1
|
DeWitt JT, Chinwuba JC, Kellogg DR. Hyperactive Ras disrupts cell size control and a key step in cell cycle entry in budding yeast. Genetics 2023; 225:iyad144. [PMID: 37531631 PMCID: PMC10758756 DOI: 10.1093/genetics/iyad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/08/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023] Open
Abstract
Severe defects in cell size are a nearly universal feature of cancer cells. However, the underlying causes are unknown. A previous study suggested that a hyperactive mutant of yeast Ras (ras2G19V) that is analogous to the human Ras oncogene causes cell size defects, which could provide clues to how oncogenes influence cell size. However, the mechanisms by which ras2G19V influences cell size are unknown. Here, we found that ras2G19V inhibits a critical step in cell cycle entry, in which an early G1 phase cyclin induces transcription of late G1 phase cyclins. Thus, ras2G19V drives overexpression of the early G1 phase cyclin Cln3, yet Cln3 fails to induce normal transcription of late G1 phase cyclins, leading to delayed cell cycle entry and increased cell size. ras2G19V influences transcription of late G1 phase cyclins via a poorly understood step in which Cln3 inactivates the Whi5 transcriptional repressor. Previous studies found that yeast Ras relays signals via protein kinase A (PKA); however, ras2G19V appears to influence late G1 phase cyclin expression via novel PKA-independent signaling mechanisms. Together, the data define new mechanisms by which hyperactive Ras influences cell cycle entry and cell size in yeast. Hyperactive Ras also influences expression of G1 phase cyclins in mammalian cells, but the mechanisms remain unclear. Further analysis of Ras signaling in yeast could lead to discovery of new mechanisms by which Ras family members control expression of G1 phase cyclins.
Collapse
Affiliation(s)
- Jerry T DeWitt
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Jennifer C Chinwuba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Douglas R Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Greenwood BL, Stuart DT. Synchronization of Saccharomyces cerevisiae Cells for Analysis of Progression Through the Cell Cycle. Methods Mol Biol 2022; 2579:145-168. [PMID: 36045205 DOI: 10.1007/978-1-0716-2736-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cell division cycle is a fundamental process required for proliferation of all living organisms. The eukaryotic cell cycle follows a basic template with an ordered series of events beginning with G1 (Gap1) phase, followed successively by S (Synthesis) phase, G2 (Gap 2) phase, and M-phase (Mitosis). The process is tightly regulated in response to signals from both the internal and external milieu. The budding yeast S. cerevisiae is an outstanding model for the study of the cell cycle and its regulatory process. The basic events and regulatory processes of the S. cerevisiae cell cycle are highly conserved with other eukaryotes. The organism grows rapidly in simple medium, has a sequenced annotated genome, well-established genetics, and is amenable to analysis by proteomics and microscopy. Additionally, a range of tools and techniques are available to generate cultures of S. cerevisiae that are homogenously arrested or captured at specific phases of the cell cycle and upon release from that arrest these can be used to monitor cell cycle events as the cells synchronously proceed through a division cycle. In this chapter, we describe a series of commonly used techniques that are used to generate synchronized populations of S. cerevisiae and provide an overview of methods that can be used to monitor the progression of the cells through the cell division cycle.
Collapse
Affiliation(s)
| | - David T Stuart
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
The Path towards Predicting Evolution as Illustrated in Yeast Cell Polarity. Cells 2020; 9:cells9122534. [PMID: 33255231 PMCID: PMC7760196 DOI: 10.3390/cells9122534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
A bottom-up route towards predicting evolution relies on a deep understanding of the complex network that proteins form inside cells. In a rapidly expanding panorama of experimental possibilities, the most difficult question is how to conceptually approach the disentangling of such complex networks. These can exhibit varying degrees of hierarchy and modularity, which obfuscate certain protein functions that may prove pivotal for adaptation. Using the well-established polarity network in budding yeast as a case study, we first organize current literature to highlight protein entrenchments inside polarity. Following three examples, we see how alternating between experimental novelties and subsequent emerging design strategies can construct a layered understanding, potent enough to reveal evolutionary targets. We show that if you want to understand a cell’s evolutionary capacity, such as possible future evolutionary paths, seemingly unimportant proteins need to be mapped and studied. Finally, we generalize this research structure to be applicable to other systems of interest.
Collapse
|
4
|
Katebi A, Kohar V, Lu M. Random Parametric Perturbations of Gene Regulatory Circuit Uncover State Transitions in Cell Cycle. iScience 2020; 23:101150. [PMID: 32450514 PMCID: PMC7251928 DOI: 10.1016/j.isci.2020.101150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Many biological processes involve precise cellular state transitions controlled by complex gene regulation. Here, we use budding yeast cell cycle as a model system and explore how a gene regulatory circuit encodes essential information of state transitions. We present a generalized random circuit perturbation method for circuits containing heterogeneous regulation types and its usage to analyze both steady and oscillatory states from an ensemble of circuit models with random kinetic parameters. The stable steady states form robust clusters with a circular structure that are associated with cell cycle phases. This circular structure in the clusters is consistent with single-cell RNA sequencing data. The oscillatory states specify the irreversible state transitions along cell cycle progression. Furthermore, we identify possible mechanisms to understand the irreversible state transitions from the steady states. We expect this approach to be robust and generally applicable to unbiasedly predict dynamical transitions of a gene regulatory circuit.
Collapse
Affiliation(s)
- Ataur Katebi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Vivek Kohar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mingyang Lu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
5
|
Silva E, Ideker T. Transcriptional responses to DNA damage. DNA Repair (Amst) 2019; 79:40-49. [PMID: 31102970 PMCID: PMC6570417 DOI: 10.1016/j.dnarep.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/20/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
In response to the threat of DNA damage, cells exhibit a dramatic and multi-factorial response spanning from transcriptional changes to protein modifications, collectively known as the DNA damage response (DDR). Here, we review the literature surrounding the transcriptional response to DNA damage. We review differences in observed transcriptional responses as a function of cell cycle stage and emphasize the importance of experimental design in these transcriptional response studies. We additionally consider topics including structural challenges in the transcriptional response to DNA damage as well as the connection between transcription and protein abundance.
Collapse
Affiliation(s)
- Erica Silva
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Biomedical Sciences Program, University of California San Diego, La Jolla, California, USA.
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Biomedical Sciences Program, University of California San Diego, La Jolla, California, USA; Program in Bioinformatics, University of California San Diego, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
6
|
Bu P, Nagar S, Bhagwat M, Kaur P, Shah A, Zeng J, Vancurova I, Vancura A. DNA damage response activates respiration and thereby enlarges dNTP pools to promote cell survival in budding yeast. J Biol Chem 2019; 294:9771-9786. [PMID: 31073026 DOI: 10.1074/jbc.ra118.007266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. Previously, we found that decreased histone expression induces mitochondrial respiration, raising the question whether the DDR also stimulates respiration. Here, using oxygen consumption and ATP assays, RT-qPCR and ChIP-qPCR methods, and dNTP analyses, we show that DDR activation in the budding yeast Saccharomyces cerevisiae, either by genetic manipulation or by growth in the presence of genotoxic chemicals, induces respiration. We observed that this induction is conferred by reduced transcription of histone genes and globally decreased DNA nucleosome occupancy. This globally altered chromatin structure increased the expression of genes encoding enzymes of tricarboxylic acid cycle, electron transport chain, oxidative phosphorylation, elevated oxygen consumption, and ATP synthesis. The elevated ATP levels resulting from DDR-stimulated respiration drove enlargement of dNTP pools; cells with a defect in respiration failed to increase dNTP synthesis and exhibited reduced fitness in the presence of DNA damage. Together, our results reveal an unexpected connection between respiration and the DDR and indicate that the benefit of increased dNTP synthesis in the face of DNA damage outweighs possible cellular damage due to increased oxygen metabolism.
Collapse
Affiliation(s)
- Pengli Bu
- From the Departments of Biological Sciences and
| | | | | | | | - Ankita Shah
- Pharmaceutical Sciences, St. John's University, Queens, New York 11439
| | - Joey Zeng
- From the Departments of Biological Sciences and
| | | | | |
Collapse
|
7
|
Soreanu I, Hendler A, Dahan D, Dovrat D, Aharoni A. Marker-free genetic manipulations in yeast using CRISPR/CAS9 system. Curr Genet 2018; 64:1129-1139. [PMID: 29626221 DOI: 10.1007/s00294-018-0831-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022]
Abstract
The budding yeast is currently one of the major model organisms for the study of a wide variety of biological processes. Genetic manipulation of yeast involves the extensive usage of selectable markers that can lead to undesired effects. Thus, marker-free genetic manipulation in yeast is highly desirable for gene/promoter replacement and various other applications. Here we combine the power of selectable markers followed by CRISPR/CAS9 genome editing for common genetic manipulations in yeast in a marker-free manner. We demonstrate our approach for whole gene and promoter replacements and for high-efficiency operator array integration. Our approach allows the utilization of many thousands of existing strains including library strains for the generation of significant genetic changes in yeast in a marker-free and cloning-free fashion.
Collapse
Affiliation(s)
- Inga Soreanu
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Adi Hendler
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Danielle Dahan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel.
| |
Collapse
|
8
|
Gomar-Alba M, Méndez E, Quilis I, Bañó MC, Igual JC. Whi7 is an unstable cell-cycle repressor of the Start transcriptional program. Nat Commun 2017; 8:329. [PMID: 28839131 PMCID: PMC5571219 DOI: 10.1038/s41467-017-00374-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/24/2017] [Indexed: 12/23/2022] Open
Abstract
Start is the main decision point in eukaryotic cell cycle in which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional program by G1 CDK-cyclin complexes through the inactivation of Start transcriptional repressors, Whi5 in yeast or Rb in mammals. Here we provide novel keys of how Whi7, a protein related at sequence level to Whi5, represses Start. Whi7 is an unstable protein, degraded by the SCFGrr1 ubiquitin-ligase, whose stability is cell cycle regulated by CDK1 phosphorylation. Importantly, Whi7 associates to G1/S gene promoters in late G1 acting as a repressor of SBF-dependent transcription. Our results demonstrate that Whi7 is a genuine paralog of Whi5. In fact, both proteins collaborate in Start repression bringing to light that yeast cells, as occurs in mammalian cells, rely on the combined action of multiple transcriptional repressors to block Start transition. The commitment of cells to a new cycle of division involves inactivation of the Start transcriptional repressor Whi5. Here the authors show that the sequence related protein Whi7 associates to G1/S gene promoters in late G1 and collaborates with Whi5 in Start repression.
Collapse
Affiliation(s)
- Mercè Gomar-Alba
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain
| | - Ester Méndez
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain
| | - Inma Quilis
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain
| | - M Carmen Bañó
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain
| | - J Carlos Igual
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
9
|
Hendler A, Medina EM, Kishkevich A, Abu-Qarn M, Klier S, Buchler NE, de Bruin RAM, Aharoni A. Gene duplication and co-evolution of G1/S transcription factor specificity in fungi are essential for optimizing cell fitness. PLoS Genet 2017; 13:e1006778. [PMID: 28505153 PMCID: PMC5448814 DOI: 10.1371/journal.pgen.1006778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/30/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Transcriptional regulatory networks play a central role in optimizing cell survival. How DNA binding domains and cis-regulatory DNA binding sequences have co-evolved to allow the expansion of transcriptional networks and how this contributes to cellular fitness remains unclear. Here we experimentally explore how the complex G1/S transcriptional network evolved in the budding yeast Saccharomyces cerevisiae by examining different chimeric transcription factor (TF) complexes. Over 200 G1/S genes are regulated by either one of the two TF complexes, SBF and MBF, which bind to specific DNA binding sequences, SCB and MCB, respectively. The difference in size and complexity of the G1/S transcriptional network across yeast species makes it well suited to investigate how TF paralogs (SBF and MBF) and DNA binding sequences (SCB and MCB) co-evolved after gene duplication to rewire and expand the network of G1/S target genes. Our data suggests that whilst SBF is the likely ancestral regulatory complex, the ancestral DNA binding element is more MCB-like. G1/S network expansion took place by both cis- and trans- co-evolutionary changes in closely related but distinct regulatory sequences. Replacement of the endogenous SBF DNA-binding domain (DBD) with that from more distantly related fungi leads to a contraction of the SBF-regulated G1/S network in budding yeast, which also correlates with increased defects in cell growth, cell size, and proliferation.
Collapse
Affiliation(s)
- Adi Hendler
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Edgar M. Medina
- Department of Biology, Duke University, Durham, United States
- Center for Genomic and Computational Biology, Duke University, Durham, United States
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Mehtap Abu-Qarn
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Steffi Klier
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Nicolas E. Buchler
- Department of Biology, Duke University, Durham, United States
- Center for Genomic and Computational Biology, Duke University, Durham, United States
| | - Robertus A. M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
10
|
Neurospora crassa as a model organism to explore the interconnected network of the cell cycle and the circadian clock. Fungal Genet Biol 2014; 71:52-7. [PMID: 25239547 DOI: 10.1016/j.fgb.2014.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
Budding and fission yeast pioneered uncovering molecular mechanisms of eukaryotic cell division cycles. However, they do not possess canonical circadian clock machinery that regulates physiological processes with a period of about 24h. On the other hand, Neurospora crassa played a critical role in elucidating molecular mechanisms of circadian rhythms, but have not been utilized frequently for cell cycle studies. Recent findings demonstrate that there exists a conserved coupling between the cell cycle and the circadian clock from N.crassa to Mus musculus, which poses Neurospora as an ideal model organism to investigate molecular mechanisms and emerging behavior of the coupled network of the cell cycle and circadian rhythms. In this review, we briefly describe generic eukaryotic cell cycle regulation focusing on G1/S and G2/M transitions, and highlight that these transitions may be targeted for the circadian clock to influence timing of cell division cycles.
Collapse
|
11
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|
12
|
Abstract
DNA replication is tightly controlled in eukaryotic cells to ensure that an exact copy of the genetic material is inherited by both daughter cells. Oscillating waves of cyclin-dependent kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C) activities provide a binary switch that permits the replication of each chromosome exactly once per cell cycle. Work from several organisms has revealed a conserved strategy whereby inactive replication complexes are assembled onto DNA during periods of low CDK and high APC activity but are competent to execute genome duplication only when these activities are reversed. Periods of high CDK and low APC/C serve an essential function by blocking reassembly of replication complexes, thereby preventing rereplication. Higher eukaryotes have evolved additional CDK-independent mechanisms for preventing rereplication.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
13
|
Rubinstein A, Hazan O, Chor B, Pinter RY, Kassir Y. The effective application of a discrete transition model to explore cell-cycle regulation in yeast. BMC Res Notes 2013; 6:311. [PMID: 23915717 PMCID: PMC3750494 DOI: 10.1186/1756-0500-6-311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/31/2013] [Indexed: 11/15/2022] Open
Abstract
Background Bench biologists often do not take part in the development of computational models for their systems, and therefore, they frequently employ them as “black-boxes”. Our aim was to construct and test a model that does not depend on the availability of quantitative data, and can be directly used without a need for intensive computational background. Results We present a discrete transition model. We used cell-cycle in budding yeast as a paradigm for a complex network, demonstrating phenomena such as sequential protein expression and activity, and cell-cycle oscillation. The structure of the network was validated by its response to computational perturbations such as mutations, and its response to mating-pheromone or nitrogen depletion. The model has a strong predicative capability, demonstrating how the activity of a specific transcription factor, Hcm1, is regulated, and what determines commitment of cells to enter and complete the cell-cycle. Conclusion The model presented herein is intuitive, yet is expressive enough to elucidate the intrinsic structure and qualitative behavior of large and complex regulatory networks. Moreover our model allowed us to examine multiple hypotheses in a simple and intuitive manner, giving rise to testable predictions. This methodology can be easily integrated as a useful approach for the study of networks, enriching experimental biology with computational insights.
Collapse
Affiliation(s)
- Amir Rubinstein
- School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
14
|
Stillman DJ. Dancing the cell cycle two-step: regulation of yeast G1-cell-cycle genes by chromatin structure. Trends Biochem Sci 2013; 38:467-75. [PMID: 23870664 DOI: 10.1016/j.tibs.2013.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 01/02/2023]
Abstract
The chromatin structure at a promoter can define how a gene is regulated. Studies of two yeast genes expressed in the G1 phase of the cell cycle, HO and CLN2, have provided important paradigms for transcriptional regulation. Although the SBF (Swi4/Swi6 box factor) transcription factor activates both genes, the chromatin landscapes that regulate SBF binding are different. Specifically, the CLN2 promoter is constitutively available for SBF binding, whereas HO has a complex two-step promoter in which chromatin changes in one region allow SBF to bind at a downstream location. These studies reveal the role of chromatin in defining the regulatory properties of promoters.
Collapse
Affiliation(s)
- David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
15
|
Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2013; 110:7318-23. [PMID: 23589851 DOI: 10.1073/pnas.1302490110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In budding yeast cells, nutrient repletion induces rapid exit from quiescence and entry into a round of growth and division. The G1 cyclin CLN3 is one of the earliest genes activated in response to nutrient repletion. Subsequent to its activation, hundreds of cell-cycle genes can then be expressed, including the cyclins CLN1/2 and CLB5/6. Although much is known regarding how CLN3 functions to activate downstream targets, the mechanism through which nutrients activate CLN3 transcription in the first place remains poorly understood. Here we show that a central metabolite of glucose catabolism, acetyl-CoA, induces CLN3 transcription by promoting the acetylation of histones present in its regulatory region. Increased rates of acetyl-CoA synthesis enable the Gcn5p-containing Spt-Ada-Gcn5-acetyltransferase transcriptional coactivator complex to catalyze histone acetylation at the CLN3 locus alongside ribosomal and other growth genes to promote entry into the cell division cycle.
Collapse
|
16
|
Harris MR, Lee D, Farmer S, Lowndes NF, de Bruin RAM. Binding specificity of the G1/S transcriptional regulators in budding yeast. PLoS One 2013; 8:e61059. [PMID: 23593391 PMCID: PMC3617184 DOI: 10.1371/journal.pone.0061059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/05/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND G1/S transcriptional regulation in the budding yeast Saccharomyces cerevisiae depends on three main transcriptional components, Swi4, Swi6 and Mbp1. These proteins constitute two transcription factor complexes that regulate over 300 G1/S transcripts, namely SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). SBF and MBF are involved in regulating largely non-overlapping sets of G1/S genes via clearly distinct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS Here we establish and confirm protein-protein and protein-DNA interactions using specific polyclonal antisera to whole Swi6 and to the C-terminal domains of related proteins Swi4 and Mbp1. Our data confirm the protein-protein binding specificity of Swi4 and Mbp1 to Swi6 but not to each other, and support the binding specificity of the transcriptional inhibitor Whi5 to SBF and of the corepressor Nrm1 to MBF. We also show the DNA binding preference of Swi4 to the CLN2 promoter and Mbp1 to the RNR1 promoter, while Swi6 binds both promoters. Finally, we establish the binding dynamics of Swi4 and Whi5 to the CLN2 promoter during the cell cycle. CONCLUSIONS/SIGNIFICANCE These data confirm the binding specificity of the G1/S transcriptional regulators. Whereas previous observations were made using tagged Swi4, Swi6 and Mbp1, here we use specific polyclonal antisera to reestablish the protein-protein and protein-DNA interactions of these G1/S transcriptional components. Our data also reveal the dynamic changes in promoter binding of Swi4 during the cell cycle, which suggests a possible positive feedback loop involving Swi4.
Collapse
Affiliation(s)
- Michael R. Harris
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Dave Lee
- Centre for Chromosome Biology, Genome Stability Laboratory, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Sarah Farmer
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Noel F. Lowndes
- Centre for Chromosome Biology, Genome Stability Laboratory, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Robertus A. M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
17
|
Abu-Jamous B, Fa R, Roberts DJ, Nandi AK. Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM) for gene discovery. PLoS One 2013; 8:e56432. [PMID: 23409186 PMCID: PMC3569426 DOI: 10.1371/journal.pone.0056432] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.
Collapse
Affiliation(s)
- Basel Abu-Jamous
- Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, Liverpool, United Kingdom
| | - Rui Fa
- Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, Liverpool, United Kingdom
| | - David J. Roberts
- National Health Service Blood and Transplant, Oxford, United Kingdom
- The University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Asoke K. Nandi
- Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, Liverpool, United Kingdom
- Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
18
|
Repression of G1/S transcription is mediated via interaction of the GTB motifs of Nrm1 and Whi5 with Swi6. Mol Cell Biol 2013; 33:1476-86. [PMID: 23382076 DOI: 10.1128/mcb.01333-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In Saccharomyces cerevisiae, G1/S transcription factors MBF and SBF regulate a large family of genes important for entry to the cell cycle and DNA replication and repair. Their regulation is crucial for cell viability, and it is conserved throughout evolution. MBF and SBF consist of a common component, Swi6, and a DNA-specific binding protein, Mbp1 and Swi4, respectively. Transcriptional repressors bind to and regulate the activity of both transcription factors. Whi5 binds to SBF and represses its activity at the beginning of the G1 phase to prevent early activation. Nrm1 binds to MBF to repress transcription as cells progress through S phase. Here, we describe a protein motif, the GTB motif (for G1/S transcription factor binding), in Nrm1 and Whi5 that is required to bind to the transcription factors. We also identify a region of the carboxy terminus of Swi6 that is required for Nrm1 and Whi5 binding to their target transcription factors and show that mutation of this region overrides the repression of MBF- and SBF-regulated genes by Nrm1 and Whi5. Finally, we show that the GTB motif is the core of a functional module that is necessary and sufficient for targeting of the transcription factors by their cognate repressors.
Collapse
|
19
|
Dungrawala H, Hua H, Wright J, Abraham L, Kasemsri T, McDowell A, Stilwell J, Schneider BL. Identification of new cell size control genes in S. cerevisiae. Cell Div 2012; 7:24. [PMID: 23234503 PMCID: PMC3541103 DOI: 10.1186/1747-1028-7-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/04/2012] [Indexed: 12/13/2022] Open
Abstract
Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a “critical cell size” must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened an additional 779 yeast knockouts containing 435 new ORFs (~7% of the yeast genome) to supplement previous cell size screens. Upon completion, 10 new strong size mutants were identified: nine in log-phase cells and one in saturation-phase cells, and 97% of the yeast genome has now been screened for cell size mutations. The majority of the logarithmic phase size mutants have functions associated with translation further implicating the central role of growth control in the cell division process. Genetic analyses suggest ECM9 is directly associated with the START transition. Further, the small (whi) mutants mrpl49Δ and cbs1Δ are dependent on CLN3 for cell size effects. In depth analyses of new size mutants may facilitate a better understanding of the processes that govern cell size homeostasis.
Collapse
Affiliation(s)
- Huzefa Dungrawala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th St Rm, 5C119, Lubbock, TX, 79430, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Quilis I, Igual JC. Molecular basis of the functional distinction between Cln1 and Cln2 cyclins. Cell Cycle 2012; 11:3117-31. [PMID: 22889732 DOI: 10.4161/cc.21505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cln1 and Cln2 are very similar but not identical cyclins. In this work, we tried to describe the molecular basis of the functional distinction between Cln1 and Cln2. We constructed chimeric cyclins containing different fragments of Cln1 and Cln2 and performed several functional analysis that make it possible to distinguish between Cln1 or Cln2. We identified that region between amino acids 225 and 299 of Cln2 is not only necessary but also sufficient to confer Cln2 specific functionality compared with Cln1. We also studied Cln1 and Cln2 subcellular localization identifying additional differences between them. Both cyclins are distributed between the nucleus and the cytoplasm, but Cln1 shows stronger nuclear accumulation. Nuclear import of both cyclins is mediated by the classical nuclear import pathway and by sequences in the N-terminal end of the proteins. For Cln2, but not for Cln1, a nuclear export mechanism mediated by karyopherin Msn5 has been identified. Strikingly, Cln2 export depends on a Msn5-dependent NES between amino acids 225 and 299. In fact, the introduction of this region confers to Cln1 an export mechanism dependent on Msn5; importantly, this causes the gain of Cln2-specific cytosolic functions and the impairment of nuclear function. In short, a region from Cln2 controlling an Msn5-dependent nuclear export mechanism confers a specific functionality to Cln2 compared with Cln1.
Collapse
Affiliation(s)
- Inma Quilis
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | | |
Collapse
|
21
|
Takahashi T, Nakashima S, Masuda T, Yoneda S, Hwang GW, Naganuma A. Overexpression of CLN1, CLN2, or ERG13 increases resistance to adriamycin in Saccharomyces cerevisiae. J Toxicol Sci 2012; 36:855-7. [PMID: 22129752 DOI: 10.2131/jts.36.855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To elucidate the mechanisms underlying adriamycin resistance, adriamycin resistance-related genes were explored using the budding yeast Saccharomyces cerevisiae as a useful eukaryotic model. The CLN1 and CLN2 genes, encoding G1 cyclin, and the ERG13 gene, encoding 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, were identified.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences,Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Brush GS, Najor NA, Dombkowski AA, Cukovic D, Sawarynski KE. Yeast IME2 functions early in meiosis upstream of cell cycle-regulated SBF and MBF targets. PLoS One 2012; 7:e31575. [PMID: 22393365 PMCID: PMC3290606 DOI: 10.1371/journal.pone.0031575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 01/13/2012] [Indexed: 01/17/2023] Open
Abstract
Background In Saccharomyces cerevisiae, the G1 cyclin/cyclin-dependent kinase (CDK) complexes Cln1,-2,-3/Cdk1 promote S phase entry during the mitotic cell cycle but do not function during meiosis. It has been proposed that the meiosis-specific protein kinase Ime2, which is required for normal timing of pre-meiotic DNA replication, is equivalent to Cln1,-2/Cdk1. These two CDK complexes directly catalyze phosphorylation of the B-type cyclin/CDK inhibitor Sic1 during the cell cycle to enable its destruction. As a result, Clb5,-6/Cdk1 become activated and facilitate initiation of DNA replication. While Ime2 is required for Sic1 destruction during meiosis, evidence now suggests that Ime2 does not directly catalyze Sic1 phosphorylation to target it for destabilization as Cln1,-2/Cdk1 do during the cell cycle. Methodology/Principal Findings We demonstrated that Sic1 is eventually degraded in meiotic cells lacking the IME2 gene (ime2Δ), supporting an indirect role of Ime2 in Sic1 destruction. We further examined global RNA expression comparing wild type and ime2Δ cells. Analysis of these expression data has provided evidence that Ime2 is required early in meiosis for normal transcription of many genes that are also periodically expressed during late G1 of the cell cycle. Conclusions/Significance Our results place Ime2 at a position in the early meiotic pathway that lies upstream of the position occupied by Cln1,-2/Cdk1 in the analogous cell cycle pathway. Thus, Ime2 may functionally resemble Cln3/Cdk1 in promoting S phase entry, or it could play a role even further upstream in the corresponding meiotic cascade.
Collapse
Affiliation(s)
- George S Brush
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America.
| | | | | | | | | |
Collapse
|
23
|
Bastos de Oliveira FM, Harris MR, Brazauskas P, de Bruin RAM, Smolka MB. Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J 2012; 31:1798-810. [PMID: 22333912 DOI: 10.1038/emboj.2012.27] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/20/2012] [Indexed: 12/16/2022] Open
Abstract
Reprogramming gene expression is crucial for DNA replication stress response. We used quantitative proteomics to establish how the transcriptional response results in changes in protein levels. We found that expression of G1/S cell-cycle targets are strongly up-regulated upon replication stress, and show that MBF, but not SBF genes, are up-regulated via Rad53-dependent inactivation of the MBF co-repressor Nrm1. A subset of G1/S genes was found to undergo an SBF-to-MBF switch at the G1/S transition, enabling replication stress-induced transcription of genes targeted by SBF during G1. This subset of G1/S genes is characterized by an overlapping Swi4/Mbp1-binding site and is enriched for genes that cause a cell cycle and/or growth defect when overexpressed. Analysis of the prototypical switch gene TOS4 (Target Of SBF 4) reveals its role as a checkpoint effector supporting the importance of this distinct class of G1/S genes for the DNA replication checkpoint response. Our results reveal that replication stress induces expression of G1/S genes via the Rad53-MBF pathway and that an SBF-to-MBF switch characterizes a new class of genes that can be induced by replication stress.
Collapse
Affiliation(s)
- Francisco M Bastos de Oliveira
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
24
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
25
|
Nakazawa N, Niijima S, Tanaka Y, Ito T. Immunosuppressive drug rapamycin restores sporulation competence in industrial yeasts. J Biosci Bioeng 2011; 113:491-5. [PMID: 22197499 DOI: 10.1016/j.jbiosc.2011.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/07/2011] [Accepted: 11/23/2011] [Indexed: 11/28/2022]
Abstract
Industrial yeasts, including a sake yeast strain Kyokai no. 7 (K7), are generally unable to sporulate. Previously, we have reported that in K7 (Saccharomyces cerevisiae) cells, deletion of the G1 cyclin gene CLN3, a key activator of the cell cycle, allows the cells to induce IME1 transcription and sporulate under sporulation conditions. Here we show that treatment with the immunosuppressive drug rapamycin also restores sporulation competence in K7 cells. Moreover, sporulation was observed after rapamycin treatment in other industrial yeasts, namely bottom fermenting yeast strains and a wine yeast strain, which are not able to sporulate under normal sporulation conditions. These findings suggest that activation of TORC1 under sporulation conditions leads to sporulation incompetence in these yeasts. Thus, rapamycin treatment will be useful to restore sporulation competence in industrial yeasts.
Collapse
Affiliation(s)
- Nobushige Nakazawa
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University, 241-438 Kaidoubata-Nishi, Shimoshinjyo-Nakano, Akita-shi, Akita 010-0195, Japan.
| | | | | | | |
Collapse
|
26
|
Eser U, Falleur-Fettig M, Johnson A, Skotheim JM. Commitment to a cellular transition precedes genome-wide transcriptional change. Mol Cell 2011; 43:515-27. [PMID: 21855792 DOI: 10.1016/j.molcel.2011.06.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/13/2011] [Accepted: 06/17/2011] [Indexed: 01/13/2023]
Abstract
In budding yeast, commitment to cell division corresponds to activating the positive feedback loop of G1 cyclins controlled by the transcription factors SBF and MBF. This pair of transcription factors has over 200 targets, implying that cell-cycle commitment coincides with genome-wide changes in transcription. Here, we find that genes within this regulon have a well-defined distribution of transcriptional activation times. Combinatorial use of SBF and MBF results in a logical OR function for gene expression and partially explains activation timing. Activation of G1 cyclin expression precedes the activation of the bulk of the G1/S regulon, ensuring that commitment to cell division occurs before large-scale changes in transcription. Furthermore, we find similar positive feedback-first regulation in the yeasts S. bayanus and S. cerevisiae, as well as human cells. The widespread use of the feedback-first motif in eukaryotic cell-cycle control, implemented by nonorthologous proteins, suggests its frequent deployment at cellular transitions.
Collapse
Affiliation(s)
- Umut Eser
- Department of Applied Physics, Stanford University, Stanford CA 94305, USA
| | | | | | | |
Collapse
|
27
|
Watanabe D, Nogami S, Ohya Y, Kanno Y, Zhou Y, Akao T, Shimoi H. Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast. J Biosci Bioeng 2011; 112:577-82. [PMID: 21906996 DOI: 10.1016/j.jbiosc.2011.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/21/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Cellular and subcellular morphology reflects the physiological state of a cell. To determine the physiological nature of sake yeast with superior fermentation properties, we quantitatively analyzed the morphology of sake yeast cells by using the CalMorph system. All the sake strains examined here exhibited common morphological traits that are typically observed in the well-characterized whiskey (whi) mutants that show accelerated G(1)/S transition. In agreement with this finding, the sake strain showed less efficient G(0)/G(1) arrest and elevated expression of the G(1) cyclin gene CLN3 throughout the fermentation period. Furthermore, deletion of CLN3 remarkably impaired the fermentation rate in both sake and laboratory strains. Disruption of the SWI6 gene, a transcriptional coactivator responsible for Cln3p-mediated G(1)/S transition, also resulted in a decreased fermentation rate, whereas whi mutants exhibited significant improvement in the fermentation rate, demonstrating positive roles of Cln3p and its downstream signalling pathway in facilitating ethanol fermentation. The combined results indicate that enhanced induction of CLN3 contributes to the high fermentation rate of sake yeast, which are natural whi mutants.
Collapse
Affiliation(s)
- Daisuke Watanabe
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Rogers C, Guo Z, Stiller JW. Connecting mutations of the RNA polymerase II C-terminal domain to complex phenotypic changes using combined gene expression and network analyses. PLoS One 2010; 5:e11386. [PMID: 20613981 PMCID: PMC2894937 DOI: 10.1371/journal.pone.0011386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/22/2010] [Indexed: 11/19/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit in DNA-dependent RNA polymerase II (RNAP II) is essential for mRNA synthesis and processing, through coordination of an astounding array of protein-protein interactions. Not surprisingly, CTD mutations can have complex, pleiotropic impacts on phenotype. For example, insertions of five alanine residues between CTD diheptads in yeast, which alter the CTD's overall tandem structure and physically separate core functional units, dramatically reduce growth rate and result in abnormally large cells that accumulate increased DNA content over time. Patterns by which specific CTD-protein interactions are disrupted by changes in CTD structure, as well as how downstream metabolic pathways are impacted, are difficult to target for direct experimental analyses. In an effort to connect an altered CTD to complex but quantifiable phenotypic changes, we applied network analyses of genes that are differentially expressed in our five alanine CTD mutant, combined with established genetic interactions from the Saccharomyces cerevisiae Genome Database (SGD). We were able to identify candidate genetic pathways, and several key genes, that could explain how this change in CTD structure leads to the specific phenotypic changes observed. These hypothetical networks identify links between CTD-associated proteins and mitotic function, control of cell cycle checkpoint mechanisms, and expression of cell wall and membrane components. Such results can help to direct future genetic and biochemical investigations that tie together the complex impacts of the CTD on global cellular metabolism.
Collapse
Affiliation(s)
- Carlyle Rogers
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America.
| | | | | |
Collapse
|
30
|
Morillo-Huesca M, Maya D, Muñoz-Centeno MC, Singh RK, Oreal V, Reddy GU, Liang D, Géli V, Gunjan A, Chávez S. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1. PLoS Genet 2010; 6:e1000964. [PMID: 20502685 PMCID: PMC2873916 DOI: 10.1371/journal.pgen.1000964] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/20/2010] [Indexed: 11/18/2022] Open
Abstract
The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication. Lengthy genomic DNA is packed in a highly organized nucleoprotein structure called chromatin, whose basic subunit is the nucleosome which is formed by DNA wrapped around an octamer of proteins called histones. Nucleosomes need to be disassembled to allow DNA transcription by RNA polymerases. An essential factor for the disassembly/reassembly process during DNA transcription is the FACT complex. We investigated a phenotype of yeast FACT mutants, a delay in a specific step of the cell cycle division process immediately prior to starting DNA replication. The dysfunction caused by the FACT mutation causes a downregulation of a gene, CLN3, which controls the length of that specific step of the cell cycle. FACT dysfunction also increases the level of the free histones released from chromatin during transcription, and the phenotype of the Spt16 mutant is enhanced by a second mutation affecting a protein that regulates DNA repair and excess histone degradation. Moreover, we show that the overexpression of histones causes a cell cycle delay before DNA replication in wild-type cells. Our results point out a so-far unknown connection between chromatin dynamics and the regulation of the cell cycle.
Collapse
Affiliation(s)
| | - Douglas Maya
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | | | - Rakesh Kumar Singh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Oreal
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Gajjalaiahvari Ugander Reddy
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Dun Liang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Géli
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Akash Gunjan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail: (SC); (MCM-C)
| |
Collapse
|
31
|
Charvin G, Oikonomou C, Siggia ED, Cross FR. Origin of irreversibility of cell cycle start in budding yeast. PLoS Biol 2010; 8:e1000284. [PMID: 20087409 PMCID: PMC2797597 DOI: 10.1371/journal.pbio.1000284] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/10/2009] [Indexed: 12/19/2022] Open
Abstract
Budding yeast cells irreversibly commit to a new division cycle at a regulatory transition called Start. This essential decision-making step involves the activation of the SBF/MBF transcription factors. SBF/MBF promote expression of the G1 cyclins encoded by CLN1 and CLN2. Cln1,2 can activate their own expression by inactivating the Whi5 repressor of SBF/MBF. The resulting transcriptional positive feedback provides an appealing, but as yet unproven, candidate for generating irreversibility of Start. Here, we investigate the logic of the Start regulatory module by quantitative single-cell time-lapse microscopy, using strains in which expression of key regulators is efficiently controlled by changes of inducers in a microfluidic chamber. We show that Start activation is ultrasensitive to G1 cyclin. In the absence of CLN1,2-dependent positive feedback, we observe that Start transit is reversible, due to reactivation of the Whi5 transcriptional repressor. Introduction of the positive feedback loop makes Whi5 inactivation and Start activation irreversible, which therefore guarantees unidirectional entry into S phase. A simple mathematical model to describe G1 cyclin turn on at Start, entirely constrained by empirically measured parameters, shows that the experimentally measured ultrasensitivity and transcriptional positive feedback are necessary and sufficient dynamical characteristics to make the Start transition a bistable and irreversible switch. Our study thus demonstrates that Start irreversibility is a property that arises from the architecture of the system (Whi5/SBF/Cln2 loop), rather than the consequence of the regulation of a single component (e.g., irreversible protein degradation).
Collapse
Affiliation(s)
- Gilles Charvin
- Laboratoire Joliot-Curie, Ecole Normale Supérieure, Lyon, France.
| | | | | | | |
Collapse
|
32
|
Muzzey D, van Oudenaarden A. Quantitative time-lapse fluorescence microscopy in single cells. Annu Rev Cell Dev Biol 2010; 25:301-27. [PMID: 19575655 DOI: 10.1146/annurev.cellbio.042308.113408] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cloning of green fluorescent protein (GFP) 15 years ago revolutionized cell biology by permitting visualization of a wide range of molecular mechanisms within living cells. Though initially used to make largely qualitative assessments of protein levels and localizations, fluorescence microscopy has since evolved to become highly quantitative and high-throughput. Computational image analysis has catalyzed this evolution, enabling rapid and automated processing of large datasets. Here, we review studies that combine time-lapse fluorescence microscopy and automated image analysis to investigate dynamic events at the single-cell level. We highlight examples where single-cell analysis provides unique mechanistic insights into cellular processes that cannot be otherwise resolved in bulk assays. Additionally, we discuss studies where quantitative microscopy facilitates the assembly of detailed 4D lineages in developing organisms. Finally, we describe recent advances in imaging technology, focusing especially on platforms that allow the simultaneous perturbation and quantitative monitoring of biological systems.
Collapse
Affiliation(s)
- Dale Muzzey
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
33
|
Di Talia S, Wang H, Skotheim JM, Rosebrock AP, Futcher B, Cross FR. Daughter-specific transcription factors regulate cell size control in budding yeast. PLoS Biol 2009; 7:e1000221. [PMID: 19841732 PMCID: PMC2756959 DOI: 10.1371/journal.pbio.1000221] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 09/11/2009] [Indexed: 12/31/2022] Open
Abstract
The asymmetric localization of cell fate determinants results in asymmetric cell cycle control in budding yeast. In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. Asymmetric cell division is a universal mechanism for generating differentiated cells. The progeny of such divisions can often display differential cell cycle regulation. This study addresses how differential regulation of gene expression in the progeny of a single division can alter cell cycle control. In budding yeast, asymmetric cell division yields a bigger ‘mother’ cell and a smaller ‘daughter’ cell. Regulation of gene expression is also asymmetric because two transcription factors, Ace2 and Ash1, are specifically localized to the daughter. Cell size has long been proposed as important for the regulation of the cell cycle in yeast. Our work shows that Ace2 and Ash1 regulate size control in daughter cells: daughters ‘interpret’ their size as smaller, making size control more stringent and delaying cell cycle commitment relative to mother cells of the same size. This asymmetric interpretation of cell size is associated with differential regulation of the G1 cyclin CLN3 by Ace2 and Ash1, at least in part via direct binding of these factors to the CLN3 promoter. CLN3 is the most upstream regulator of Start, the initiation point of the yeast cell cycle, and differential regulation of CLN3 accounts for most or all asymmetric regulation of Start in budding yeast mother and daughter cells.
Collapse
Affiliation(s)
- Stefano Di Talia
- The Rockefeller University, New York, New York, United States of America
| | - Hongyin Wang
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Jan M. Skotheim
- The Rockefeller University, New York, New York, United States of America
| | - Adam P. Rosebrock
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Frederick R. Cross
- The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Huang D, Kaluarachchi S, van Dyk D, Friesen H, Sopko R, Ye W, Bastajian N, Moffat J, Sassi H, Costanzo M, Andrews BJ. Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast. PLoS Biol 2009; 7:e1000188. [PMID: 19823668 PMCID: PMC2730531 DOI: 10.1371/journal.pbio.1000188] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 07/30/2009] [Indexed: 01/14/2023] Open
Abstract
START-dependent transcription in Saccharomyces cerevisiae is regulated by two transcription factors SBF and MBF, whose activity is controlled by the binding of the repressor Whi5. Phosphorylation and removal of Whi5 by the cyclin-dependent kinase (CDK) Cln3-Cdc28 alleviates the Whi5-dependent repression on SBF and MBF, initiating entry into a new cell cycle. This Whi5-SBF/MBF transcriptional circuit is analogous to the regulatory pathway in mammalian cells that features the E2F family of G1 transcription factors and the retinoblastoma tumor suppressor protein (Rb). Here we describe genetic and biochemical evidence for the involvement of another CDK, Pcl-Pho85, in regulating G1 transcription, via phosphorylation and inhibition of Whi5. We show that a strain deleted for both PHO85 and CLN3 has a slow growth phenotype, a G1 delay, and is severely compromised for SBF-dependent reporter gene expression, yet all of these defects are alleviated by deletion of WHI5. Our biochemical and genetic tests suggest Whi5 mediates repression in part through interaction with two histone deacetylases (HDACs), Hos3 and Rpd3. In a manner analogous to cyclin D/CDK4/6, which phosphorylates Rb in mammalian cells disrupting its association with HDACs, phosphorylation by the early G1 CDKs Cln3-Cdc28 and Pcl9-Pho85 inhibits association of Whi5 with the HDACs. Contributions from multiple CDKs may provide the precision and accuracy necessary to activate G1 transcription when both internal and external cues are optimal.
Collapse
Affiliation(s)
- Dongqing Huang
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Supipi Kaluarachchi
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Dewald van Dyk
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Helena Friesen
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Richelle Sopko
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Wei Ye
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nazareth Bastajian
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Holly Sassi
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Michael Costanzo
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (MC); (BJA)
| | - Brenda J. Andrews
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (MC); (BJA)
| |
Collapse
|
35
|
Chuang CL, Chen CM, Wong WS, Tsai KN, Chan EC, Jiang JA. A robust correlation estimator and nonlinear recurrent model to infer genetic interactions in Saccharomyces cerevisiae and pathways of pulmonary disease in Homo sapiens. Biosystems 2009; 98:160-75. [PMID: 19527770 DOI: 10.1016/j.biosystems.2009.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 05/08/2009] [Accepted: 05/28/2009] [Indexed: 12/13/2022]
Abstract
In order to identify genes involved in complex diseases, it is crucial to study the genetic interactions at the systems biology level. By utilizing modern high throughput microarray technology, it has become feasible to obtain gene expressions data and turn it into knowledge that explains the regulatory behavior of genes. In this study, an unsupervised nonlinear model was proposed to infer gene regulatory networks on a genome-wide scale. The proposed model consists of two components, a robust correlation estimator and a nonlinear recurrent model. The robust correlation estimator was used to initialize the parameters of the nonlinear recurrent curve-fitting model. Then the initialized model was used to fit the microarray data. The model was used to simulate the underlying nonlinear regulatory mechanisms in biological organisms. The proposed algorithm was applied to infer the regulatory mechanisms of the general network in Saccharomyces cerevisiae and the pulmonary disease pathways in Homo sapiens. The proposed algorithm requires no prior biological knowledge to predict linkages between genes. The prediction results were checked against true positive links obtained from the YEASTRACT database, the TRANSFAC database, and the KEGG database. By checking the results with known interactions, we showed that the proposed algorithm could determine some meaningful pathways, many of which are supported by the existing literature.
Collapse
Affiliation(s)
- Cheng-Long Chuang
- Institute of Biomedical Engineering, National Taiwan University, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Stb1 collaborates with other regulators to modulate the G1-specific transcriptional circuit. Mol Cell Biol 2008; 28:6919-28. [PMID: 18794370 DOI: 10.1128/mcb.00211-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G(1)-specific transcription in the budding yeast Saccharomyces cerevisiae depends upon SBF and MBF. Whereas inactivation of SBF-regulated genes during the G(1)/S transition depends upon mitotic B-type cyclins, inactivation of MBF has been reported to involve multiple regulators, Nrm1 and Stb1. Nrm1 is a transcriptional corepressor that inactivates MBF-regulated transcription via negative feedback as cells exit G(1) phase. Cln/cyclin-dependent kinase (CDK)-dependent inactivation of Stb1, identified via its interaction with the histone deacetylase (HDAC) component Sin3, has also been reported to inactivate MBF-regulated transcription. This report shows that Stb1 is a stable component of both SBF and MBF that binds G(1)-specific promoters via Swi6 during G(1) phase. It is important for the growth of cells in which SBF or MBF is inactive. Although dissociation of Stb1 from promoters as cells exit G(1) correlates with Stb1 phosphorylation, phosphorylation is only partially dependent upon Cln1/2 and is not involved in transcription inactivation. Inactivation depends upon Nrm1 and Clb/CDK activity. Stb1 inactivation dampens maximal transcriptional induction during late G(1) phase and also derepresses gene expression in G(1)-phase cells prior to Cln3-dependent transcriptional activation. The repression during G(1) also depends upon Sin3. We speculate that the interaction between Stb1 and Sin3 regulates the Sin3/HDAC complex at G(1)-specific promoters.
Collapse
|
37
|
Carey LB, Leatherwood JK, Futcher B. Huxley's revenge: cell-cycle entry, positive feedback, and the G1 cyclins. Mol Cell 2008; 31:307-8. [PMID: 18691962 DOI: 10.1016/j.molcel.2008.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In a recent issue of Nature, Skotheim et al. (2008) show that a transcriptional positive feedback loop plays a key role in the commitment to enter the yeast cell cycle.
Collapse
Affiliation(s)
- Lucas B Carey
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
38
|
DNA replication checkpoint promotes G1-S transcription by inactivating the MBF repressor Nrm1. Proc Natl Acad Sci U S A 2008; 105:11230-5. [PMID: 18682565 DOI: 10.1073/pnas.0801106105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell cycle transcriptional program imposes order on events of the cell-cycle and is a target for signals that regulate cell-cycle progression, including checkpoints required to maintain genome integrity. Neither the mechanism nor functional significance of checkpoint regulation of the cell-cycle transcription program are established. We show that Nrm1, an MBF-specific transcriptional repressor acting at the transition from G(1) to S phase of the cell cycle, is at the nexus between the cell cycle transcriptional program and the DNA replication checkpoint in fission yeast. Phosphorylation of Nrm1 by the Cds1 (Chk2) checkpoint protein kinase, which is activated in response to DNA replication stress, promotes its dissociation from the MBF transcription factor. This leads to the expression of genes encoding components that function in DNA replication and repair pathways important for cell survival in response to arrested DNA replication.
Collapse
|
39
|
|
40
|
Skotheim JM, Di Talia S, Siggia ED, Cross FR. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 2008; 454:291-6. [PMID: 18633409 DOI: 10.1038/nature07118] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/29/2008] [Indexed: 11/09/2022]
Abstract
In budding yeast, Saccharomyces cerevisiae, the Start checkpoint integrates multiple internal and external signals into an all-or-none decision to enter the cell cycle. Here we show that Start behaves like a switch due to systems-level feedback in the regulatory network. In contrast to current models proposing a linear cascade of Start activation, transcriptional positive feedback of the G1 cyclins Cln1 and Cln2 induces the near-simultaneous expression of the approximately 200-gene G1/S regulon. Nuclear Cln2 drives coherent regulon expression, whereas cytoplasmic Cln2 drives efficient budding. Cells with the CLN1 and CLN2 genes deleted frequently arrest as unbudded cells, incurring a large fluctuation-induced fitness penalty due to both the lack of cytoplasmic Cln2 and insufficient G1/S regulon expression. Thus, positive-feedback-amplified expression of Cln1 and Cln2 simultaneously drives robust budding and rapid, coherent regulon expression. A similar G1/S regulatory network in mammalian cells, comprised of non-orthologous genes, suggests either conservation of regulatory architecture or convergent evolution.
Collapse
Affiliation(s)
- Jan M Skotheim
- Center for Studies in Physics and Biology, The Rockefeller University, New York 10065, USA.
| | | | | | | |
Collapse
|
41
|
Tsai TYC, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 2008; 321:126-9. [PMID: 18599789 PMCID: PMC2728800 DOI: 10.1126/science.1156951] [Citation(s) in RCA: 443] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A simple negative feedback loop of interacting genes or proteins has the potential to generate sustained oscillations. However, many biological oscillators also have a positive feedback loop, raising the question of what advantages the extra loop imparts. Through computational studies, we show that it is generally difficult to adjust a negative feedback oscillator's frequency without compromising its amplitude, whereas with positive-plus-negative feedback, one can achieve a widely tunable frequency and near-constant amplitude. This tunability makes the latter design suitable for biological rhythms like heartbeats and cell cycles that need to provide a constant output over a range of frequencies. Positive-plus-negative oscillators also appear to be more robust and easier to evolve, rationalizing why they are found in contexts where an adjustable frequency is unimportant.
Collapse
Affiliation(s)
- Tony Yu-Chen Tsai
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305–5174, USA
| | - Yoon Sup Choi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305–5174, USA
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | - Wenzhe Ma
- Center for Theoretical Biology, Peking University, Beijing, 100871, China
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94143–2540, USA
| | | | - Chao Tang
- Center for Theoretical Biology, Peking University, Beijing, 100871, China
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94143–2540, USA
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305–5174, USA
| |
Collapse
|
42
|
Ashe M, de Bruin RA, Kalashnikova T, McDonald WH, Yates JR, Wittenberg C. The SBF- and MBF-associated Protein Msa1 Is Required for Proper Timing of G1-specific Transcription in Saccharomyces cerevisiae. J Biol Chem 2008; 283:6040-9. [DOI: 10.1074/jbc.m708248200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 2007; 317:916-24. [PMID: 17702937 DOI: 10.1126/science.1142210] [Citation(s) in RCA: 706] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aneuploidy is a condition frequently found in tumor cells, but its effect on cellular physiology is not known. We have characterized one aspect of aneuploidy: the gain of extra chromosomes. We created a collection of haploid yeast strains that each bear an extra copy of one or more of almost all of the yeast chromosomes. Their characterization revealed that aneuploid strains share a number of phenotypes, including defects in cell cycle progression, increased glucose uptake, and increased sensitivity to conditions interfering with protein synthesis and protein folding. These phenotypes were observed only in strains carrying additional yeast genes, which indicates that they reflect the consequences of additional protein production as well as the resulting imbalances in cellular protein composition. We conclude that aneuploidy causes not only a proliferative disadvantage but also a set of phenotypes that is independent of the identity of the individual extra chromosomes.
Collapse
Affiliation(s)
- Eduardo M Torres
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Fey JP, Lanker S. Delayed accumulation of the yeast G1 cyclins Cln1 and Cln2 and the F-box protein Grr1 in response to glucose. Yeast 2007; 24:419-29. [PMID: 17366522 DOI: 10.1002/yea.1472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ability to integrate nutrient availability into cell cycle regulation is critical for the viability of organisms. The Saccharomyces cerevisiae ubiquitin ligase SCF(Grr1) regulates the stability of several proteins that participate in cell division or nutrient sensing. Two of its targets, the cyclins Cln1 and Cln2, accumulate in the presence of glucose. When glucose is added to cells growing asynchronously, we show that the accumulation of the cyclins is a very slow response. We report that the F-box protein Grr1 also accumulates at higher levels in the presence of glucose, and that the response to glucose follows a delayed pattern strikingly similar to that described for Cln1 and Cln2. A model for the regulation of F-box proteins predicts that substrate accumulation could stabilize Grr1. While we found that Grr1 is more stable in cells growing with glucose, we show that the delayed responses to glucose occur independently: Grr1 accumulates in the absence of the cyclins, and vice versa. Thus, our results indicate that this model might not apply to the cyclins and Grr1. Glucose is known to strengthen the interaction of Grr1 with Skp1 in the SCF complex. We hypothesize that glucose could promote the accumulation of Grr1 and its assembly into a SCF complex as a feedback regulation that helps compensate for higher cyclins levels.
Collapse
Affiliation(s)
- Julien P Fey
- School of Medicine, Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
45
|
Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 2007; 448:947-51. [PMID: 17713537 DOI: 10.1038/nature06072] [Citation(s) in RCA: 340] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 07/06/2007] [Indexed: 11/09/2022]
Abstract
Molecular noise in gene expression can generate substantial variability in protein concentration. However, its effect on the precision of a natural eukaryotic circuit such as the control of cell cycle remains unclear. We use single-cell imaging of fluorescently labelled budding yeast to measure times from division to budding (G1) and from budding to the next division. The variability in G1 decreases with the square root of the ploidy through a 1N/2N/4N ploidy series, consistent with simple stochastic models for molecular noise. Also, increasing the gene dosage of G1 cyclins decreases the variability in G1. A new single-cell reporter for cell protein content allows us to determine the contribution to temporal G1 variability of deterministic size control (that is, smaller cells extending G1). Cell size control contributes significantly to G1 variability in daughter cells but not in mother cells. However, even in daughters, size-independent noise is the largest quantitative contributor to G1 variability. Exit of the transcriptional repressor Whi5 from the nucleus partitions G1 into two temporally uncorrelated and functionally distinct steps. The first step, which depends on the G1 cyclin gene CLN3, corresponds to noisy size control that extends G1 in small daughters, but is of negligible duration in mothers. The second step, whose variability decreases with increasing CLN2 gene dosage, is similar in mothers and daughters. This analysis decomposes the regulatory dynamics of the Start transition into two independent modules, a size sensing module and a timing module, each of which is predominantly controlled by a different G1 cyclin.
Collapse
|
46
|
Vergés E, Colomina N, Garí E, Gallego C, Aldea M. Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry. Mol Cell 2007; 26:649-62. [PMID: 17560371 DOI: 10.1016/j.molcel.2007.04.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/03/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
G1 cyclin Cln3 plays a key role in linking cell growth and proliferation in budding yeast. It is generally assumed that Cln3, which is present throughout G1, accumulates passively in the nucleus until a threshold is reached to trigger cell cycle entry. We show here that Cln3 is retained bound to the ER in early G1 cells. ER retention requires binding of Cln3 to the cyclin-dependent kinase Cdc28, a fraction of which also associates to the ER. Cln3 contains a chaperone-regulatory Ji domain that counteracts Ydj1, a J chaperone essential for ER release and nuclear accumulation of Cln3 in late G1. Finally, Ydj1 is limiting for release of Cln3 and timely entry into the cell cycle. As protein synthesis and ribosome assembly rates compromise chaperone availability, we hypothesize that Ydj1 transmits growth capacity information to the cell cycle for setting efficient size/ploidy ratios.
Collapse
Affiliation(s)
- Emili Vergés
- Departament de Ciències Mèdiques Bàsiques, IRBLLEIDA, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Catalonia, Spain
| | | | | | | | | |
Collapse
|
47
|
Abstract
Cyclins regulate the cell cycle by binding to and activating cyclin-dependent kinases (Cdks). Phosphorylation of specific targets by cyclin-Cdk complexes sets in motion different processes that drive the cell cycle in a timely manner. In budding yeast, a single Cdk is activated by multiple cyclins. The ability of these cyclins to target specific proteins and to initiate different cell-cycle events might, in some cases, reflect the timing of the expression of the cyclins; in others, it might reflect intrinsic properties of the cyclins that render them better suited to target particular proteins.
Collapse
Affiliation(s)
- Joanna Bloom
- Laboratory of Yeast Molecular Genetics, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
48
|
Sedgwick C, Rawluk M, Decesare J, Raithatha S, Wohlschlegel J, Semchuk P, Ellison M, Yates J, Stuart D. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem J 2006; 399:151-60. [PMID: 16776651 PMCID: PMC1570159 DOI: 10.1042/bj20060363] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The initiation of DNA replication in Saccharomyces cerevisiae depends upon the destruction of the Clb-Cdc28 inhibitor Sic1. In proliferating cells Cln-Cdc28 complexes phosphorylate Sic1, which stimulates binding of Sic1 to SCF(Cdc4) and triggers its proteosome mediated destruction. During sporulation cyclins are not expressed, yet Sic1 is still destroyed at the G1-/S-phase boundary. The Cdk (cyclin dependent kinase) sites are also required for Sic1 destruction during sporulation. Sic1 that is devoid of Cdk phosphorylation sites displays increased stability and decreased phosphorylation in vivo. In addition, we found that Sic1 was modified by ubiquitin in sporulating cells and that SCF(Cdc4) was required for this modification. The meiosis-specific kinase Ime2 has been proposed to promote Sic1 destruction by phosphorylating Sic1 in sporulating cells. We found that Ime2 phosphorylates Sic1 at multiple sites in vitro. However, only a subset of these sites corresponds to Cdk sites. The identification of multiple sites phosphorylated by Ime2 has allowed us to propose a motif for phosphorylation by Ime2 (PXS/T) where serine or threonine acts as a phospho-acceptor. Although Ime2 phosphorylates Sic1 at multiple sites in vitro, the modified Sic1 fails to bind to SCF(Cdc4). In addition, the expression of Ime2 in G1 arrested haploid cells does not promote the destruction of Sic1. These data support a model where Ime2 is necessary but not sufficient to promote Sic1 destruction during sporulation.
Collapse
Affiliation(s)
- Chantelle Sedgwick
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Matthew Rawluk
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - James Decesare
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Sheetal Raithatha
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - James Wohlschlegel
- †The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 U.S.A
| | - Paul Semchuk
- ‡Institute for Biomolecular Design, 367 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2H7, Canada
| | - Michael Ellison
- ‡Institute for Biomolecular Design, 367 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2H7, Canada
| | - John Yates
- †The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 U.S.A
| | - David Stuart
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
Abstract
The E2F family of heterodimeric transcription factors controls the expression of genes required in G1 for cell cycle progression. The retinoblastoma (Rb) family of pocket proteins which, upon binding to E2F, inhibit this complex from initiating transcription. Upon mitogen stimulation, this repression is relieved by hyperphosphorylation of Rb by the cyclin D Cdk4/6 complex. Initiation of the cell cycle in yeast is similar. The heterodimeric transcription factor SBF controls most G1-specific transcription. Its activation is dependent upon the removal of Whi5; a functional homolog of Rb. Similar to Rb, disassociation of Whi5 from SBF is controlled by G1 cyclin/Cdk-dependent phosphorylation. Although Rb and Whi5 play similar roles in regulating G1 gene expression, they exhibit no sequence homology. This review will discuss the difference and similarities between how these proteins play similar roles in controlling G1 progression.
Collapse
Affiliation(s)
- K Cooper
- Department of Molecular Biology, UMDNJ-SOM, Stratford, NJ 08084,, USA.
| |
Collapse
|
50
|
Pramila T, Wu W, Miles S, Noble WS, Breeden LL. The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 2006; 20:2266-78. [PMID: 16912276 PMCID: PMC1553209 DOI: 10.1101/gad.1450606] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription patterns shift dramatically as cells transit from one phase of the cell cycle to another. To better define this transcriptional circuitry, we collected new microarray data across the cell cycle of budding yeast. The combined analysis of these data with three other cell cycle data sets identifies hundreds of new highly periodic transcripts and provides a weighted average peak time for each transcript. Using these data and phylogenetic comparisons of promoter sequences, we have identified a late S-phase-specific promoter element. This element is the binding site for the forkhead protein Hcm1, which is required for its cell cycle-specific activity. Among the cell cycle-regulated genes that contain conserved Hcm1-binding sites, there is a significant enrichment of genes involved in chromosome segregation, spindle dynamics, and budding. This may explain why Hcm1 mutants show 10-fold elevated rates of chromosome loss and require the spindle checkpoint for viability. Hcm1 also induces the M-phase-specific transcription factors FKH1, FKH2, and NDD1, and two cell cycle-specific transcriptional repressors, WHI5 and YHP1. As such, Hcm1 fills a significant gap in our understanding of the transcriptional circuitry that underlies the cell cycle.
Collapse
Affiliation(s)
- Tata Pramila
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|