutierres
- Institut de Biotechnologie des Plantes, CNRS UMR 8618, Université Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Malek O, Brennicke A, Knoop V. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times. Proc Natl Acad Sci U S A 1997; 94:553-8. [PMID: 9012822 PMCID: PMC19551 DOI: 10.1073/pnas.94.2.553] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Trans-splicing in angiosperm plant mitochondria connects exons from independent RNA molecules by means of group II intron fragments. Homologues of trans-splicing introns in the angiosperm mitochondrial nad2 and nad5 genes are now identified as uninterrupted group II introns in the ferns Asplenium nidus and Marsilea drummondii. These fern introns are correctly spliced from the pre-mRNA at the sites predicted from their well-conserved secondary structures. The flanking exon sequences of the nad2 and nad5 genes in the ferns require RNA editing, including the removal of in-frame stop codons by U-to-C changes for correct expression of the genetic information. We conclude that cis-splicing introns like the ones now identified in ferns are the ancestors of trans-splicing introns in angiosperm mitochondria. Intron disruption is apparently due to a size increase of the structurally variable group II intron domain IV followed by DNA recombination in the plant mitochondrial genome.
Collapse
Affiliation(s)
- O Malek
- Allgemeine Botanik, Universität Ulm, Germany
| | | | | |
Collapse
|
13
|
Carrillo C, Bonen L. RNA editing status of nad7 intron domains in wheat mitochondria. Nucleic Acids Res 1997; 25:403-9. [PMID: 9016571 PMCID: PMC146442 DOI: 10.1093/nar/25.2.403] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The most highly conserved structures of group II introns are the helical domains V and VI near the 3'splice site. Within this region of each of the four introns in the wheat mitochondrial nad7 gene encoding NADH dehydrogenase subunit 7, there are A-C mispairs. To determine whether C-to-U type RNA editing restores conventional A-U pairing, we sequenced RT-PCR products from partially-spliced nad7 template RNA and gel-fractionated, excised intron RNA. We examined transcripts from germinating wheat embryos and seedlings because these two stages of development show pronounced differences in steady state levels of nad7 intronic RNAs. We observed editing at only two of the six predicted sites, and they were located at homologous positions within domain V of the third and fourth introns. A third site was found to be edited within the unmodelled domain VI loop of the fourth intron. Similar patterns of RNA editing were seen in wheat embryos and seedlings. These observations, and the presence of other non-conventional base pairs particularly within domain V of plant mitochondrial introns, indicate weaker helical core structure than in ribozymic group II introns. Moreover, the incompleteness or absence of editing in wheat nad7 excised intron RNA suggests that, although editing may contribute to splicing efficiency, it is not essential for splicing.
Collapse
Affiliation(s)
- C Carrillo
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa K1N 6N5, Canada
| | | |
Collapse
|
14
|
Lelandais C, Gutierres S, Mathieu C, Vedel F, Remacle C, Maréchal-Drouard L, Brennicke A, Binder S, Chétrit P. A promoter element active in run-off transcription controls the expression of two cistrons of nad and rps genes in Nicotiana sylvestris mitochondria. Nucleic Acids Res 1996; 24:4798-804. [PMID: 8972868 PMCID: PMC146301 DOI: 10.1093/nar/24.23.4798] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The expression of two mitochondrial gene clusters (orf87-nad3-nad1/A and orf87-nad3-rps12) was studied in Nicotiana sylvestris. 5' and 3' termini of transcripts were mapped by primer extension and nuclease S1 protection. Processing and transcription initiation sites were differentiated by in vitro phosphorylation and capping experiments. A transcription initiation site, present in both gene clusters, was found 213 nucleotides upstream of orf87. This promoter element matches the consensus motif for dicotyledonous mitochondrial promoters and initiates run-off transcription in a pea mitochondrial purified protein fraction. Processing sites were identified 5' of nad3, nad1/A and rps12 respectively. These results suggest that (i) the expression of the two cistrons is only controlled by one duplicated promoter element, and (ii) multiple processing events are required to produce monocistronic nad3, nad1/A and rps12 transcripts.
Collapse
Affiliation(s)
- C Lelandais
- Institut de Biotechnologie des Plantes, URA 1128, Université Paris-Sud, Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Marechal-Drouard L, Cosset A, Remacle C, Ramamonjisoa D, Dietrich A. A single editing event is a prerequisite for efficient processing of potato mitochondrial phenylalanine tRNA. Mol Cell Biol 1996; 16:3504-10. [PMID: 8668166 PMCID: PMC231345 DOI: 10.1128/mcb.16.7.3504] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In bean, potato, and Oenothera plants, the C encoded at position 4 (C4) in the mitochondrial tRNA Phe GAA gene is converted into a U in the mature tRNA. This nucleotide change corrects a mismatched C4-A69 base pair which appears when the gene sequence is folded into the cloverleaf structure. C-to-U conversions constitute the most common editing events occurring in plant mitochondrial mRNAs. While most of these conversions introduce changes in the amino acids specified by the mRNA and appear to be essential for the synthesis of functional proteins in plant mitochondria, the putative role of mitochondrial tRNA editing has not yet been defined. Since the edited form of the tRNA has the correct secondary and tertiary structures compared with the nonedited form, the two main processes which might be affected by a nucleotide conversion are aminoacylation and maturation. To test these possibilities, we determined the aminoacylation properties of unedited and edited potato mitochondrial tRNAPhe in vitro transcripts, as well as the processing efficiency of in vitro-synthesized potato mitochondrial tRNAPhe precursors. Reverse transcription-PCR amplification of natural precursors followed by cDNA sequencing was also used to investigate the influence of editing on processing. Our results show that C-to-U conversion at position 4 in the potato mitochondrial tRNA Phe GAA is not required for aminoacylation with phenylalanine but is likely to he essential for efficient processing of this tRNA.
Collapse
Affiliation(s)
- L Marechal-Drouard
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
16
|
Moenne A, Bégu D, Jordana X. A reverse transcriptase activity in potato mitochondria. PLANT MOLECULAR BIOLOGY 1996; 31:365-372. [PMID: 8756599 DOI: 10.1007/bf00021796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A reverse transcriptase activity has been detected in potato mitochondria using special RNAs as templates: a bacterial RNA coding for neomycin phosphotransferase (neo pa RNA) and a Neurospora crassa mitochondrial RNA (184 nt RNA). Surprisingly, no exogenous primer addition was required. These RNA templates share a primary and secondary structure similar to the T psi CG loop of tRNAs that could constitute the recognition site for the enzyme. Reverse transcriptase activity was inhibited by ddTTP, ethidium bromide and aphidicolin, while potato mitochondrial DNA polymerase was not inhibited by aphidicolin indicating that these activities correspond to distinct enzymes. A conserved sequence of reverse transcriptases was detected in potato mitochondrial DNA suggesting that this enzyme could be mitochondrially encoded.
Collapse
Affiliation(s)
- A Moenne
- Departamento de Ciencias Biológicas, Facultad de Química y Biología, Universidad de Santiago, Chile
| | | | | |
Collapse
|
17
|
Lu B, Hanson MR. Fully edited and partially edited nad9 transcripts differ in size and both are associated with polysomes in potato mitochondria. Nucleic Acids Res 1996; 24:1369-74. [PMID: 8614643 PMCID: PMC145777 DOI: 10.1093/nar/24.7.1369] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two classes of nad9 transcripts are present at different abundances in the steady-state RNA pool of potato mitochondria. The 5'- and 3' termini of the transcripts were determined by primer extension and S1 nuclease protection analyses respectively. Using two primer pairs that will either specifically amplify the larger transcript or amplify both the larger and the smaller transcripts in RT-PCR analyses it was found that the larger nad9 transcripts are partially edited, while the smaller transcripts are fully edited. Both the larger and the smaller transcripts were found to be associated with mitochondrial polysomes. The polysome association was found to be sensitive to EDTA and puromycin treatment. Therefore, both fully and partially edited nad9 transcripts appear to be engaged in translation.
Collapse
Affiliation(s)
- B Lu
- Department of Genetics and Development, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
18
|
Lu B, Wilson RK, Phreaner CG, Mulligan RM, Hanson MR. Protein polymorphism generated by differential RNA editing of a plant mitochondrial rps12 gene. Mol Cell Biol 1996; 16:1543-9. [PMID: 8657128 PMCID: PMC231139 DOI: 10.1128/mcb.16.4.1543] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The rps12 gene transcripts encoding mitochondrial ribosomal protein S12 are partially edited in petunia mitochondria. Different petunia lines were found vary in the extent of rps12 transcript editing. To test whether multiple forms of RPS12 proteins are produced in petunia mitochondria as a result of partial editing, we probed mitochondrial proteins with specific antibodies against edited and unedited forms of a 13-amino-acid RPS12 peptide spanning two amino acids affected by RNA editing. Both antibodies reacted with mitochondrial proteins at the expected size for RPS12 proteins. The amounts of unedited RPS12 protein in different petunia lines correlate with the abundance of unedited transcripts in these plants. Unedited rps12 translation products are also detected in other plant species, indicating that polymorphism in mitochondrial rps12 expression is widespread. Moreover, we show that RPS12 proteins recognized by both edited-specific and unedited-specific antibodies are present in a petunia mitochondrial ribosome fraction. These results demonstrate that partially edited transcripts can be translated and that the protein product can accumulate to detectable levels. Therefore, genes exhibiting incompletely edited transcripts can encode more than one gene product in plant mitochondria.
Collapse
Affiliation(s)
- B Lu
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Bonen L, Williams K, Bird S, Wood C. The NADH dehydrogenase subunit 7 gene is interrupted by four group II introns in the wheat mitochondrial genome. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:81-9. [PMID: 8041365 DOI: 10.1007/bf00280190] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have characterized a wheat mitochondrial gene, designated nad7, capable of encoding a 394-amino acid subunit of the respiratory chain NADH dehydrogenase complex. It contains four introns possessing group II features and their positions differ from those in both the liverwort mitochondrial nad7 pseudogene and the nuclear gene encoding the homologous 49 kDa subunit of complex I in Neurospora. The derived amino acid sequence of the wheat nad7 gene is strongly conserved relative to its nuclear or organellar counterparts in other organisms. C-to-U type RNA editing, which is observed at 32 positions within the coding region of wheat nad7 transcripts, strengthens protein sequence similarity. RNA editing is also predicted to improve base-pairing within the domain V/VI regions of all four introns.
Collapse
Affiliation(s)
- L Bonen
- Department of Biology, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Geiss KT, Abbas GM, Makaroff CA. Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:97-105. [PMID: 8190077 DOI: 10.1007/bf00283881] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.
Collapse
Affiliation(s)
- K T Geiss
- Department of Chemistry, Miami University, Oxford, OH 45056
| | | | | |
Collapse
|
23
|
Chase CD. Expression of CMS-unique and flanking mitochondrial DNA sequences in Phaseolus vulgaris L. Curr Genet 1994; 25:245-51. [PMID: 7923411 DOI: 10.1007/bf00357169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression of mitochondrial DNA sequences unique to a cytoplasmically male-sterile (CMS) line of Phaseolus vulgaris was investigated. RNA-blot hybridizations with strand-specific probes demonstrated CMS-unique transcripts (7.0, 6.8, 4.7, 3.3 and 2.8 kb) to be in the sense orientation with respect to the longest open reading frames within the CMS-unique region. Hybridizations revealed co-transcription of CMS-unique and upstream, atpA-coding sequences to generate the 6.8-kb RNA. However, hybridizations with CMS-unique and flanking DNA probes accounted for only 4.9 kb of the longest and most abundant (7.0 kb) CMS-unique transcript, providing indirect evidence for the involvement of a splicing process in the generation of this transcript. Sedimentation experiments demonstrated the association of 7.0- and 6.8-kb CMS-unique transcripts with polyribosomes in seedlings and floral buds of a CMS line and a line restored to fertility by the nuclear gene Fr2. However, steady-state levels of the 7.0- and 6.8-kb transcripts were decreased in the restored line relative to the CMS line.
Collapse
Affiliation(s)
- C D Chase
- Horticultural Sciences Department, University of Florida, Gainesville 32611
| |
Collapse
|
24
|
Kubo T, Mikami T, Kinoshita T. The sugar beet mitochondrial genome contains an ORF sharing sequence homology with the gene for the 30 kDa subunit of bovine mitochondrial complex I. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:479-81. [PMID: 8246903 DOI: 10.1007/bf00284703] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
From a sugar beet mitochondrial DNA library, we have isolated an open reading frame (ORF192) showing extensive homology to the gene for the 30 kDa subunit of the bovine mitochondrial complex I (NADH: ubiquinone reductase). The ORF192 was found to be actively transcribed to give an RNA of approximately 1.0 kb. We have designated this gene nad9. Transcripts from the nad9 locus are edited by five C to U transitions, increasing similarity with the amino acid sequence of the corresponding bovine and Neurospora crassa polypeptides. Southern blot hybridization also indicates that nad9 is present in the mitochondrial genomes of a variety of higher plant species.
Collapse
Affiliation(s)
- T Kubo
- Plant Breeding Institute, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
25
|
Yamato K, Nozato N, Oda K, Ohta E, Takemura M, Akashi K, Ohyama K. Occurrence and transcription of genes for nad1, nad3, nad4L, and nad6, coding for NADH dehydrogenase subunits 1, 3, 4L, and 6, in liverwort mitochondria. Curr Genet 1993; 23:526-31. [PMID: 7916672 DOI: 10.1007/bf00312646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genes encoding subunits 1, 3, 4L, and 6 of NADH dehydrogenase (nad1, nad3, nad4L, nad6) in the mitochondrial genome of a liverwort, Marchantia polymorpha, were characterized by comparing homologies of the amino-acid sequences of the subunits with those of other organisms. The nad3 and nad4L genes are split by single and double group II introns, respectively. The 5'-half portion of the nad6 gene was repeated at an identity of 89% to form a reading frame consisting of 100 amino-acid residues. The Northern hybridization analysis showed that all four genes are transcribed in the liverwort mitochondria.
Collapse
Affiliation(s)
- K Yamato
- Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
L'Homme Y, Brown GG. Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucleic Acids Res 1993; 21:1903-9. [PMID: 8388101 PMCID: PMC309431 DOI: 10.1093/nar/21.8.1903] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Comparison of the physical maps of male fertile (cam) and male sterile (pol) mitochondrial genomes of Brassica napus indicates that structural differences between the two mtDNAs are confined to a region immediately upstream of the atp6 gene. Relative to cam mtDNA, pol mtDNA possesses a 4.5 kb segment at this locus that includes a chimeric gene that is cotranscribed with atp6 and lacks an approximately 1kb region located upstream of the cam atp6 gene. The 4.5 kb pol segment is present and similarly organized in the mitochondrial genome of the common nap B.napus cytoplasm; however, the nap and pol DNA regions flanking this segment are different and the nap sequences are not expressed. The 4.5 kb CMS-associated pol segment has thus apparently undergone transposition during the evolution of the nap and pol cytoplasms and has been lost in the cam genome subsequent to the pol-cam divergence. This 4.5 kb segment comprises the single DNA region that is expressed differently in fertile, pol CMS and fertility restored pol cytoplasm plants. The finding that this locus is part of the single mtDNA region organized differently in the fertile and male sterile mitochondrial genomes provides strong support for the view that it specifies the pol CMS trait.
Collapse
Affiliation(s)
- Y L'Homme
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
27
|
Abstract
With the discovery of RNA editing, a process whereby the primary sequence of RNA is altered after transcription, traditional concepts of genetic information transfer had to be revised. The known RNA editing systems act mainly on messenger RNAs, introducing sequence changes that alter their coding properties. An editing system that acts on transfer RNAs is described here. In the mitochondria of Acanthamoeba castellanii, an amoeboid protozoan, certain transfer RNAs differ in sequence from the genes that encode them. The changes consist of single-nucleotide conversions (U to A, U to G, and A to G) that appear to arise posttranscriptionally, are localized in the acceptor stem, and have the effect of correcting mismatched base pairs. Editing thus restores the base pairing expected of a normal transfer RNA in this region.
Collapse
MESH Headings
- Acanthamoeba/genetics
- Animals
- Base Sequence
- Blotting, Southern
- DNA, Mitochondrial/genetics
- Mitochondria/physiology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer, Ala/chemistry
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Pro/chemistry
- RNA, Transfer, Pro/genetics
Collapse
Affiliation(s)
- K M Lonergan
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
28
|
Nugent JM, Palmer JD. Characterization of the Brassica campestris mitochondrial gene for subunit six of NADH dehydrogenase: nad6 is present in the mitochondrion of a wide range of flowering plants. Curr Genet 1993; 23:148-53. [PMID: 8431956 DOI: 10.1007/bf00352014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have isolated the Brassica campestris mitochondrial gene nad6, coding for subunit six of NADH dehydrogenase. The deduced amino-acid sequence of this gene shows considerable similarity to mitochondrially encoded NAD6 proteins of other organisms as well as to NAD6 proteins coded for by plant chloroplast DNAs. The B. campestris nad6 gene appears to lack introns and produces an abundant transcript which is comparable in size to a previously described, unidentified transcript (#18) mapped to the B. campestris mitochondrial genome. An alignment of NAD6 proteins (deduced from DNA sequences) suggests that B. campestris nad6 transcripts are edited. Southern-blot hybridization indicates that nad6 is present in the mitochondrial genome of all of a wide range of flowering plant species examined.
Collapse
Affiliation(s)
- J M Nugent
- Department of Biology, Indiana University, Bloomington 47405
| | | |
Collapse
|
29
|
Maier RM, Neckermann K, Hoch B, Akhmedov NB, Kössel H. Identification of editing positions in the ndhB transcript from maize chloroplasts reveals sequence similarities between editing sites of chloroplasts and plant mitochondria. Nucleic Acids Res 1992; 20:6189-94. [PMID: 1282235 PMCID: PMC334503 DOI: 10.1093/nar/20.23.6189] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A comparison of the nucleotide sequences from genomic DNA and cDNA of the ndhB gene from maize chloroplasts shows that the ndhB transcript is edited by C-to-U transitions at six positions which appear to exist as editing sites also in the chloroplast ndhB genes from rice and tobacco but not from liverwort. In order to identify possible sequence determinants necessary for editing, the sequences surrounding the newly identified ndhB and previously identified ndhA editing sites were compared with each other and with editing sites observed in plant mitochondrial transcripts. Among the chloroplast editing sites two closely positioned ndhB sites show similarity by sharing a common octanucleotide. The existence of the identical octanucleotide in the ndhJ gene whose transcript is not edited at the respective position, shows, however, that this octanucleotide is not sufficient to elicit the editing process. On the other hand, several of the chloroplast editing sites show sequence similarities with certain sets of consensus sequences reported earlier for editing sites of plant mitochondria. This supports the view that the editing processes of both plant organelles share common components and/or mechanistic steps and that the consensus sequences are part of the determinants necessary for editing.
Collapse
Affiliation(s)
- R M Maier
- Institut für Biologie III, Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Wissinger B, Brennicke A, Schuster W. Regenerating good sense: RNA editing and trans splicing in plant mitochondria. Trends Genet 1992; 8:322-8. [PMID: 1365399 DOI: 10.1016/0168-9525(92)90265-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein products of plant mitochondrial genes cannot be predicted accurately from genomic sequences, since RNA editing modifies almost all mRNA sequences post-transcriptionally. Furthermore, RNA editing alters leader, trailer and intron sequences, and may be required for processing of these sequences. For several plant mitochondrial transcripts, processing includes trans splicing, which connects exons scattered throughout the genome. The mature transcripts are assembled via split group II intron sequences.
Collapse
Affiliation(s)
- B Wissinger
- Institut Für Genbiologische Forschung, Berlin, FRG
| | | | | |
Collapse
|
31
|
Pereira de Souza A, Jubier MF, Lejeune B. The higher plant nad5 mitochondrial gene: a conserved discontinuous transcription pattern. Curr Genet 1992; 22:75-82. [PMID: 1377099 DOI: 10.1007/bf00351745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The single copy nad5 gene has been identified in the mitochondrial genomes of cauliflower, chicory, potato, fennel, and common bean. In these five dicot species the same organization as in Oenothera, Arabidopsis, wheat, and maize has been found for the gene: it consists of five exons organized into three independent groups. The first group comprises exons I and II, separated by a highly conserved group II intron, while the second group consists of exon III only. In the third group exons IV and V are separated by a group II intron of variable, species-specific, length. Transcription analysis of the nad5 gene in chicory and in cauliflower shows that the five exons are assembled as a mature mRNA through intermolecular interactions and multiple splicing events. Comparison of transcription in the gene with that of wheat and maize suggests that a common mechanism exists in higher plants for nad5 transcript processing.
Collapse
Affiliation(s)
- A Pereira de Souza
- Laboratoire de Biologie Moléculaire Végétale, Université Paris XI, Orsay, France
| | | | | |
Collapse
|
32
|
|
33
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
34
|
Hanson MR, Folkerts O. Structure and Function of the Higher Plant Mitochondrial Genome. INTERNATIONAL REVIEW OF CYTOLOGY 1992. [DOI: 10.1016/s0074-7696(08)62065-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|