1
|
Sun D, Zhang X, Zeng Z, Feng H, Yin Z, Guo N, Tang Y, Qiu R, Ma LQ, Cao Y. Novel Phosphate Transporter-B PvPTB1;1/1;2 Contribute to Efficient Phosphate Uptake and Arsenic Accumulation in As-Hyperaccumulator Pteris vittata. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7346-7356. [PMID: 38624169 DOI: 10.1021/acs.est.3c09335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Arsenic (As) contamination in soil poses a potential threat to human health via crop uptake. As-hyperaccumulator Pteris vittata serves as a model plant to study As uptake and associated mechanisms. This study focuses on a novel P/AsV transport system mediated by low-affinity phosphate transporter-B 1 family (PTB1) in P. vittata. Here, we identified two plasma-membrane-localized PTB1 genes, PvPTB1;1/1;2, in vascular plants for the first time, which were 4.4-40-fold greater in expression in P. vittata than in other Pteris ferns. Functional complementation of a yeast P-uptake mutant and enhanced P accumulation in transgenic Arabidopsis thaliana confirmed their role in P uptake. Moreover, the expression of PvPTB1;1/1;2 facilitated the transport and accumulation of As in both yeast and A. thaliana shoots, demonstrating a comparable AsV uptake capacity. Microdissection-qPCR analysis and single-cell transcriptome analysis collectively suggest that PvPTB1;1/1;2 are specifically expressed in the epidermal cells of P. vittata roots. PTB1 may play a pivotal role in efficient P recycling during phytate secretion and hydrolysis in P. vittata roots. In summary, the dual P transport mechanisms consisting of high-affinity Pht1 and low-affinity PTB1 may have contributed to the efficient P/As uptake in P. vittata, thereby contributing to efficient phytoremediation for As-contaminated soils.
Collapse
Affiliation(s)
- Dan Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiang Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zihan Zeng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huayuan Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Nan Guo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
Aruwa CE, Sabiu S. Adipose tissue inflammation linked to obesity: A review of current understanding, therapies and relevance of phyto-therapeutics. Heliyon 2024; 10:e23114. [PMID: 38163110 PMCID: PMC10755291 DOI: 10.1016/j.heliyon.2023.e23114] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Obesity is a current global challenge affecting all ages and is characterized by the up-regulated secretion of bioactive factors/pathways which result in adipose tissue inflammation (ATI). Current obesity therapies are mainly focused on lifestyle (diet/nutrition) changes. This is because many chemosynthetic anti-obesogenic medications cause adverse effects like diarrhoea, dyspepsia, and faecal incontinence, among others. As such, it is necessary to appraise the efficacies and mechanisms of action of safer, natural alternatives like plant-sourced compounds, extracts [extractable phenol (EP) and macromolecular antioxidant (MA) extracts], and anti-inflammatory peptides, among others, with a view to providing a unique approach to obesity care. These natural alternatives may constitute potent therapies for ATI linked to obesity. The potential of MA compounds (analysed for the first time in this review) and extracts in ATI and obesity management is elucidated upon, while also highlighting research gaps and future prospects. Furthermore, immune cells, signalling pathways, genes, and adipocyte cytokines play key roles in ATI responses and are targeted in certain therapies. As a result, this review gives an in-depth appraisal of ATI linked to obesity, its causes, mechanisms, and effects of past, present, and future therapies for reversal and alleviation of ATI. Achieving a significant decrease in morbidity and mortality rates attributed to ATI linked to obesity and related comorbidities is possible as research improves our understanding over time.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
3
|
Duperray M, Hardet F, Henriet E, Saint-Marc C, Boué-Grabot E, Daignan-Fornier B, Massé K, Pinson B. Purine Biosynthesis Pathways Are Required for Myogenesis in Xenopus laevis. Cells 2023; 12:2379. [PMID: 37830593 PMCID: PMC10571971 DOI: 10.3390/cells12192379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Purines are required for fundamental biological processes and alterations in their metabolism lead to severe genetic diseases associated with developmental defects whose etiology remains unclear. Here, we studied the developmental requirements for purine metabolism using the amphibian Xenopus laevis as a vertebrate model. We provide the first functional characterization of purine pathway genes and show that these genes are mainly expressed in nervous and muscular embryonic tissues. Morphants were generated to decipher the functions of these genes, with a focus on the adenylosuccinate lyase (ADSL), which is an enzyme required for both salvage and de novo purine pathways. adsl.L knockdown led to a severe reduction in the expression of the myogenic regulatory factors (MRFs: Myod1, Myf5 and Myogenin), thus resulting in defects in somite formation and, at later stages, the development and/or migration of both craniofacial and hypaxial muscle progenitors. The reduced expressions of hprt1.L and ppat, which are two genes specific to the salvage and de novo pathways, respectively, resulted in similar alterations. In conclusion, our data show for the first time that de novo and recycling purine pathways are essential for myogenesis and highlight new mechanisms in the regulation of MRF gene expression.
Collapse
Affiliation(s)
- Maëlle Duperray
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Fanny Hardet
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Elodie Henriet
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Christelle Saint-Marc
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Karine Massé
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
4
|
Chabert V, Kim GD, Qiu D, Liu G, Michaillat Mayer L, Jamsheer K M, Jessen HJ, Mayer A. Inositol pyrophosphate dynamics reveals control of the yeast phosphate starvation program through 1,5-IP 8 and the SPX domain of Pho81. eLife 2023; 12:RP87956. [PMID: 37728314 PMCID: PMC10511240 DOI: 10.7554/elife.87956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP7, we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP7, 5-IP7, and 1,5-IP8, strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP8 triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP8 inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP8 signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.
Collapse
Affiliation(s)
- Valentin Chabert
- Département d'immunobiologie, Université de LausanneEpalingesSwitzerland
| | - Geun-Don Kim
- Département d'immunobiologie, Université de LausanneEpalingesSwitzerland
| | - Danye Qiu
- Institute of Organic Chemistry, Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Guizhen Liu
- Institute of Organic Chemistry, Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | | | | | - Henning J Jessen
- Institute of Organic Chemistry, Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Andreas Mayer
- Département d'immunobiologie, Université de LausanneEpalingesSwitzerland
| |
Collapse
|
5
|
Zhao Y, Cartabia A, Garcés-Ruiz M, Herent MF, Quetin-Leclercq J, Ortiz S, Declerck S, Lalaymia I. Arbuscular mycorrhizal fungi impact the production of alkannin/shikonin and their derivatives in Alkanna tinctoria Tausch. grown in semi-hydroponic and pot cultivation systems. Front Microbiol 2023; 14:1216029. [PMID: 37637105 PMCID: PMC10447974 DOI: 10.3389/fmicb.2023.1216029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Alkanna tinctoria Tausch. is a medicinal plant well-known to produce important therapeutic compounds, such as alkannin/shikonin and their derivatives (A/Sd). It associates with arbuscular mycorrhizal fungi (AMF), which are known, amongst others beneficial effects, to modulate the plant secondary metabolites (SMs) biosynthesis. However, to the best of our knowledge, no study on the effects of AMF strains on the growth and production of A/Sd in A. tinctoria has been reported in the literature. Methods Here, three experiments were conducted. In Experiment 1, plants were associated with the GINCO strain Rhizophagus irregularis MUCL 41833 and, in Experiment 2, with two strains of GINCO (R. irregularis MUCL 41833 and Rhizophagus aggregatus MUCL 49408) and two native strains isolated from wild growing A. tinctoria (R. irregularis and Septoglomus viscosum) and were grown in a semi-hydroponic (S-H) cultivation system. Plants were harvested after 9 and 37 days in Experiment 1 and 9 days in Experiment 2. In Experiment 3, plants were associated with the two native AMF strains and with R. irregularis MUCL 41833 and were grown for 85 days in pots under greenhouse conditions. Quantification and identification of A/Sd were performed by HPLC-PDA and by HPLC-HRMS/MS, respectively. LePGT1, LePGT2, and GHQH genes involved in the A/Sd biosynthesis were analyzed through RT-qPCR. Results In Experiment 1, no significant differences were noticed in the production of A/Sd. Conversely, in Experiments 2 and 3, plants associated with the native AMF R. irregularis had the highest content of total A/Sd expressed as shikonin equivalent. In Experiment 1, a significantly higher relative expression of both LePGT1 and LePGT2 was observed in plants inoculated with R. irregularis MUCL 41833 compared with control plants after 37 days in the S-H cultivation system. Similarly, a significantly higher relative expression of LePGT2 in plants inoculated with R. irregularis MUCL 41833 was noticed after 9 versus 37 days in the S-H cultivation system. In Experiment 2, a significant lower relative expression of LePGT2 was observed in native AMF R. irregularis inoculated plants compared to the control. Discussion Overall, our study showed that the native R. irregularis strain increased A/Sd production in A. tinctoria regardless of the growing system used, further suggesting that the inoculation of native/best performing AMF is a promising method to improve the production of important SMs.
Collapse
Affiliation(s)
- Yanyan Zhao
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Mónica Garcés-Ruiz
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Marie-France Herent
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Sergio Ortiz
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
- UMR 7200, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CNRS, Strasbourg Drug Discovery and Development Institute (IMS), Illkirch-Graffenstaden, France
| | - Stéphane Declerck
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Kim GD, Qiu D, Jessen HJ, Mayer A. Metabolic Consequences of Polyphosphate Synthesis and Imminent Phosphate Limitation. mBio 2023; 14:e0010223. [PMID: 37074217 PMCID: PMC10294617 DOI: 10.1128/mbio.00102-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
Cells stabilize intracellular inorganic phosphate (Pi) to compromise between large biosynthetic needs and detrimental bioenergetic effects of Pi. Pi homeostasis in eukaryotes uses Syg1/Pho81/Xpr1 (SPX) domains, which are receptors for inositol pyrophosphates. We explored how polymerization and storage of Pi in acidocalcisome-like vacuoles supports Saccharomyces cerevisiae metabolism and how these cells recognize Pi scarcity. Whereas Pi starvation affects numerous metabolic pathways, beginning Pi scarcity affects few metabolites. These include inositol pyrophosphates and ATP, a low-affinity substrate for inositol pyrophosphate-synthesizing kinases. Declining ATP and inositol pyrophosphates may thus be indicators of impending Pi limitation. Actual Pi starvation triggers accumulation of the purine synthesis intermediate 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), which activates Pi-dependent transcription factors. Cells lacking inorganic polyphosphate show Pi starvation features already under Pi-replete conditions, suggesting that vacuolar polyphosphate supplies Pi for metabolism even when Pi is abundant. However, polyphosphate deficiency also generates unique metabolic changes that are not observed in starving wild-type cells. Polyphosphate in acidocalcisome-like vacuoles may hence be more than a global phosphate reserve and channel Pi to preferred cellular processes. IMPORTANCE Cells must strike a delicate balance between the high demand of inorganic phosphate (Pi) for synthesizing nucleic acids and phospholipids and its detrimental bioenergetic effects by reducing the free energy of nucleotide hydrolysis. The latter may stall metabolism. Therefore, microorganisms manage the import and export of phosphate, its conversion into osmotically inactive inorganic polyphosphates, and their storage in dedicated organelles (acidocalcisomes). Here, we provide novel insights into metabolic changes that yeast cells may use to signal declining phosphate availability in the cytosol and differentiate it from actual phosphate starvation. We also analyze the role of acidocalcisome-like organelles in phosphate homeostasis. This study uncovers an unexpected role of the polyphosphate pool in these organelles under phosphate-rich conditions, indicating that its metabolic roles go beyond that of a phosphate reserve for surviving starvation.
Collapse
Affiliation(s)
- Geun-Don Kim
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | | | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
7
|
Groth B, Lee YC, Huang CC, McDaniel M, Huang K, Lee LH, Lin SJ. The Histone Deacetylases Hst1 and Rpd3 Integrate De Novo NAD + Metabolism with Phosphate Sensing in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24098047. [PMID: 37175754 PMCID: PMC10179157 DOI: 10.3390/ijms24098047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical cofactor essential for various cellular processes. Abnormalities in NAD+ metabolism have also been associated with a number of metabolic disorders. The regulation and interconnection of NAD+ metabolic pathways are not yet completely understood. By employing an NAD+ intermediate-specific genetic system established in the model organism S. cerevisiae, we show that histone deacetylases (HDACs) Hst1 and Rpd3 link the regulation of the de novo NAD+ metabolism-mediating BNA genes with certain aspects of the phosphate (Pi)-sensing PHO pathway. Our genetic and gene expression studies suggest that the Bas1-Pho2 and Pho2-Pho4 transcription activator complexes play a role in this co-regulation. Our results suggest a model in which competition for Pho2 usage between the BNA-activating Bas1-Pho2 complex and the PHO-activating Pho2-Pho4 complex helps balance de novo activity with PHO activity in response to NAD+ or phosphate depletion. Interestingly, both the Bas1-Pho2 and Pho2-Pho4 complexes appear to also regulate the expression of the salvage-mediating PNC1 gene negatively. These results suggest a mechanism for the inverse regulation between the NAD+ salvage pathways and the de novo pathway observed in our genetic models. Our findings help provide a molecular basis for the complex interplay of two different aspects of cellular metabolism.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yi-Ching Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Chi-Chun Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Matilda McDaniel
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Katie Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Lan-Hsuan Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Shon H, Matveeva EA, Jull EC, Hu Y, Coupet TA, Lee YS. Evidence Supporting Substrate Channeling between Domains of Human PAICS: A Time-Course Analysis of 13C-Bicarbonate Incorporation. Biochemistry 2022; 61:575-582. [PMID: 35285625 PMCID: PMC8988938 DOI: 10.1021/acs.biochem.1c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human phosphoribosylaminoimidazole carboxylase phosphoribosylaminoimdiazole succinocarboxamide synthetase (PAICS) is a dual activity enzyme catalyzing two consecutive reactions in de novo purine nucleotide synthesis. Crystallographic structures of recombinant human PAICS suggested the channeling of 4-carboxy-5-aminoimidazole-1-ribose-5'-phosphate (CAIR) between two active sites of PAICS, while a prior work of an avian PAICS suggested otherwise. Here, we present time-course mass spectrometric data supporting the channeling of CAIR between domains of recombinant human PAICS. Time-course mass spectral analysis showed that CAIR added to the bulk solution (CAIRbulk) is decarboxylated and re-carboxylated before the accumulation of succinyl-5-aminoimidazole-4-carboxamide-1-ribose-5'-phosphate (SAICAR). An experiment with 13C-bicarbonate showed that SAICAR production was proportional to re-carboxylated CAIR instead of total CAIR or CAIRbulk. This result indicates that the SAICAR synthase domain selectively uses enzyme-made CAIR over CAIRbulk, which is consistent with the channeling model. This channeling between PAICS domains may be a part of a larger channeling process in de novo purine nucleotide synthesis.
Collapse
Affiliation(s)
- Hyungjoo Shon
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Elena A Matveeva
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ella C Jull
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yijia Hu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tiffany A Coupet
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Young-Sam Lee
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
9
|
Dutto I, Gerhards J, Herrera A, Souckova O, Škopová V, Smak JA, Junza A, Yanes O, Boeckx C, Burkhalter MD, Zikánová M, Pons S, Philipp M, Lüders J, Stracker TH. Pathway-specific effects of ADSL deficiency on neurodevelopment. eLife 2022; 11:e70518. [PMID: 35133277 PMCID: PMC8871376 DOI: 10.7554/elife.70518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Adenylosuccinate lyase (ADSL) functions in de novo purine synthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado, and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms. We examined the phenotypic effects of ADSL depletion in human cells and their relation to phenotypic outcomes. Using specific interventions to compensate for reduced purine levels or modulate SAICAr accumulation, we found that diminished AMP levels resulted in increased DNA damage signaling and cell cycle delays, while primary ciliogenesis was impaired specifically by loss of ADSL or administration of SAICAr. ADSL-deficient chicken and zebrafish embryos displayed impaired neurogenesis and microcephaly. Neuroprogenitor attrition in zebrafish embryos was rescued by pharmacological inhibition of DNPS, but not increased nucleotide concentration. Zebrafish also displayed phenotypes commonly linked to ciliopathies. Our results suggest that both reduced purine levels and impaired DNPS contribute to neurodevelopmental pathology in ADSLD and that defective ciliogenesis may influence the ADSLD phenotypic spectrum.
Collapse
Affiliation(s)
- Ilaria Dutto
- Institute for Research in Biomedicine, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Julian Gerhards
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of TübingenTübingenGermany
- Institute of Biochemistry and Molecular Biology, Ulm UniversityUlmGermany
| | - Antonio Herrera
- Department of Cell Biology, Instituto de Biología Molecular de BarcelonaBarcelonaSpain
| | - Olga Souckova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Václava Škopová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Jordann A Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology BranchBethesdaUnited States
| | - Alexandra Junza
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPVTarragonaSpain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos IIIMadridSpain
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPVTarragonaSpain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos IIIMadridSpain
| | - Cedric Boeckx
- ICREABarcelonaSpain
- Institute of Complex Systems (UBICS), Universitat de BarcelonaBarcelonaSpain
- Section of General Linguistics, Universitat de BarcelonaBarcelonaSpain
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of TübingenTübingenGermany
| | - Marie Zikánová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Sebastian Pons
- Department of Cell Biology, Instituto de Biología Molecular de BarcelonaBarcelonaSpain
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of TübingenTübingenGermany
- Institute of Biochemistry and Molecular Biology, Ulm UniversityUlmGermany
| | - Jens Lüders
- Institute for Research in Biomedicine, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Travis H Stracker
- Institute for Research in Biomedicine, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology BranchBethesdaUnited States
| |
Collapse
|
10
|
Srivastava R, Sahoo L. Cowpea NAC Transcription Factors Positively Regulate Cellular Stress Response and Balance Energy Metabolism in Yeast via Reprogramming of Biosynthetic Pathways. ACS Synth Biol 2021; 10:2286-2307. [PMID: 34470212 DOI: 10.1021/acssynbio.1c00208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yeast is a dominant host for recombinant production of heterologous proteins, high-value biochemical compounds, and microbial fermentation. During bioprocess operations, pH fluctuations, organic solvents, drying, starvation, osmotic pressure, and often a combination of these stresses cause growth inhibition or death, markedly limiting its industrial use. Thus, stress-tolerant yeast strains with balanced energy-bioenergetics are highly desirous for sustainable improvement of quality biotechnological production. We isolated two NAC transcription factors (TFs), VuNAC1 and VuNAC2, from a wild cowpea genotype, improving both stress tolerance and growth when expressed in yeast. The GFP-fused proteins were localized to the nucleus. Y2H and reporter assay demonstrated the dimerization and transactivation abilities of the VuNAC proteins having structural folds similar to rice SNAC1. The gel-shift assay indicated that the TFs recognize an "ATGCGTG" motif for DNA-binding shared by several native TFs in yeast. The heterologous expression of VuNAC1/2 in yeast improved growth, biomass, lifespan, fermentation efficiency, and altered cellular composition of biomolecules. The transgenic strains conferred tolerance to multiple stresses such as high salinity, osmotic stress, freezing, and aluminum toxicity. Analysis of the metabolome revealed reprogramming of major pathways synthesizing nucleotides, vitamin B complex, amino acids, antioxidants, flavonoids, and other energy currencies and cofactors. Consequently, the transcriptional tuning of stress signaling and biomolecule metabolism improved the survival of the transgenic strains during starvation and stress recovery. VuNAC1/2-based synthetic gene expression control may contribute to designing robust industrial yeast strains with value-added productivity.
Collapse
Affiliation(s)
- Richa Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
11
|
Duveau F, Vande Zande P, Metzger BP, Diaz CJ, Walker EA, Tryban S, Siddiq MA, Yang B, Wittkopp PJ. Mutational sources of trans-regulatory variation affecting gene expression in Saccharomyces cerevisiae. eLife 2021; 10:67806. [PMID: 34463616 PMCID: PMC8456550 DOI: 10.7554/elife.67806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Heritable variation in a gene’s expression arises from mutations impacting cis- and trans-acting components of its regulatory network. Here, we investigate how trans-regulatory mutations are distributed within the genome and within a gene regulatory network by identifying and characterizing 69 mutations with trans-regulatory effects on expression of the same focal gene in Saccharomyces cerevisiae. Relative to 1766 mutations without effects on expression of this focal gene, we found that these trans-regulatory mutations were enriched in coding sequences of transcription factors previously predicted to regulate expression of the focal gene. However, over 90% of the trans-regulatory mutations identified mapped to other types of genes involved in diverse biological processes including chromatin state, metabolism, and signal transduction. These data show how genetic changes in diverse types of genes can impact a gene’s expression in trans, revealing properties of trans-regulatory mutations that provide the raw material for trans-regulatory variation segregating within natural populations.
Collapse
Affiliation(s)
- Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon, Université de Lyon, Lyon, France
| | - Petra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Brian Ph Metzger
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Crisandra J Diaz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Elizabeth A Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Stephen Tryban
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Mohammad A Siddiq
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Bing Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
12
|
Liu N, Qin L, Miao S. Regulatory Mechanisms of L-Lactic Acid and Taste Substances in Chinese Acid Rice Soup (Rice-Acid) Fermented With a Lacticaseibacillus paracasei and Kluyveromyces marxianus. Front Microbiol 2021; 12:594631. [PMID: 34093453 PMCID: PMC8176858 DOI: 10.3389/fmicb.2021.594631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Rice-acid has abundant taste substances and health protection function due to the various bioactive compounds it contains, including organic acids. L-lactic acid is the most abundant organic acid in rice-acid, but the regulatory mechanisms of L-lactic acid accumulation in rice-acid are obscure. In this study, we analyzed the dynamic changes in organic acids and taste substances in rice-acid in various fermentation phases and different inoculation methods. We identified the key genes involved in taste substance biosynthesis by RNA-Seq analysis and compared the data of four experimental groups. We found that the interaction of the differences in key functional genes (L-lactate dehydrogenase and D-lactate dehydrogenase) and key metabolism pathways (glycolysis, pyruvate metabolism, TCA cycle, amino acid biosynthesis, and metabolism) might interpret the accumulation of L-lactic acid, other organic acids, and taste substances in rice-acid fermented with Lacticaseibacillus paracasei. The experimental data provided the basis for exploring regulatory mechanisms of taste substance accumulation in rice-acid.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
13
|
Groth B, Venkatakrishnan P, Lin SJ. NAD + Metabolism, Metabolic Stress, and Infection. Front Mol Biosci 2021; 8:686412. [PMID: 34095234 PMCID: PMC8171187 DOI: 10.3389/fmolb.2021.686412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite with wide-ranging and significant roles in the cell. Defects in NAD+ metabolism have been associated with many human disorders; it is therefore an emerging therapeutic target. Moreover, NAD+ metabolism is perturbed during colonization by a variety of pathogens, either due to the molecular mechanisms employed by these infectious agents or by the host immune response they trigger. Three main biosynthetic pathways, including the de novo and salvage pathways, contribute to the production of NAD+ with a high degree of conservation from bacteria to humans. De novo biosynthesis, which begins with l-tryptophan in eukaryotes, is also known as the kynurenine pathway. Intermediates of this pathway have various beneficial and deleterious effects on cellular health in different contexts. For example, dysregulation of this pathway is linked to neurotoxicity and oxidative stress. Activation of the de novo pathway is also implicated in various infections and inflammatory signaling. Given the dynamic flexibility and multiple roles of NAD+ intermediates, it is important to understand the interconnections and cross-regulations of NAD+ precursors and associated signaling pathways to understand how cells regulate NAD+ homeostasis in response to various growth conditions. Although regulation of NAD+ homeostasis remains incompletely understood, studies in the genetically tractable budding yeast Saccharomyces cerevisiae may help provide some molecular basis for how NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function and how they are regulated by various nutritional and stress signals. Here we present a brief overview of recent insights and discoveries made with respect to the relationship between NAD+ metabolism and selected human disorders and infections, with a particular focus on the de novo pathway. We also discuss how studies in budding yeast may help elucidate the regulation of NAD+ homeostasis.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Padmaja Venkatakrishnan
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Wu S, Zhu B, Qin L, Rahman K, Zhang L, Han T. Transcription Factor: A Powerful Tool to Regulate Biosynthesis of Active Ingredients in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2021; 12:622011. [PMID: 33719294 PMCID: PMC7943460 DOI: 10.3389/fpls.2021.622011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/22/2021] [Indexed: 05/28/2023]
Abstract
Salvia miltiorrhiza Bunge is a common Chinese herbal medicine, and its major active ingredients are phenolic acids and tanshinones, which are widely used to treat vascular diseases. However, the wild form of S. miltiorrhiza possess low levels of these important pharmaceutical agents; thus, improving their levels is an active area of research. Transcription factors, which promote or inhibit the expressions of multiple genes involved in one or more biosynthetic pathways, are powerful tools for controlling gene expression in biosynthesis. Several families of transcription factors have been reported to participate in regulating phenolic acid and tanshinone biosynthesis and influence their accumulation. This review summarizes the current status in this field, with focus on the transcription factors which have been identified in recent years and their functions in the biosynthetic regulation of phenolic acids and tanshinones. Otherwise, the new insight for further research is provided. Finally, the application of the biosynthetic regulation of active ingredients by the transcription factors in S. miltiorrhiza are discussed, and new insights for future research are explored.
Collapse
Affiliation(s)
- Sijia Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lei Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ting Han
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Velázquez D, Albacar M, Zhang C, Calafí C, López-Malo M, Torres-Torronteras J, Martí R, Kovalchuk SI, Pinson B, Jensen ON, Daignan-Fornier B, Casamayor A, Ariño J. Yeast Ppz1 protein phosphatase toxicity involves the alteration of multiple cellular targets. Sci Rep 2020; 10:15613. [PMID: 32973189 PMCID: PMC7519054 DOI: 10.1038/s41598-020-72391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Control of the protein phosphorylation status is a major mechanism for regulation of cellular processes, and its alteration often lead to functional disorders. Ppz1, a protein phosphatase only found in fungi, is the most toxic protein when overexpressed in Saccharomyces cerevisiae. To investigate the molecular basis of this phenomenon, we carried out combined genome-wide transcriptomic and phosphoproteomic analyses. We have found that Ppz1 overexpression causes major changes in gene expression, affecting ~ 20% of the genome, together with oxidative stress and increase in total adenylate pools. Concurrently, we observe changes in the phosphorylation pattern of near 400 proteins (mainly dephosphorylated), including many proteins involved in mitotic cell cycle and bud emergence, rapid dephosphorylation of Snf1 and its downstream transcription factor Mig1, and phosphorylation of Hog1 and its downstream transcription factor Sko1. Deletion of HOG1 attenuates the growth defect of Ppz1-overexpressing cells, while that of SKO1 aggravates it. Our results demonstrate that Ppz1 overexpression has a widespread impact in the yeast cells and reveals new aspects of the regulation of the cell cycle.
Collapse
Affiliation(s)
- Diego Velázquez
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Chunyi Zhang
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carlos Calafí
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - María López-Malo
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Sergey I Kovalchuk
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Laboratory of Bioinformatic Approaches in Combinatorial Chemistry and Biology, Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Benoit Pinson
- Bordeaux University, IBGC CNRS UMR 5095, Bordeaux, France
- Service Analyses Metaboliques TBMcore CNRS UMS3427/INSERM US05, Université de Bordeaux, Bordeaux, France
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
16
|
Saint-Marc C, Ceschin J, Almyre C, Pinson B, Daignan-Fornier B. Genetic investigation of purine nucleotide imbalance in Saccharomyces cerevisiae. Curr Genet 2020; 66:1163-1177. [PMID: 32780163 DOI: 10.1007/s00294-020-01101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Because metabolism is a complex balanced process involving multiple enzymes, understanding how organisms compensate for transient or permanent metabolic imbalance is a challenging task that can be more easily achieved in simpler unicellular organisms. The metabolic balance results not only from the combination of individual enzymatic properties, regulation of enzyme abundance, but also from the architecture of the metabolic network offering multiple interconversion alternatives. Although metabolic networks are generally highly resilient to perturbations, metabolic imbalance resulting from enzymatic defect and specific environmental conditions can be designed experimentally and studied. Starting with a double amd1 aah1 mutant that severely and conditionally affects yeast growth, we carefully characterized the metabolic shuffle associated with this defect. We established that the GTP decrease resulting in an adenylic/guanylic nucleotide imbalance was responsible for the growth defect. Identification of several gene dosage suppressors revealed that TAT1, encoding an amino acid transporter, is a robust suppressor of the amd1 aah1 growth defect. We show that TAT1 suppression occurs through replenishment of the GTP pool in a process requiring the histidine biosynthesis pathway. Importantly, we establish that a tat1 mutant exhibits synthetic sickness when combined with an amd1 mutant and that both components of this synthetic phenotype can be suppressed by specific gene dosage suppressors. Together our data point to a strong phenotypic connection between amino acid uptake and GTP synthesis, a connection that could open perspectives for future treatment of related human defects, previously reported as etiologically highly conserved.
Collapse
Affiliation(s)
- Christelle Saint-Marc
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Johanna Ceschin
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Claire Almyre
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Benoît Pinson
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Bertrand Daignan-Fornier
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France. .,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France.
| |
Collapse
|
17
|
Austin S, Mayer A. Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway. Front Microbiol 2020; 11:1367. [PMID: 32765429 PMCID: PMC7381174 DOI: 10.3389/fmicb.2020.01367] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cells face major changes in demand for and supply of inorganic phosphate (Pi). Pi is often a limiting nutrient in the environment, particularly for plants and microorganisms. At the same time, the need for phosphate varies, establishing conflicts of goals. Cells experience strong peaks of Pi demand, e.g., during the S-phase, when DNA, a highly abundant and phosphate-rich compound, is duplicated. While cells must satisfy these Pi demands, they must safeguard themselves against an excess of Pi in the cytosol. This is necessary because Pi is a product of all nucleotide-hydrolyzing reactions. An accumulation of Pi shifts the equilibria of these reactions and reduces the free energy that they can provide to drive endergonic metabolic reactions. Thus, while Pi starvation may simply retard growth and division, an elevated cytosolic Pi concentration is potentially dangerous for cells because it might stall metabolism. Accordingly, the consequences of perturbed cellular Pi homeostasis are severe. In eukaryotes, they range from lethality in microorganisms such as yeast (Sethuraman et al., 2001; Hürlimann, 2009), severe growth retardation and dwarfism in plants (Puga et al., 2014; Liu et al., 2015; Wild et al., 2016) to neurodegeneration or renal Fanconi syndrome in humans (Legati et al., 2015; Ansermet et al., 2017). Intracellular Pi homeostasis is thus not only a fundamental topic of cell biology but also of growing interest for medicine and agriculture.
Collapse
Affiliation(s)
- Sisley Austin
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Hassani D, Fu X, Shen Q, Khalid M, Rose JKC, Tang K. Parallel Transcriptional Regulation of Artemisinin and Flavonoid Biosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:466-476. [PMID: 32304658 DOI: 10.1016/j.tplants.2020.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
Plants regulate the synthesis of specialized compounds through the actions of individual transcription factors (TFs) or sets of TFs. One such compound, artemisinin from Artemisia annua, is widely used as a pharmacological product in the first-line treatment of malaria. However, the emergence of resistance to artemisinin in Plasmodium species, as well as its low production rates, have required innovative treatments such as exploiting the synergistic effects of flavonoids with artemisinin. We overview current knowledge about flavonoid and artemisinin transcriptional regulation in A. annua, and review the dual action of TFs and structural genes that can regulate both pathways simultaneously. Understanding the concerted action of these TFs and their associated structural genes can guide the development of strategies to further improve flavonoid and artemisinin production.
Collapse
Affiliation(s)
- Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China.
| |
Collapse
|
19
|
Agmon N, Temple J, Tang Z, Schraink T, Baron M, Chen J, Mita P, Martin JA, Tu BP, Yanai I, Fenyö D, Boeke JD. Phylogenetic debugging of a complete human biosynthetic pathway transplanted into yeast. Nucleic Acids Res 2020; 48:486-499. [PMID: 31745563 PMCID: PMC7145547 DOI: 10.1093/nar/gkz1098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/04/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022] Open
Abstract
Cross-species pathway transplantation enables insight into a biological process not possible through traditional approaches. We replaced the enzymes catalyzing the entire Saccharomyces cerevisiae adenine de novo biosynthesis pathway with the human pathway. While the 'humanized' yeast grew in the absence of adenine, it did so poorly. Dissection of the phenotype revealed that PPAT, the human ortholog of ADE4, showed only partial function whereas all other genes complemented fully. Suppressor analysis revealed other pathways that play a role in adenine de-novo pathway regulation. Phylogenetic analysis pointed to adaptations of enzyme regulation to endogenous metabolite level 'setpoints' in diverse organisms. Using DNA shuffling, we isolated specific amino acids combinations that stabilize the human protein in yeast. Thus, using adenine de novo biosynthesis as a proof of concept, we suggest that the engineering methods used in this study as well as the debugging strategies can be utilized to transplant metabolic pathway from any origin into yeast.
Collapse
Affiliation(s)
- Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jasmine Temple
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Zuojian Tang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias Schraink
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Maayan Baron
- Institute for Computational Medicine and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jun Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paolo Mita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - James A Martin
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Benjamin P Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Itai Yanai
- Institute for Computational Medicine and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
20
|
Noree C, Begovich K, Samilo D, Broyer R, Monfort E, Wilhelm JE. A quantitative screen for metabolic enzyme structures reveals patterns of assembly across the yeast metabolic network. Mol Biol Cell 2019; 30:2721-2736. [PMID: 31483745 PMCID: PMC6761767 DOI: 10.1091/mbc.e19-04-0224] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite the proliferation of proteins that can form filaments or phase-separated condensates, it remains unclear how this behavior is distributed over biological networks. We have found that 60 of the 440 yeast metabolic enzymes robustly form structures, including 10 that assemble within mitochondria. Additionally, the ability to assemble is enriched at branch points on several metabolic pathways. The assembly of enzymes at the first branch point in de novo purine biosynthesis is coordinated, hierarchical, and based on their position within the pathway, while the enzymes at the second branch point are recruited to RNA stress granules. Consistent with distinct classes of structures being deployed at different control points in a pathway, we find that the first enzyme in the pathway, PRPP synthetase, forms evolutionarily conserved filaments that are sequestered in the nucleus in higher eukaryotes. These findings provide a roadmap for identifying additional conserved features of metabolic regulation by condensates/filaments.
Collapse
Affiliation(s)
- Chalongrat Noree
- Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543.,Institute of Molecular Biosciences, Mahidol University, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Kyle Begovich
- Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Dane Samilo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Risa Broyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Elena Monfort
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - James E Wilhelm
- Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
21
|
Kokina A, Ozolina Z, Liepins J. Purine auxotrophy: Possible applications beyond genetic marker. Yeast 2019; 36:649-656. [PMID: 31334866 DOI: 10.1002/yea.3434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023] Open
Abstract
Exploring new drug candidates or drug targets against many illnesses is necessary as "traditional" treatments lose their effectivity. Cancer and sicknesses caused by protozoan parasites are among these diseases. Cell purine metabolism is an important drug target. Theoretically, inhibiting purine metabolism could stop the proliferation of unwanted cells. Purine metabolism is similar across all eukaryotes. However, some medically important organisms or cell lines rely on their host purine metabolism. Protozoans causing malaria, leishmaniasis, or toxoplasmosis are purine auxotrophs. Some cancer forms have also lost the ability to synthesize purines de novo. Budding yeast can serve as an effective model for eukaryotic purine metabolism, and thus, purine auxotrophic strains could be an important tool. In this review, we present the common principles of purine metabolism in eukaryotes, effects of purine starvation in eukaryotic cells, and purine-starved Saccharomyces cerevisiae as a model for purine depletion-elicited metabolic states with applications in evolution studies and pharmacology. Purine auxotrophic yeast strains behave differently when growing in media with sufficient supplementation with adenine or in media depleted of adenine (starvation). In the latter, they undergo cell cycle arrest at G1/G0 and become stress resistant. Importantly, similar effects have also been observed among parasitic protozoans or cancer cells. We consider that studies on metabolic changes caused by purine auxotrophy could reveal new options for parasite or cancer therapy. Further, knowledge on phenotypic changes will improve the use of auxotrophic strains in high-throughput screening for primary drug candidates.
Collapse
Affiliation(s)
- Agnese Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Zane Ozolina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Janis Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
22
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
23
|
Marsac R, Pinson B, Saint-Marc C, Olmedo M, Artal-Sanz M, Daignan-Fornier B, Gomes JE. Purine Homeostasis Is Necessary for Developmental Timing, Germline Maintenance and Muscle Integrity in Caenorhabditis elegans. Genetics 2019; 211:1297-1313. [PMID: 30700528 PMCID: PMC6456310 DOI: 10.1534/genetics.118.301062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Purine homeostasis is ensured through a metabolic network widely conserved from prokaryotes to humans. Purines can either be synthesized de novo, reused, or produced by interconversion of extant metabolites using the so-called recycling pathway. Although thoroughly characterized in microorganisms, such as yeast or bacteria, little is known about regulation of the purine biosynthesis network in metazoans. In humans, several diseases are linked to purine metabolism through as yet poorly understood etiologies. Particularly, the deficiency in adenylosuccinate lyase (ADSL)-an enzyme involved both in the purine de novo and recycling pathways-causes severe muscular and neuronal symptoms. In order to address the mechanisms underlying this deficiency, we established Caenorhabditis elegans as a metazoan model organism to study purine metabolism, while focusing on ADSL. We show that the purine biosynthesis network is functionally conserved in C. elegans Moreover, adsl-1 (the gene encoding ADSL in C. elegans) is required for developmental timing, germline stem cell maintenance and muscle integrity. Importantly, these traits are not affected when solely the de novo pathway is abolished, and we present evidence that germline maintenance is linked specifically to ADSL activity in the recycling pathway. Hence, our results allow developmental and tissue specific phenotypes to be ascribed to separable steps of the purine metabolic network in an animal model.
Collapse
Affiliation(s)
- Roxane Marsac
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - Christelle Saint-Marc
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - María Olmedo
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013 Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013 Seville, Spain
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - José-Eduardo Gomes
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| |
Collapse
|
24
|
Pinson B, Ceschin J, Saint-Marc C, Daignan-Fornier B. Dual control of NAD + synthesis by purine metabolites in yeast. eLife 2019; 8:43808. [PMID: 30860478 PMCID: PMC6430606 DOI: 10.7554/elife.43808] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolism is a highly integrated process resulting in energy and biomass production. While individual metabolic routes are well characterized, the mechanisms ensuring crosstalk between pathways are poorly described, although they are crucial for homeostasis. Here, we establish a co-regulation of purine and pyridine metabolism in response to external adenine through two separable mechanisms. First, adenine depletion promotes transcriptional upregulation of the de novo NAD+ biosynthesis genes by a mechanism requiring the key-purine intermediates ZMP/SZMP and the Bas1/Pho2 transcription factors. Second, adenine supplementation favors the pyridine salvage route resulting in an ATP-dependent increase of intracellular NAD+. This control operates at the level of the nicotinic acid mononucleotide adenylyl-transferase Nma1 and can be bypassed by overexpressing this enzyme. Therefore, in yeast, pyridine metabolism is under the dual control of ZMP/SZMP and ATP, revealing a much wider regulatory role for these intermediate metabolites in an integrated biosynthesis network.
Collapse
Affiliation(s)
- Benoît Pinson
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Johanna Ceschin
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Christelle Saint-Marc
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | | |
Collapse
|
25
|
Schwachtje J, Whitcomb SJ, Firmino AAP, Zuther E, Hincha DK, Kopka J. Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information? FRONTIERS IN PLANT SCIENCE 2019; 10:106. [PMID: 30815006 PMCID: PMC6381073 DOI: 10.3389/fpls.2019.00106] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/23/2019] [Indexed: 05/21/2023]
Abstract
Metabolism is the system layer that determines growth by the rate of matter uptake and conversion into biomass. The scaffold of enzymatic reaction rates drives the metabolic network in a given physico-chemical environment. In response to the diverse environmental stresses, plants have evolved the capability of integrating macro- and micro-environmental events to be prepared, i.e., to be primed for upcoming environmental challenges. The hierarchical view on stress signaling, where metabolites are seen as final downstream products, has recently been complemented by findings that metabolites themselves function as stress signals. We present a systematic concept of metabolic responses that are induced by environmental stresses and persist in the plant system. Such metabolic imprints may prime metabolic responses of plants for subsequent environmental stresses. We describe response types with examples of biotic and abiotic environmental stresses and suggest that plants use metabolic imprints, the metabolic changes that last beyond recovery from stress events, and priming, the imprints that function to prepare for upcoming stresses, to integrate diverse environmental stress histories. As a consequence, even genetically identical plants should be studied and understood as phenotypically plastic organisms that continuously adjust their metabolic state in response to their individually experienced local environment. To explore the occurrence and to unravel functions of metabolic imprints, we encourage researchers to extend stress studies by including detailed metabolic and stress response monitoring into extended recovery phases.
Collapse
Affiliation(s)
- Jens Schwachtje
- Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Daignan-Fornier B, Pinson B. Yeast to Study Human Purine Metabolism Diseases. Cells 2019; 8:E67. [PMID: 30658520 PMCID: PMC6356901 DOI: 10.3390/cells8010067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
Purine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is poorly understood and simple model organisms, such as yeast, have proved valuable to provide a more comprehensive view of the metabolic consequences caused by the identified mutations. In this review, we present results obtained with the yeast Saccharomyces cerevisiae to exemplify how a eukaryotic unicellular organism can offer highly relevant information for identifying the molecular basis of complex human diseases. Overall, purine metabolism illustrates a remarkable conservation of genes, functions and phenotypes between humans and yeast.
Collapse
Affiliation(s)
- Bertrand Daignan-Fornier
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| | - Benoît Pinson
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| |
Collapse
|
27
|
Douillet DC, Pinson B, Ceschin J, Hürlimann HC, Saint-Marc C, Laporte D, Claverol S, Konrad M, Bonneu M, Daignan-Fornier B. Metabolomics and proteomics identify the toxic form and the associated cellular binding targets of the anti-proliferative drug AICAR. J Biol Chem 2018; 294:805-815. [PMID: 30478173 DOI: 10.1074/jbc.ra118.004964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR, or acadesine) is a precursor of the monophosphate derivative 5-amino-4-imidazole carboxamide ribonucleoside 5'-phosphate (ZMP), an intermediate in de novo purine biosynthesis. AICAR proved to have promising anti-proliferative properties, although the molecular basis of its toxicity is poorly understood. To exert cytotoxicity, AICAR needs to be metabolized, but the AICAR-derived toxic metabolite was not identified. Here, we show that ZMP is the major toxic derivative of AICAR in yeast and establish that its metabolization to succinyl-ZMP, ZDP, or ZTP (di- and triphosphate derivatives of AICAR) strongly reduced its toxicity. Affinity chromatography identified 74 ZMP-binding proteins, including 41 that were found neither as AMP nor as AICAR or succinyl-ZMP binders. Overexpression of karyopherin-β Kap123, one of the ZMP-specific binders, partially rescued AICAR toxicity. Quantitative proteomic analyses revealed 57 proteins significantly less abundant on nuclei-enriched fractions from AICAR-fed cells, this effect being compensated by overexpression of KAP123 for 15 of them. These results reveal nuclear protein trafficking as a function affected by AICAR.
Collapse
Affiliation(s)
- Delphine C Douillet
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Johanna Ceschin
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Hans C Hürlimann
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Damien Laporte
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Stéphane Claverol
- the University of Bordeaux, Bordeaux INP, Plateforme Proteome, F-33076 Bordeaux, France, and
| | - Manfred Konrad
- the Max-Planck-Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | - Marc Bonneu
- the University of Bordeaux, Bordeaux INP, Plateforme Proteome, F-33076 Bordeaux, France, and
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France, .,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| |
Collapse
|
28
|
Wangsanut T, Tobin JM, Rolfes RJ. Functional Mapping of Transcription Factor Grf10 That Regulates Adenine-Responsive and Filamentation Genes in Candida albicans. mSphere 2018; 3:e00467-18. [PMID: 30355670 PMCID: PMC6200990 DOI: 10.1128/msphere.00467-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Grf10, a homeodomain-containing transcription factor, regulates adenylate and one-carbon metabolism and morphogenesis in the human fungal pathogen Candida albicans Here, we identified functional domains and key residues involved in transcription factor activity using one-hybrid and mutational analyses. We localized activation domains to the C-terminal half of the Grf10 protein by one-hybrid analysis and identified motifs using bioinformatic analyses; one of the characterized activation domains (AD1) responded to temperature. The LexA-Grf10 fusion protein activated the lexAop-HIS1 reporter in an adenine-dependent fashion, and this activation was independent of Bas1, showing that the adenine limitation signal is transmitted directly to Grf10. Overexpression of LexA-Grf10 led to filamentation, and this required a functioning homeodomain, consistent with Grf10 controlling the expression of key filamentation genes; filamentation induced by LexA-Grf10 overexpression was independent of adenine levels and Bas1. Alanine substitutions were made within the conserved interaction regions (IR) of LexA-Grf10 and Grf10 to investigate roles in transcription. In LexA-Grf10, the D302A mutation activated transcription constitutively, and the E305A mutation was regulated by adenine. When these mutations were introduced into the native gene locus, the D302A mutation was unable to complement the ADE phenotype and did not promote filamentation under hypha-inducing conditions; the E305A mutant behaved as the native gene with respect to the ADE phenotype and was partially defective in inducing hyphae. These results demonstrate allele-specific responses with respect to the different phenotypes, consistent with perturbations in the ability of Grf10 to interact with multiple partner proteins.IMPORTANCE Metabolic adaptation and morphogenesis are essential for Candida albicans, a major human fungal pathogen, to survive and infect diverse body sites in the mammalian host. C. albicans utilizes transcription factors to tightly control the transcription of metabolic genes and morphogenesis genes. Grf10, a critical homeodomain transcription factor, controls purine and one-carbon metabolism in response to adenine limitation, and Grf10 is necessary for the yeast-to-hypha morphological switching, a known virulence factor. Here, we carried out one-hybrid and mutational analyses to identify functional domains of Grf10. Our results show that Grf10 separately regulates metabolic and morphogenesis genes, and it contains a conserved protein domain for protein partner interaction, allowing Grf10 to control the transcription of multiple distinct pathways. Our findings contribute significantly to understanding the role and mechanism of transcription factors that control multiple pathogenic traits in C. albicans.
Collapse
Affiliation(s)
| | - Joshua M Tobin
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
29
|
Laporte D, Gouleme L, Jimenez L, Khemiri I, Sagot I. Mitochondria reorganization upon proliferation arrest predicts individual yeast cell fate. eLife 2018; 7:35685. [PMID: 30299253 PMCID: PMC6177259 DOI: 10.7554/elife.35685] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Most cells spend the majority of their life in a non-proliferating state. When proliferation cessation is irreversible, cells are senescent. By contrast, if the arrest is only temporary, cells are defined as quiescent. These cellular states are hardly distinguishable without triggering proliferation resumption, hampering thus the study of quiescent cells properties. Here we show that quiescent and senescent yeast cells are recognizable based on their mitochondrial network morphology. Indeed, while quiescent yeast cells display numerous small vesicular mitochondria, senescent cells exhibit few globular mitochondria. This allowed us to reconsider at the individual-cell level, properties previously attributed to quiescent cells using population-based approaches. We demonstrate that cell’s propensity to enter quiescence is not influenced by replicative age, volume or density. Overall, our findings reveal that quiescent cells are not all identical but that their ability to survive is significantly improved when they exhibit the specific reorganization of several cellular machineries.
Collapse
Affiliation(s)
- Damien Laporte
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Laëtitia Gouleme
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Laure Jimenez
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Ines Khemiri
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Isabelle Sagot
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| |
Collapse
|
30
|
Albrecht D, Hürlimann HC, Ceschin J, Saint-Marc C, Pinson B, Daignan-Fornier B. Multiple chemo-genetic interactions between a toxic metabolite and the ubiquitin pathway in yeast. Curr Genet 2018; 64:1275-1286. [PMID: 29721631 DOI: 10.1007/s00294-018-0843-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
AICAR is the precursor of ZMP, a metabolite with antiproliferative properties in yeast and human. We aim at understanding how AICAR (and its active form ZMP) affects essential cellular processes. In this work, we found that ZMP accumulation is synthetic lethal with a hypomorphic allele of the ubiquitin-activating enzyme Uba1. A search for gene-dosage suppressors revealed that ubiquitin overexpression was sufficient to restore growth of the uba1 mutant upon AICAR treatment, suggesting that the ubiquitin pool is critical for cells to cope with AICAR. Accordingly, two mutants with constitutive low ubiquitin, ubp6 and doa1, were highly sensitive to AICAR, a phenotype that could be suppressed by ubiquitin overexpression. We established, by genetic means, that these new AICAR-sensitive mutants act in a different pathway from the rad6/bre1 mutants which were previously reported as sensitive to AICAR (Albrecht et al., Genetics 204:1447-1460, 2016). Two ubiquitin-conjugating enzymes (Ubc4 and Cdc34) and a ubiquitin ligase (Cdc4) were found to contribute to the ability of cells to cope with ZMP. This study illustrates the complexity of chemo-genetic interactions and shows how genetic analyses allow deciphering the implicated pathways, the individual gene effects, and their combined phenotypic contribution. Based on additivity and suppression patterns, we conclude that AICAR treatment shows synthetic interactions with distinct branches of the yeast ubiquitin pathway.
Collapse
Affiliation(s)
- Delphine Albrecht
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Hans C Hürlimann
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Institut für Biologie, Martin-Luther Universität, Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Johanna Ceschin
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Christelle Saint-Marc
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue C. Saint-Saëns CS 61390, 33077, Bordeaux, France.
| |
Collapse
|
31
|
Litsios A, Ortega ÁD, Wit EC, Heinemann M. Metabolic-flux dependent regulation of microbial physiology. Curr Opin Microbiol 2018; 42:71-78. [DOI: 10.1016/j.mib.2017.10.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
|
32
|
Colinas M, Goossens A. Combinatorial Transcriptional Control of Plant Specialized Metabolism. TRENDS IN PLANT SCIENCE 2018; 23:324-336. [PMID: 29395832 DOI: 10.1016/j.tplants.2017.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 05/23/2023]
Abstract
Plants produce countless specialized compounds of diverse chemical nature and biological activities. Their biosynthesis often exclusively occurs either in response to environmental stresses or is limited to dedicated anatomical structures. In both scenarios, regulation of biosynthesis appears to be mainly controlled at the transcriptional level, which is generally dependent on a combined interplay of DNA-related mechanisms and the activity of transcription factors that may act in a combinatorial manner. How environmental and developmental cues are integrated into a coordinated cell type-specific stress response has only partially been unraveled so far. Building on the available examples from (metabolic) gene expression, here we propose theoretical models of how this integration of signals may occur at the level of transcriptional control.
Collapse
Affiliation(s)
- Maite Colinas
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
33
|
Bazurto JV, Dearth SP, Tague ED, Campagna SR, Downs DM. Untargeted metabolomics confirms and extends the understanding of the impact of aminoimidazole carboxamide ribotide (AICAR) in the metabolic network of Salmonella enterica. MICROBIAL CELL 2017; 5:74-87. [PMID: 29417056 PMCID: PMC5798407 DOI: 10.15698/mic2018.02.613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Salmonella enterica, aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a substrate of the AICAR transformylase/IMP cyclohydrolase (PurH) enzyme. When purH is eliminated in an otherwise wild-type strain, AICAR accumulates and indirectly inhibits synthesis of the essential coenzyme thiamine pyrophosphate (TPP). In this study, untargeted metabolomics approaches were used to i) corroborate previously defined metabolite changes, ii) define the global consequences of AICAR accumulation and iii) investigate the metabolic effects of mutations that restore thiamine prototrophy to a purH mutant. The data showed that AICAR accumulation led to an increase in the global regulator cyclic AMP (cAMP) and that disrupting central carbon metabolism could decrease AICAR and/or cAMP to restore thiamine synthesis. A mutant (icc) blocked in cAMP degradation that accumulated cAMP but had wild-type levels of AICAR was used to identify changes in the purH metabolome that were a direct result of elevated cAMP. Data herein describe the use of metabolomics to identify the metabolic state of mutant strains and probe the underlying mechanisms used by AICAR to inhibit thiamine synthesis. The results obtained provide a cautionary tale of using metabolite concentrations as the only data to define the physiological state of a bacterial cell.
Collapse
Affiliation(s)
| | - Stephen P Dearth
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
34
|
Efficient protein production by yeast requires global tuning of metabolism. Nat Commun 2017; 8:1131. [PMID: 29070809 PMCID: PMC5656615 DOI: 10.1038/s41467-017-00999-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/09/2017] [Indexed: 01/20/2023] Open
Abstract
The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular, altered energy metabolism resulting in reduced respiration and increased fermentation, as well as balancing of amino-acid biosynthesis and reduced thiamine biosynthesis seem to be particularly important. We confirm our findings by inverse engineering and physiological characterization and show that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion. The contribution of metabolic pathways to protein secretion is largely unknown. Here, the authors find conserved metabolic patterns in yeast by examining genome-wide transcriptional responses in high protein secretion mutants and reveal critical factors that can be tuned for efficient protein secretion.
Collapse
|
35
|
Choi J, Rajagopal A, Xu YF, Rabinowitz JD, O’Shea EK. A systematic genetic screen for genes involved in sensing inorganic phosphate availability in Saccharomyces cerevisiae. PLoS One 2017; 12:e0176085. [PMID: 28520786 PMCID: PMC5435139 DOI: 10.1371/journal.pone.0176085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
Saccharomyces cerevisiae responds to changes in extracellular inorganic phosphate (Pi) availability by regulating the activity of the phosphate-responsive (PHO) signaling pathway, enabling cells to maintain intracellular levels of the essential nutrient Pi. Pi-limitation induces upregulation of inositol heptakisphosphate (IP7) synthesized by the inositol hexakisphosphate kinase Vip1, triggering inhibition of the Pho80/Pho85 cyclin-cyclin dependent kinase (CDK) complex by the CDK inhibitor Pho81, which upregulates the PHO regulon through the CDK target and transcription factor Pho4. To identify genes that are involved in signaling upstream of the Pho80/Pho85/Pho81 complex and how they interact with each other to regulate the PHO pathway, we performed genome-wide screens with the synthetic genetic array method. We identified more than 300 mutants with defects in signaling upstream of the Pho80/Pho85/Pho81 complex, including AAH1, which encodes an adenine deaminase that negatively regulates the PHO pathway in a Vip1-dependent manner. Furthermore, we showed that even in the absence of VIP1, the PHO pathway can be activated under prolonged periods of Pi starvation, suggesting complexity in the mechanisms by which the PHO pathway is regulated.
Collapse
Affiliation(s)
- Joonhyuk Choi
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Abbhirami Rajagopal
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yi-Fan Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Erin K. O’Shea
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
36
|
Bonnot C, Proust H, Pinson B, Colbalchini FPL, Lesly-Veillard A, Breuninger H, Champion C, Hetherington AJ, Kelly S, Dolan L. Functional PTB phosphate transporters are present in streptophyte algae and early diverging land plants. THE NEW PHYTOLOGIST 2017; 214:1158-1171. [PMID: 28134432 DOI: 10.1111/nph.14431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/15/2016] [Indexed: 05/12/2023]
Abstract
Two inorganic phosphate (Pi) uptake mechanisms operate in streptophytes and chlorophytes, the two lineages of green plants. PHOSPHATE TRANSPORTER B (PTB) proteins are hypothesized to be the Na+ /Pi symporters catalysing Pi uptake in chlorophytes, whereas PHOSPHATE TRANSPORTER 1 (PHT1) proteins are the H+ /Pi symporters that carry out Pi uptake in angiosperms. PHT1 proteins are present in all streptophyte lineages. However, Pi uptake in streptophyte algae and marine angiosperms requires Na+ influx, suggesting that Na+ /Pi symporters also function in some streptophytes. We tested the hypothesis that Na+ /Pi symporters exist in streptophytes. We identified PTB sequences in streptophyte genomes. Core PTB proteins are present at the plasma membrane of the liverwort Marchantia polymorpha. The expression of M. polymorpha core PTB proteins in the Saccharomyces cerevisiae pho2 mutant defective in high-affinity Pi transport rescues growth in low-Pi environments. Moreover, levels of core PTB mRNAs of M. polymorpha and the streptophyte alga Coleochaete nitellarum are higher in low-Pi than in Pi-replete conditions, consistent with a role in Pi uptake from the environment. We conclude that land plants inherited two Pi uptake mechanisms - mediated by the PTB and PHT1 proteins, respectively - from their streptophyte algal ancestor. Both systems operate in parallel in extant early diverging land plants.
Collapse
Affiliation(s)
- Clémence Bonnot
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Hélène Proust
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Benoît Pinson
- Centre National de la Recherche Scientifique (CNRS), UMR 5095 Institut de Biochimie et Génétique Cellulaire (IBGC), Bordeaux Cedex, F-33077, France
- Université de Bordeaux, Bordeaux, F-33000, France
| | | | - Alexis Lesly-Veillard
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Holger Breuninger
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Clément Champion
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
37
|
Chemo-Genetic Interactions Between Histone Modification and the Antiproliferation Drug AICAR Are Conserved in Yeast and Humans. Genetics 2016; 204:1447-1460. [PMID: 27707786 PMCID: PMC5161278 DOI: 10.1534/genetics.116.192518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Identifying synthetic lethal interactions has emerged as a promising new therapeutic approach aimed at targeting cancer cells directly. Here, we used the yeast Saccharomyces cerevisiae as a simple eukaryotic model to screen for mutations resulting in a synthetic lethality with 5-amino-4-imidazole carboxamide ribonucleoside (AICAR) treatment. Indeed, AICAR has been reported to inhibit the proliferation of multiple cancer cell lines. Here, we found that loss of several histone-modifying enzymes, including Bre1 (histone H2B ubiquitination) and Set1 (histone H3 lysine 4 methylation), greatly enhanced AICAR inhibition on growth via the combined effects of both the drug and mutations on G1 cyclins. Our results point to AICAR impacting on Cln3 subcellular localization and at the Cln1 protein level, while the bre1 or set1 deletion affected CLN1 and CLN2 expression. As a consequence, AICAR and bre1/set1 deletions jointly affected all three G1 cyclins (Cln1, Cln2, and Cln3), leading to a condition known to result in synthetic lethality. Significantly, these chemo-genetic synthetic interactions were conserved in human HCT116 cells. Indeed, knock-down of RNF40, ASH2L, and KMT2D/MLL2 induced a highly significant increase in AICAR sensitivity. Given that KMT2D/MLL2 is mutated at high frequency in a variety of cancers, this synthetic lethal interaction has an interesting therapeutic potential.
Collapse
|
38
|
Todor H, Gooding J, Ilkayeva OR, Schmid AK. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences. PLoS One 2015; 10:e0135693. [PMID: 26284786 PMCID: PMC4540570 DOI: 10.1371/journal.pone.0135693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/24/2015] [Indexed: 02/04/2023] Open
Abstract
Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.
Collapse
Affiliation(s)
- Horia Todor
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Jessica Gooding
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Olga R. Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Amy K. Schmid
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
39
|
Ceschin J, Hürlimann HC, Saint-Marc C, Albrecht D, Violo T, Moenner M, Daignan-Fornier B, Pinson B. Disruption of Nucleotide Homeostasis by the Antiproliferative Drug 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside Monophosphate (AICAR). J Biol Chem 2015; 290:23947-59. [PMID: 26283791 DOI: 10.1074/jbc.m115.656017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside monophosphate (AICAR) is a natural metabolite with potent anti-proliferative and low energy mimetic properties. At high concentration, AICAR is toxic for yeast and mammalian cells, but the molecular basis of this toxicity is poorly understood. Here, we report the identification of yeast purine salvage pathway mutants that are synthetically lethal with AICAR accumulation. Genetic suppression revealed that this synthetic lethality is in part due to low expression of adenine phosphoribosyl transferase under high AICAR conditions. In addition, metabolite profiling points to the AICAR/NTP balance as crucial for optimal utilization of glucose as a carbon source. Indeed, we found that AICAR toxicity in yeast and human cells is alleviated when glucose is replaced by an alternative carbon source. Together, our metabolic analyses unveil the AICAR/NTP balance as a major factor of AICAR antiproliferative effects.
Collapse
Affiliation(s)
- Johanna Ceschin
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Hans Caspar Hürlimann
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Delphine Albrecht
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Typhaine Violo
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Michel Moenner
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| |
Collapse
|
40
|
Tsang F, Lin SJ. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD + homeostasis and contributes to longevity. ACTA ACUST UNITED AC 2015; 10:333-357. [PMID: 27683589 DOI: 10.1007/s11515-015-1367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Collapse
Affiliation(s)
- Felicia Tsang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
41
|
Asby D, Cuda F, Beyaert M, Houghton F, Cagampang F, Tavassoli A. AMPK Activation via Modulation of De Novo Purine Biosynthesis with an Inhibitor of ATIC Homodimerization. ACTA ACUST UNITED AC 2015; 22:838-48. [DOI: 10.1016/j.chembiol.2015.06.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/28/2015] [Accepted: 06/02/2015] [Indexed: 01/05/2023]
|
42
|
Oliveira AP, Dimopoulos S, Busetto AG, Christen S, Dechant R, Falter L, Haghir Chehreghani M, Jozefczuk S, Ludwig C, Rudroff F, Schulz JC, González A, Soulard A, Stracka D, Aebersold R, Buhmann JM, Hall MN, Peter M, Sauer U, Stelling J. Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome. Mol Syst Biol 2015; 11:802. [PMID: 25888284 PMCID: PMC4422559 DOI: 10.15252/msb.20145475] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes.
Collapse
Affiliation(s)
- Ana Paula Oliveira
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Sotiris Dimopoulos
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | | | - Stefan Christen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Reinhard Dechant
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Laura Falter
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Szymon Jozefczuk
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Christina Ludwig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Florian Rudroff
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Juliane Caroline Schulz
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Alexandre Soulard
- Biozentrum, University of Basel, Basel, Switzerland UMR5240 MAP, Université Lyon 1, Villeurbanne, France
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Faculty of Science, University of Zurich, Zurich, Switzerland
| | | | | | - Matthias Peter
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| |
Collapse
|
43
|
Saint-Marc C, Hürlimann HC, Daignan-Fornier B, Pinson B. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae. Curr Genet 2015; 61:633-40. [PMID: 25893566 DOI: 10.1007/s00294-015-0489-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/18/2015] [Accepted: 04/02/2015] [Indexed: 01/14/2023]
Abstract
Previous genetic analyses showed phenotypic interactions between 5-amino-4-imidazole carboxamide ribonucleotide 5'-phosphate (AICAR) produced from the purine and histidine pathways and methionine biosynthesis. Here, we revisited the effect of AICAR on methionine requirement due to AICAR accumulation in the presence of the fau1 mutation invalidating folinic acid remobilization. We found that this methionine auxotrophy could be suppressed by overexpression of the methionine synthase Met6 or by deletion of the serine hydroxymethyltransferase gene SHM2. We propose that in a fau1 background, AICAR, by stimulating the transcriptional expression of SHM2, leads to a folinic acid accumulation inhibiting methionine synthesis by Met6. In addition, we uncovered a new methionine auxotrophy for the ade3 bas1 double mutant that can be rescued by overexpressing the SHM2 gene. We propose that methionine auxotrophy in this mutant is the result of a competition for 5,10-methylenetetrahydrofolate between methionine and deoxythymidine monophosphate synthesis. Altogether, our data show intricate genetic interactions between one-carbon units, purine and methionine metabolism through fine-tuning of serine hydroxymethyltransferase by AICAR and the transcription factor Bas1.
Collapse
Affiliation(s)
- Christelle Saint-Marc
- UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.,UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Centre National de la Recherche Scientifique (CNRS), 1 rue Camille Saint-Saëns CS 61390, 33077, Bordeaux, France
| | - Hans C Hürlimann
- UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.,UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Centre National de la Recherche Scientifique (CNRS), 1 rue Camille Saint-Saëns CS 61390, 33077, Bordeaux, France.,Institut für Biologie, Martin-Luther Universität, Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Bertrand Daignan-Fornier
- UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France. .,UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Centre National de la Recherche Scientifique (CNRS), 1 rue Camille Saint-Saëns CS 61390, 33077, Bordeaux, France.
| | - Benoît Pinson
- UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.,UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Centre National de la Recherche Scientifique (CNRS), 1 rue Camille Saint-Saëns CS 61390, 33077, Bordeaux, France
| |
Collapse
|
44
|
Kim PB, Nelson JW, Breaker RR. An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism. Mol Cell 2015; 57:317-28. [PMID: 25616067 DOI: 10.1016/j.molcel.2015.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/23/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
Over 30 years ago, ZTP (5-aminoimidazole-4-carboxamide riboside 5'-triphosphate), a modified purine biosynthetic intermediate, was proposed to signal 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria. However, the mechanisms by which this putative alarmone or its precursor ZMP (5-aminoimidazole-4-carboxamide ribonucleotide, also known as AICAR) brings about any metabolic changes remain unexplained. Herein, we report the existence of a widespread riboswitch class that is most commonly associated with genes related to de novo purine biosynthesis and one-carbon metabolism. Biochemical data confirm that members of this riboswitch class selectively bind ZMP and ZTP with nanomolar affinity while strongly rejecting numerous natural analogs. Indeed, increases in the ZMP/ZTP pool, caused by folate stress in bacterial cells, trigger changes in the expression of a reporter gene fused to representative ZTP riboswitches in vivo. The wide distribution of this riboswitch class suggests that ZMP/ZTP signaling is important for species in numerous bacterial lineages.
Collapse
Affiliation(s)
- Peter B Kim
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| | - James W Nelson
- Department of Chemistry, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
45
|
Tsang F, James C, Kato M, Myers V, Ilyas I, Tsang M, Lin SJ. Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae. J Biol Chem 2015; 290:12753-64. [PMID: 25825491 DOI: 10.1074/jbc.m115.644534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
Attenuated nutrient signaling extends the life span in yeast and higher eukaryotes; however, the mechanisms are not completely understood. Here we identify the Ssy1-Ptr3-Ssy5 (SPS) amino acid sensing pathway as a novel longevity factor. A null mutation of SSY5 (ssy5Δ) increases replicative life span (RLS) by ∼50%. Our results demonstrate that several NAD(+) homeostasis factors play key roles in this life span extension. First, expression of the putative malate-pyruvate NADH shuttle increases in ssy5Δ cells, and deleting components of this shuttle, MAE1 and OAC1, largely abolishes RLS extension. Next, we show that Stp1, a transcription factor of the SPS pathway, directly binds to the promoter of MAE1 and OAC1 to regulate their expression. Additionally, deletion of SSY5 increases nicotinamide riboside (NR) levels and phosphate-responsive (PHO) signaling activity, suggesting that ssy5Δ increases NR salvaging. This increase contributes to NAD(+) homeostasis, partially ameliorating the NAD(+) deficiency and rescuing the short life span of the npt1Δ mutant. Moreover, we observed that vacuolar phosphatase, Pho8, is partially required for ssy5Δ-mediated NR increase and RLS extension. Together, our studies present evidence that supports SPS signaling is a novel NAD(+) homeostasis factor and ssy5Δ-mediated life span extension is likely due to concomitantly increased mitochondrial and vacuolar function. Our findings may contribute to understanding the molecular basis of NAD(+) metabolism, cellular life span, and diseases associated with NAD(+) deficiency and aging.
Collapse
Affiliation(s)
- Felicia Tsang
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Christol James
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Michiko Kato
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Victoria Myers
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Irtqa Ilyas
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Matthew Tsang
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Su-Ju Lin
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
46
|
Abstract
In this issue, Kim et al. (2015) show that ZMP (5-aminoimidazole-4-carboxamide ribonucleotide) binds to and activates a conserved riboswitch to regulate expression of one-carbon metabolism genes.
Collapse
Affiliation(s)
- Gregory S Ducker
- The Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- The Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
47
|
Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternate repressor adenine. Curr Genet 2014; 61:175-83. [DOI: 10.1007/s00294-014-0466-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
|
48
|
Ceschin J, Saint-Marc C, Laporte J, Labriet A, Philippe C, Moenner M, Daignan-Fornier B, Pinson B. Identification of yeast and human 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) transporters. J Biol Chem 2014; 289:16844-54. [PMID: 24778186 DOI: 10.1074/jbc.m114.551192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation.
Collapse
Affiliation(s)
- Johanna Ceschin
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Jean Laporte
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Adrien Labriet
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Chloé Philippe
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Michel Moenner
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| |
Collapse
|
49
|
Osanai T, Oikawa A, Shirai T, Kuwahara A, Iijima H, Tanaka K, Ikeuchi M, Kondo A, Saito K, Hirai MY. Capillary electrophoresis-mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ Microbiol 2013; 16:512-24. [PMID: 23796428 DOI: 10.1111/1462-2920.12170] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/23/2013] [Accepted: 05/25/2013] [Indexed: 12/01/2022]
Abstract
Nitrogen availability is one of the most important factors for the survival of cyanobacteria. Previous studies on Synechocystis revealed a contradictory situation with regard to metabolism during nitrogen starvation; that is, glycogen accumulated even though the expressions of sugar catabolic genes were widely upregulated. Here, we conducted transcript and metabolomic analyses using capillary electrophoresis-mass spectrometry on Synechocystis sp. PCC 6803 under nitrogen starvation. The levels of some tricarboxylic acid cycle intermediates (succinate, malate and fumarate) were greatly increased by nitrogen deprivation. Purine and pyrimidine nucleotides were markedly downregulated under nitrogen depletion. The levels of 19 amino acids changed under nitrogen deprivation, especially those of amino acids synthesized from pyruvate and phosphoenolpyruvate, which showed marked increases. Liquid chromatography-mass spectrometry analysis demonstrated that the amount of NADPH and the NADPH/NADH ratio decreased under nitrogen depletion. These data demonstrate that there are increases in not only glycogen but also in metabolites downstream of sugar catabolism in Synechocystis sp. PCC 6803 under nitrogen starvation, resolving the contradiction between glycogen accumulation and induction of sugar catabolic gene expression in this unicellular cyanobacterium.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Duval N, Luhrs K, Wilkinson TG, Baresova V, Skopova V, Kmoch S, Vacano GN, Zikanova M, Patterson D. Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders. Mol Genet Metab 2013; 108:178-189. [PMID: 23394948 PMCID: PMC4296673 DOI: 10.1016/j.ymgme.2013.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 02/06/2023]
Abstract
Purines are molecules essential for many cell processes, including RNA and DNA synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism and transfer, essential coenzyme function, and cell signaling. Purines are produced via the de novo purine biosynthesis pathway. Mutations in purine biosynthetic genes, for example phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21), can lead to developmental anomalies in lower vertebrates. Alterations in PAICS expression in humans have been associated with various types of cancer. Mutations in adenylosuccinate lyase (ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC, E.C. 2.1.2.3/E.C. 3.5.4.10) lead to inborn errors of metabolism with a range of clinical symptoms, including developmental delay, severe neurological symptoms, and autistic features. The pathogenetic mechanism is unknown for these conditions, and no effective treatments exist. The study of cells carrying mutations in the various de novo purine biosynthesis pathway genes provides one approach to analysis of purine disorders. Here we report the characterization of AdeD Chinese hamster ovary (CHO) cells, which carry genetic mutations encoding p.E177K and p.W363* variants of PAICS. Both mutations impact PAICS structure and completely abolish its biosynthesis. Additionally, we describe a sensitive and rapid analytical method for detection of purine de novo biosynthesis intermediates based on high performance liquid chromatography with electrochemical detection. Using this technique we detected accumulation of AIR in AdeD cells. In AdeI cells, mutant for the ADSL gene, we detected accumulation of SAICAR and SAMP and, somewhat unexpectedly, accumulation of AIR. This method has great potential for metabolite profiling of de novo purine biosynthesis pathway mutants, identification of novel genetic defects of purine metabolism in humans, and elucidating the regulation of this critical metabolic pathway.
Collapse
Affiliation(s)
- Nathan Duval
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Kyleen Luhrs
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Terry G. Wilkinson
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Veronika Baresova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - Vaclava Skopova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - Stanislav Kmoch
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - Guido N. Vacano
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Marie Zikanova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - David Patterson
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| |
Collapse
|