1
|
Wolters JF, LaBella AL, Opulente DA, Rokas A, Hittinger CT. Mitochondrial genome diversity across the subphylum Saccharomycotina. Front Microbiol 2023; 14:1268944. [PMID: 38075892 PMCID: PMC10701893 DOI: 10.3389/fmicb.2023.1268944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available. Methods By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades. Results Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements. Discussion As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.
Collapse
Affiliation(s)
- John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| | - Abigail L. LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
- Biology Department, Villanova University, Villanova, PA, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Wolters JF, LaBella AL, Opulente DA, Rokas A, Hittinger CT. Mitochondrial Genome Diversity across the Subphylum Saccharomycotina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551029. [PMID: 37577532 PMCID: PMC10418067 DOI: 10.1101/2023.07.28.551029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available. By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades. Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements. As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.
Collapse
Affiliation(s)
- John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Abigail L. LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC, 28223, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
| |
Collapse
|
3
|
Masłowska-Górnicz A, van den Bosch MRM, Saccenti E, Suarez-Diez M. A large-scale analysis of codon usage bias in 4868 bacterial genomes shows association of codon adaptation index with GC content, protein functional domains and bacterial phenotypes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194826. [PMID: 35605953 DOI: 10.1016/j.bbagrm.2022.194826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Multiple synonymous codons code for the same amino acid, resulting in the degeneracy of the genetic code and in the preferred used of some codons called codon bias usage (CBU). We performed a large-scale analysis of codon usage bias analysing the distribution of the codon adaptation index (CAI) and the codon relative adaptiveness index (RA) in 4868 bacterial genomes. We found that CAI values differ significantly between protein functional domains and part of the protein outside domains and show how CAI, GC content and preferred usage of polymerase III alpha subunits are related. Additionally, we give evidence of the association between CAI and bacterial phenotypes.
Collapse
Affiliation(s)
- Anna Masłowska-Górnicz
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Melanie R M van den Bosch
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
4
|
Hao W. From Genome Variation to Molecular Mechanisms: What we Have Learned From Yeast Mitochondrial Genomes? Front Microbiol 2022; 13:806575. [PMID: 35126340 PMCID: PMC8811140 DOI: 10.3389/fmicb.2022.806575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
Analysis of genome variation provides insights into mechanisms in genome evolution. This is increasingly appreciated with the rapid growth of genomic data. Mitochondrial genomes (mitogenomes) are well known to vary substantially in many genomic aspects, such as genome size, sequence context, nucleotide base composition and substitution rate. Such substantial variation makes mitogenomes an excellent model system to study the mechanisms dictating mitogenome variation. Recent sequencing efforts have not only covered a rich number of yeast species but also generated genomes from abundant strains within the same species. The rich yeast genomic data have enabled detailed investigation from genome variation into molecular mechanisms in genome evolution. This mini-review highlights some recent progresses in yeast mitogenome studies.
Collapse
|
5
|
Arella D, Dilucca M, Giansanti A. Codon usage bias and environmental adaptation in microbial organisms. Mol Genet Genomics 2021; 296:751-762. [PMID: 33818631 PMCID: PMC8144148 DOI: 10.1007/s00438-021-01771-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/22/2021] [Indexed: 01/01/2023]
Abstract
In each genome, synonymous codons are used with different frequencies; this general phenomenon is known as codon usage bias. It has been previously recognised that codon usage bias could affect the cellular fitness and might be associated with the ecology of microbial organisms. In this exploratory study, we investigated the relationship between codon usage bias, lifestyles (thermophiles vs. mesophiles; pathogenic vs. non-pathogenic; halophilic vs. non-halophilic; aerobic vs. anaerobic and facultative) and habitats (aquatic, terrestrial, host-associated, specialised, multiple) of 615 microbial organisms (544 bacteria and 71 archaea). Principal component analysis revealed that species with given phenotypic traits and living in similar environmental conditions have similar codon preferences, as represented by the relative synonymous codon usage (RSCU) index, and similar spectra of tRNA availability, as gauged by the tRNA gene copy number (tGCN). Moreover, by measuring the average tRNA adaptation index (tAI) for each genome, an index that can be associated with translational efficiency, we observed that organisms able to live in multiple habitats, including facultative organisms, mesophiles and pathogenic bacteria, are characterised by a reduced translational efficiency, consistently with their need to adapt to different environments. Our results show that synonymous codon choices might be under strong translational selection, which modulates the choice of the codons to differently match tRNA availability, depending on the organism's lifestyle needs. To our knowledge, this is the first large-scale study that examines the role of codon bias and translational efficiency in the adaptation of microbial organisms to the environment in which they live.
Collapse
Affiliation(s)
- Davide Arella
- Department of Physics, Sapienza University of Rome, 00185, Rome, Italy.
| | - Maddalena Dilucca
- Department of Physics, Sapienza University of Rome, 001885, Rome, Italy
| | - Andrea Giansanti
- Department of Physics, Sapienza University of Rome, 00185, Rome, Italy
- INFN, Roma1 Unit, 00185, Rome, Italy
| |
Collapse
|
6
|
Frankovsky J, Vozáriková V, Nosek J, Tomáška Ľ. Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion 2021; 57:148-162. [PMID: 33412333 DOI: 10.1016/j.mito.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is one of the best-known post-translational modifications occurring in all domains of life. In eukaryotes, protein phosphorylation affects all cellular compartments including mitochondria. High-throughput techniques of mass spectrometry combined with cell fractionation and biochemical methods yielded thousands of phospho-sites on hundreds of mitochondrial proteins. We have compiled the information on mitochondrial protein kinases and phosphatases and their substrates in Saccharomyces cerevisiae and provide the current state-of-the-art overview of mitochondrial protein phosphorylation in this model eukaryote. Using several examples, we describe emerging features of the yeast mitochondrial phosphoproteome and present challenges lying ahead in this exciting field.
Collapse
Affiliation(s)
- Jan Frankovsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
7
|
Discordant evolution of mitochondrial and nuclear yeast genomes at population level. BMC Biol 2020; 18:49. [PMID: 32393264 PMCID: PMC7216626 DOI: 10.1186/s12915-020-00786-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondria are essential organelles partially regulated by their own genomes. The mitochondrial genome maintenance and inheritance differ from the nuclear genome, potentially uncoupling their evolutionary trajectories. Here, we analysed mitochondrial sequences obtained from the 1011 Saccharomyces cerevisiae strain collection and identified pronounced differences with their nuclear genome counterparts. Results In contrast with pre-whole genome duplication fungal species, S. cerevisiae mitochondrial genomes show higher genetic diversity compared to the nuclear genomes. Strikingly, mitochondrial genomes appear to be highly admixed, resulting in a complex interconnected phylogeny with a weak grouping of isolates, whereas interspecies introgressions are very rare. Complete genome assemblies revealed that structural rearrangements are nearly absent with rare inversions detected. We tracked intron variation in COX1 and COB to infer gain and loss events throughout the species evolutionary history. Mitochondrial genome copy number is connected with the nuclear genome and linearly scale up with ploidy. We observed rare cases of naturally occurring mitochondrial DNA loss, petite, with a subset of them that do not suffer the expected growth defect in fermentable rich media. Conclusions Overall, our results illustrate how differences in the biology of two genomes coexisting in the same cells can lead to discordant evolutionary histories.
Collapse
|
8
|
Xiao S, Nguyen DT, Wu B, Hao W. Genetic Drift and Indel Mutation in the Evolution of Yeast Mitochondrial Genome Size. Genome Biol Evol 2018; 9:3088-3099. [PMID: 29126284 PMCID: PMC5714193 DOI: 10.1093/gbe/evx232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) are remarkably diverse in genome size and organization, but the origins of dynamic mitogenome architectures are still poorly understood. For instance, the mutational burden hypothesis postulates that the drastic difference between large plant mitogenomes and streamlined animal mitogenomes can be driven by their different mutation rates. However, inconsistent trends between mitogenome sizes and mutation rates have been documented in several lineages. These conflicting results highlight the need of systematic and sophisticated investigations on the evolution and diversity of mitogenome architecture. This study took advantage of the strikingly variable mitogenome size among different yeast species and also among intraspecific strains, examined sequence dynamics of introns, GC-clusters, tandem repeats, mononucleotide repeats (homopolymers) and evaluated their contributions to genome size variation. The contributions of these sequence features to mitogenomic variation are dependent on the timescale, over which extant genomes evolved from their last common ancestor, perhaps due to a combination of different turnover rates of mobile sequences, variable insertion spaces, and functional constraints. We observed a positive correlation between mitogenome size and the level of genetic drift, suggesting that mitogenome expansion in yeast is likely driven by multiple types of sequence insertions in a primarily nonadaptive manner. Although these cannot be explained directly by the mutational burden hypothesis, our results support an important role of genetic drift in the evolution of yeast mitogenomes.
Collapse
Affiliation(s)
- Shujie Xiao
- Department of Biological Sciences, Wayne State University
| | - Duong T Nguyen
- Department of Biological Sciences, Wayne State University
| | - Baojun Wu
- Department of Biological Sciences, Wayne State University.,Department of Biology, Clark University, Worcester, MA
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
9
|
Lee HY, Chao JC, Cheng KY, Leu JY. Misfolding-prone proteins are reversibly sequestered to an Hsp42-associated granule upon chronological aging. J Cell Sci 2018; 131:jcs.220202. [PMID: 30054385 DOI: 10.1242/jcs.220202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Alteration of protein localization is an important strategy for cells to regulate protein homeostasis upon environmental stresses. In the budding yeast Saccharomyces cerevisiae, many proteins relocalize and form cytosolic granules during chronological aging. However, the functions and exact components of these protein granules remain uncharacterized in most cases. In this study, we performed a genome-wide analysis of protein localization in stationary phase cells, leading to the discovery of 307 granule-forming proteins and the identification of new components in the Hsp42-stationary phase granule (Hsp42-SPG), P-bodies, Ret2 granules and actin bodies. We further characterized the Hsp42-SPG, which contains the largest number of protein components, including many molecular chaperones, metabolic enzymes and regulatory proteins. Formation of the Hsp42-SPG efficiently downregulates the activities of sequestered components, which can be differentially released from the granule based on environmental cues. We found a similar structure in the pre-whole genome duplication yeast species, Lachancea kluyveri, suggesting that the Hsp42-SPG is a common machinery allowing chronologically aged cells to contend with changing environments when available energy is limited. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hsin-Yi Lee
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei 114, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Jung-Chi Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Yu Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.,Department of Life Sciences, Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Jun-Yi Leu
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei 114, Taiwan .,Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Cheng J, Guo X, Cai P, Cheng X, Piškur J, Ma Y, Jiang H, Gu Z. Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation. Mol Biol Evol 2018; 34:2870-2878. [PMID: 28961859 DOI: 10.1093/molbev/msx220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parallel evolution occurs when a similar trait emerges in independent evolutionary lineages. Although changes in protein coding and gene transcription have been investigated as underlying mechanisms for parallel evolution, parallel changes in chromatin structure have never been reported. Here, Saccharomyces cerevisiae and a distantly related yeast species, Dekkera bruxellensis, are investigated because both species have independently evolved the capacity of aerobic fermentation. By profiling and comparing genome sequences, transcriptomic landscapes, and chromatin structures, we revealed that parallel changes in nucleosome occupancy in the promoter regions of mitochondria-localized genes led to concerted suppression of mitochondrial functions by glucose, which can explain the metabolic convergence in these two independent yeast species. Further investigation indicated that similar mutational processes in the promoter regions of these genes in the two independent evolutionary lineages underlay the parallel changes in chromatin structure. Our results indicate that, despite several hundred million years of separation, parallel changes in chromatin structure, can be an important adaptation mechanism for different organisms. Due to the important role of chromatin structure changes in regulating gene expression and organism phenotypes, the novel mechanism revealed in this study could be a general phenomenon contributing to parallel adaptation in nature.
Collapse
Affiliation(s)
- Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaoxian Guo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Pengli Cai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaozhi Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jure Piškur
- Department of Biology, Lund University, Lund, Sweden
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| |
Collapse
|
11
|
Mobile Introns Shape the Genetic Diversity of Their Host Genes. Genetics 2017; 205:1641-1648. [PMID: 28193728 PMCID: PMC5378118 DOI: 10.1534/genetics.116.199059] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/07/2017] [Indexed: 12/23/2022] Open
Abstract
Self-splicing introns populate several highly conserved protein-coding genes in fungal and plant mitochondria. In fungi, many of these introns have retained their ability to spread to intron-free target sites, often assisted by intron-encoded endonucleases that initiate the homing process. Here, leveraging population genomic data from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Lachancea kluyveri, we expose nonrandom patterns of genetic diversity in exons that border self-splicing introns. In particular, we show that, in all three species, the density of single nucleotide polymorphisms increases as one approaches a mobile intron. Through multiple lines of evidence, we rule out relaxed purifying selection as the cause of uneven nucleotide diversity. Instead, our findings implicate intron mobility as a direct driver of host gene diversity. We discuss two mechanistic scenarios that are consistent with the data: either endonuclease activity and subsequent error-prone repair have left a mutational footprint on the insertion environment of mobile introns or nonrandom patterns of genetic diversity are caused by exonic coconversion, which occurs when introns spread to empty target sites via homologous recombination. Importantly, however, we show that exonic coconversion can only explain diversity gradients near intron-exon boundaries if the conversion template comes from outside the population. In other words, there must be pervasive and ongoing horizontal gene transfer of self-splicing introns into extant fungal populations.
Collapse
|
12
|
Kuang MC, Hutchins PD, Russell JD, Coon JJ, Hittinger CT. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network. eLife 2016; 5:e19027. [PMID: 27690225 PMCID: PMC5089864 DOI: 10.7554/elife.19027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022] Open
Abstract
The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.
Collapse
Affiliation(s)
- Meihua Christina Kuang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
- JF Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Madison, United States
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
| | - Paul D Hutchins
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
| | - Jason D Russell
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
- Metabolism Research Group, Morgridge Institute for Research, Madison, United States
| | - Joshua J Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
- Metabolism Research Group, Morgridge Institute for Research, Madison, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
- JF Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Madison, United States
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
13
|
Sillo F, Garbelotto M, Friedman M, Gonthier P. Comparative Genomics of Sibling Fungal Pathogenic Taxa Identifies Adaptive Evolution without Divergence in Pathogenicity Genes or Genomic Structure. Genome Biol Evol 2015; 7:3190-206. [PMID: 26527650 PMCID: PMC4700942 DOI: 10.1093/gbe/evv209] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 12/27/2022] Open
Abstract
It has been estimated that the sister plant pathogenic fungal species Heterobasidion irregulare and Heterobasidion annosum may have been allopatrically isolated for 34-41 Myr. They are now sympatric due to the introduction of the first species from North America into Italy, where they freely hybridize. We used a comparative genomic approach to 1) confirm that the two species are distinct at the genomic level; 2) determine which gene groups have diverged the most and the least between species; 3) show that their overall genomic structures are similar, as predicted by the viability of hybrids, and identify genomic regions that instead are incongruent; and 4) test the previously formulated hypothesis that genes involved in pathogenicity may be less divergent between the two species than genes involved in saprobic decay and sporulation. Results based on the sequencing of three genomes per species identified a high level of interspecific similarity, but clearly confirmed the status of the two as distinct taxa. Genes involved in pathogenicity were more conserved between species than genes involved in saprobic growth and sporulation, corroborating at the genomic level that invasiveness may be determined by the two latter traits, as documented by field and inoculation studies. Additionally, the majority of genes under positive selection and the majority of genes bearing interspecific structural variations were involved either in transcriptional or in mitochondrial functions. This study provides genomic-level evidence that invasiveness of pathogenic microbes can be attained without the high levels of pathogenicity presumed to exist for pathogens challenging naïve hosts.
Collapse
Affiliation(s)
- Fabiano Sillo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Matteo Garbelotto
- Department of Environmental Science, Policy and Management, University of California, Berkeley
| | - Maria Friedman
- Department of Environmental Science, Policy and Management, University of California, Berkeley
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
14
|
Wolters JF, Chiu K, Fiumera HL. Population structure of mitochondrial genomes in Saccharomyces cerevisiae. BMC Genomics 2015; 16:451. [PMID: 26062918 PMCID: PMC4464245 DOI: 10.1186/s12864-015-1664-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
Background Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences. Results To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae. Conclusions Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1664-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John F Wolters
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
| | - Kenneth Chiu
- Computer Science Department, Binghamton University, Binghamton, NY, USA.
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
15
|
Wu B, Buljic A, Hao W. Extensive Horizontal Transfer and Homologous Recombination Generate Highly Chimeric Mitochondrial Genomes in Yeast. Mol Biol Evol 2015; 32:2559-70. [PMID: 26018571 DOI: 10.1093/molbev/msv127] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The frequency of horizontal gene transfer (HGT) in mitochondrial DNA varies substantially. In plants, HGT is relatively common, whereas in animals it appears to be quite rare. It is of considerable importance to understand mitochondrial HGT across the major groups of eukaryotes at a genome-wide level, but so far this has been well studied only in plants. In this study, we generated ten new mitochondrial genome sequences and analyzed 40 mitochondrial genomes from the Saccharomycetaceae to assess the magnitude and nature of mitochondrial HGT in yeasts. We provide evidence for extensive, homologous-recombination-mediated, mitochondrial-to-mitochondrial HGT occurring throughout yeast mitochondrial genomes, leading to genomes that are highly chimeric evolutionarily. This HGT has led to substantial intraspecific polymorphism in both sequence content and sequence divergence, which to our knowledge has not been previously documented in any mitochondrial genome. The unexpectedly high frequency of mitochondrial HGT in yeast may be driven by frequent mitochondrial fusion, relatively low mitochondrial substitution rates and pseudohyphal fusion to produce heterokaryons. These findings suggest that mitochondrial HGT may play an important role in genome evolution of a much broader spectrum of eukaryotes than previously appreciated and that there is a critical need to systematically study the frequency, extent, and importance of mitochondrial HGT across eukaryotes.
Collapse
Affiliation(s)
- Baojun Wu
- Department of Biological Sciences, Wayne State University
| | - Adnan Buljic
- Department of Biological Sciences, Wayne State University
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
16
|
Lin Z, Wang TY, Tsai BS, Wu FT, Yu FJ, Tseng YJ, Sung HM, Li WH. Identifying cis-regulatory changes involved in the evolution of aerobic fermentation in yeasts. Genome Biol Evol 2013; 5:1065-78. [PMID: 23650209 PMCID: PMC3698916 DOI: 10.1093/gbe/evt067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Ecology and Evolution, University of Chicago, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hagman A, Säll T, Compagno C, Piskur J. Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 2013; 8:e68734. [PMID: 23869229 PMCID: PMC3711898 DOI: 10.1371/journal.pone.0068734] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker’s yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined.
Collapse
Affiliation(s)
- Arne Hagman
- Department of Biology, Molecular Cell Biology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
18
|
Thompson DA, Roy S, Chan M, Styczynsky MP, Pfiffner J, French C, Socha A, Thielke A, Napolitano S, Muller P, Kellis M, Konieczka JH, Wapinski I, Regev A. Evolutionary principles of modular gene regulation in yeasts. eLife 2013; 2:e00603. [PMID: 23795289 PMCID: PMC3687341 DOI: 10.7554/elife.00603] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022] Open
Abstract
Divergence in gene regulation can play a major role in evolution. Here, we used a phylogenetic framework to measure mRNA profiles in 15 yeast species from the phylum Ascomycota and reconstruct the evolution of their modular regulatory programs along a time course of growth on glucose over 300 million years [corrected]. We found that modules have diverged proportionally to phylogenetic distance, with prominent changes in gene regulation accompanying changes in lifestyle and ploidy, especially in carbon metabolism. Paralogs have significantly contributed to regulatory divergence, typically within a very short window from their duplication. Paralogs from a whole genome duplication (WGD) event have a uniquely substantial contribution that extends over a longer span. Similar patterns occur when considering the evolution of the heat shock regulatory program measured in eight of the species, suggesting that these are general evolutionary principles. DOI:http://dx.doi.org/10.7554/eLife.00603.001.
Collapse
Affiliation(s)
- Dawn A Thompson
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Sushmita Roy
- Broad Institute of MIT and Harvard, Cambridge, United States
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, United States
| | - Michelle Chan
- Broad Institute of MIT and Harvard, Cambridge, United States
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, United States
| | | | - Jenna Pfiffner
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Courtney French
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Amanda Socha
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Anne Thielke
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Sara Napolitano
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Paul Muller
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, United States
| | - Jay H Konieczka
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Ilan Wapinski
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
19
|
Mitochondrial genome evolution in a single protoploid yeast species. G3-GENES GENOMES GENETICS 2012; 2:1103-11. [PMID: 22973548 PMCID: PMC3429925 DOI: 10.1534/g3.112.003152] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/09/2012] [Indexed: 12/26/2022]
Abstract
Mitochondria are organelles, which play a key role in some essential functions, including respiration, metabolite biosynthesis, ion homeostasis, and apoptosis. The vast numbers of mitochondrial DNA (mtDNA) sequences of various yeast species, which have recently been published, have also helped to elucidate the structural diversity of these genomes. Although a large corpus of data are now available on the diversity of yeast species, little is known so far about the mtDNA diversity in single yeast species. To study the genetic variations occurring in the mtDNA of wild yeast isolates, we performed a genome-wide polymorphism survey on the mtDNA of 18 Lachancea kluyveri (formerly Saccharomyces kluyveri) strains. We determined the complete mt genome sequences of strains isolated from various geographical locations (in North America, Asia, and Europe) and ecological niches (Drosophila, tree exudates, soil). The mt genome of the NCYC 543 reference strain is 51,525 bp long. It contains the same core of genes as Lachancea thermotolerans, the nearest relative to L. kluyveri. To explore the mt genome variations in a single yeast species, we compared the mtDNAs of the 18 isolates. The phylogeny and population structure of L. kluyveri provide clear-cut evidence for the existence of well-defined geographically isolated lineages. Although these genomes are completely syntenic, their size and the intron content were found to vary among the isolates studied. These genomes are highly polymorphic, showing an average diversity of 28.5 SNPs/kb and 6.6 indels/kb. Analysis of the SNP and indel patterns showed the existence of a particularly high overall level of polymorphism in the intergenic regions. The dN/dS ratios obtained are consistent with purifying selection in all these genes, with the noteworthy exception of the VAR1 gene, which gave a very high ratio. These data suggest that the intergenic regions have evolved very fast in yeast mitochondrial genomes.
Collapse
|
20
|
Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2011; 2:302. [PMID: 21556056 PMCID: PMC3112538 DOI: 10.1038/ncomms1305] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/08/2011] [Indexed: 11/24/2022] Open
Abstract
Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make–accumulate–consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the observed Crabtree effect. Saccharomyces yeasts can produce ethanol from sugars in the presence of oxygen. In this study, the authors demonstrate that Dekkera bruxellensis, a distantly related yeast, can also produce and consume ethanol due to the loss of a cis-regulatory element from the promoters of genes crucial for respiration.
Collapse
|
21
|
Botzman M, Margalit H. Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles. Genome Biol 2011; 12:R109. [PMID: 22032172 PMCID: PMC3333779 DOI: 10.1186/gb-2011-12-10-r109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/16/2011] [Accepted: 10/27/2011] [Indexed: 11/29/2022] Open
Abstract
Background It is widely acknowledged that synonymous codons are used unevenly among genes in a genome. In organisms under translational selection, genes encoding highly expressed proteins are enriched with specific codons. This phenomenon, termed codon usage bias, is common to many organisms and has been recognized as influencing cellular fitness. This suggests that the global extent of codon usage bias of an organism might be associated with its phenotypic traits. Results To test this hypothesis we used a simple measure for assessing the extent of codon bias of an organism, and applied it to hundreds of sequenced prokaryotes. Our analysis revealed a large variability in this measure: there are organisms showing very high degrees of codon usage bias and organisms exhibiting almost no differential use of synonymous codons among different genes. Remarkably, we found that the extent of codon usage bias corresponds to the lifestyle of the organism. Especially, organisms able to live in a wide range of habitats exhibit high extents of codon usage bias, consistent with their need to adapt efficiently to different environments. Pathogenic prokaryotes also demonstrate higher extents of codon usage bias than non-pathogenic prokaryotes, in accord with the multiple environments that many pathogens occupy. Our results show that the previously observed correlation between growth rate and metabolic variability is attributed to their individual associations with codon usage bias. Conclusions Our results suggest that the extent of codon usage bias of an organism plays a role in the adaptation of prokaryotes to their environments.
Collapse
Affiliation(s)
- Maya Botzman
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
22
|
Determinants of translation efficiency and accuracy. Mol Syst Biol 2011; 7:481. [PMID: 21487400 PMCID: PMC3101949 DOI: 10.1038/msb.2011.14] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/15/2011] [Indexed: 12/17/2022] Open
Abstract
A given protein sequence can be encoded by an astronomical number of alternative nucleotide sequences. Recent research has revealed that this flexibility provides evolution with multiple ways to tune the efficiency and fidelity of protein translation and folding. Proper functioning of biological cells requires that the process of protein expression be carried out with high efficiency and fidelity. Given an amino-acid sequence of a protein, multiple degrees of freedom still remain that may allow evolution to tune efficiency and fidelity for each gene under various conditions and cell types. Particularly, the redundancy of the genetic code allows the choice between alternative codons for the same amino acid, which, although ‘synonymous,' may exert dramatic effects on the process of translation. Here we review modern developments in genomics and systems biology that have revolutionized our understanding of the multiple means by which translation is regulated. We suggest new means to model the process of translation in a richer framework that will incorporate information about gene sequences, the tRNA pool of the organism and the thermodynamic stability of the mRNA transcripts. A practical demonstration of a better understanding of the process would be a more accurate prediction of the proteome, given the transcriptome at a diversity of biological conditions.
Collapse
|
23
|
Barth D, Berendonk TU. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium. BMC Genomics 2011; 12:272. [PMID: 21627782 PMCID: PMC3118789 DOI: 10.1186/1471-2164-12-272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. RESULTS The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%). This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. CONCLUSIONS Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino acid composition. Most probably, the observed picture is best explained by a hitherto unknown (neutral or adaptive) mechanism that increased the guanine + cytosine content in P. tetraurelia mtDNA on the one hand, and strong purifying selection on the ancestral amino acid composition on the other hand. These contradicting forces are counterbalanced by a considerably altered codon usage pattern.
Collapse
Affiliation(s)
- Dana Barth
- University of Leipzig, Chair of Molecular Evolution and Animal Systematics, Talstrasse 33, 04103 Leipzig, Germany
| | - Thomas U Berendonk
- University of Leipzig, Chair of Molecular Evolution and Animal Systematics, Talstrasse 33, 04103 Leipzig, Germany
- Dresden University of Technology, Institute for Hydrobiology, Zellescher Weg 40, 01062 Dresden, Germany
| |
Collapse
|
24
|
Lipinski KA, Puchta O, Surendranath V, Kudla M, Golik P. Revisiting the yeast PPR proteins--application of an Iterative Hidden Markov Model algorithm reveals new members of the rapidly evolving family. Mol Biol Evol 2011; 28:2935-48. [PMID: 21546354 DOI: 10.1093/molbev/msr120] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are the largest known RNA-binding protein family, and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly to mitochondria and chloroplasts, and many were shown to modulate organellar genome expression on the posttranscriptional level. Although the genomes of land plants encode hundreds of PPR proteins, only a few have been identified in Fungi and Metazoa. As the current PPR motif profiles are built mainly on the basis of the predominant plant sequences, they are unlikely to be optimal for detecting fungal and animal members of the family, and many putative PPR proteins in these genomes may remain undetected. In order to verify this hypothesis, we designed a hidden Markov model-based bioinformatic tool called Supervised Clustering-based Iterative Phylogenetic Hidden Markov Model algorithm for the Evaluation of tandem Repeat motif families (SCIPHER) using sequence data from orthologous clusters from available yeast genomes. This approach allowed us to assign 12 new proteins in Saccharomyces cerevisiae to the PPR family. Similarly, in other yeast species, we obtained a 5-fold increase in the detection of PPR motifs, compared with the previous tools. All the newly identified S. cerevisiae PPR proteins localize in the mitochondrion and are a part of the RNA processing interaction network. Furthermore, the yeast PPR proteins seem to undergo an accelerated divergent evolution. Analysis of single and double amino acid substitutions in the Dmr1 protein of S. cerevisiae suggests that cooperative interactions between motifs and pseudoreversion could be the force driving this rapid evolution.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
25
|
Rozpędowska E, Galafassi S, Johansson L, Hagman A, Piškur J, Compagno C. Candida albicans--a pre-whole genome duplication yeast--is predominantly aerobic and a poor ethanol producer. FEMS Yeast Res 2011; 11:285-91. [PMID: 21205163 DOI: 10.1111/j.1567-1364.2010.00715.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Yeast species belonging to the lineage that underwent the whole genome duplication (WGD), and including Saccharomyces cerevisiae, can grow under anaerobiosis and accumulate ethanol in the presence of glucose and oxygen. The pre-WGD yeasts, which branched from the S. cerevisiae lineage just before the WGD event, including Kluyveromyces lactis, are more dependent on oxygen and do not accumulate large amounts of ethanol in the presence of excess oxygen. Yeasts that belong to the so-called 'lower branches' of the yeast phylogenetic tree and diverged from S. cerevisiae more than 200 million years ago have so far not been thoroughly investigated for their physiology and carbon metabolism. Here, we have studied several isolates of Candida albicans and Debaryomyces hansenii for their dependence on oxygen. Candida albicans grew very poorly at an oxygen concentration <1 p.p.m. and D. hansenii could not grow at all. In aerobic batch cultivations, C. albicans exhibited a predominantly aerobic metabolism, accumulating only small amounts of ethanol (0.01-0.09 g g(-1) glucose). Apparently, C. albicans and several other pre-WGD yeasts still exhibit the original traits of the yeast progenitor: poor accumulation of ethanol under aerobic conditions and strong dependence on the presence of oxygen.
Collapse
|
26
|
Solieri L. Mitochondrial inheritance in budding yeasts: towards an integrated understanding. Trends Microbiol 2010; 18:521-30. [PMID: 20832322 DOI: 10.1016/j.tim.2010.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/23/2010] [Accepted: 08/04/2010] [Indexed: 01/08/2023]
Abstract
Recent advances in yeast mitogenomics have significantly contributed to our understanding of the diversity of organization, structure and topology in the mitochondrial genome of budding yeasts. In parallel, new insights on mitochondrial DNA (mtDNA) inheritance in the model organism Saccharomyces cerevisiae highlighted an integrated scenario where recombination, replication and segregation of mtDNA are intricately linked to mitochondrial nucleoid (mt-nucleoid) structure and organelle sorting. In addition to this, recent discoveries of bifunctional roles of some mitochondrial proteins have interesting implications on mito-nuclear genome interactions and the relationship between mtDNA inheritance, yeast fitness and speciation. This review summarizes the current knowledge on yeast mitogenomics, mtDNA inheritance with regard to mt-nucleoid structure and organelle dynamics, and mito-nuclear genome interactions.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Agricultural and Food Sciences, University of Modena and Reggio Emilia, via Amendola 2, Padiglione Besta, 42100 Reggio Emilia, Italy.
| |
Collapse
|
27
|
Lin Z, Li WH. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Mol Biol Evol 2010; 28:131-42. [PMID: 20660490 DOI: 10.1093/molbev/msq184] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genetic basis of organisms' adaptation to different environments is a central issue of molecular evolution. The budding yeast Saccharomyces cerevisiae and its relatives predominantly ferment glucose into ethanol even in the presence of oxygen. This was suggested to be an adaptation to glucose-rich habitats, but the underlying genetic basis of the evolution of aerobic fermentation remains unclear. In S. cerevisiae, the first step of glucose metabolism is transporting glucose across the plasma membrane, which is carried out by hexose transporter proteins. Although several studies have recognized that the rate of glucose uptake can affect how glucose is metabolized, the role of HXT genes in the evolution of aerobic fermentation has not been fully explored. In this study, we identified all members of the HXT gene family in 23 fully sequenced fungal genomes, reconstructed their evolutionary history to pinpoint gene gain and loss events, and evaluated their adaptive significance in the evolution of aerobic fermentation. We found that the HXT genes have been extensively amplified in the two fungal lineages that have independently evolved aerobic fermentation. In contrast, reduction of the number of HXT genes has occurred in aerobic respiratory species. Our study reveals a strong positive correlation between the copy number of HXT genes and the strength of aerobic fermentation, suggesting that HXT gene expansion has facilitated the evolution of aerobic fermentation.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Ecology and Evolution, University of Chicago, USA
| | | |
Collapse
|
28
|
Jiang H, Guan W, Gu Z. Tinkering evolution of post-transcriptional RNA regulons: puf3p in fungi as an example. PLoS Genet 2010; 6:e1001030. [PMID: 20661438 PMCID: PMC2908677 DOI: 10.1371/journal.pgen.1001030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/16/2010] [Indexed: 11/19/2022] Open
Abstract
Genome-wide studies of post-transcriptional mRNA regulation in model organisms indicate a "post-transcriptional RNA regulon" model, in which a set of functionally related genes is regulated by mRNA-binding RNAs or proteins. One well-studied post-transcriptional regulon by Puf3p functions in mitochondrial biogenesis in budding yeast. The evolution of the Puf3p regulon remains unclear because previous studies have shown functional divergence of Puf3p regulon targets among yeast, fruit fly, and humans. By analyzing evolutionary patterns of Puf3p and its targeted genes in forty-two sequenced fungi, we demonstrated that, although the Puf3p regulon is conserved among all of the studied fungi, the dedicated regulation of mitochondrial biogenesis by Puf3p emerged only in the Saccharomycotina clade. Moreover, the evolution of the Puf3p regulon was coupled with evolution of codon usage bias in down-regulating expression of genes that function in mitochondria in yeast species after genome duplication. Our results provide a scenario for how evolution like a tinker exploits pre-existing materials of a conserved post-transcriptional regulon to regulate gene expression for novel functional roles.
Collapse
Affiliation(s)
- Huifeng Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Wenjun Guan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Chou JY, Leu JY. Speciation through cytonuclear incompatibility: Insights from yeast and implications for higher eukaryotes. Bioessays 2010; 32:401-11. [DOI: 10.1002/bies.200900162] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Sun J, Jiang H, Flores R, Wen J. Gene duplication in the genome of parasitic Giardia lamblia. BMC Evol Biol 2010; 10:49. [PMID: 20163721 PMCID: PMC2829556 DOI: 10.1186/1471-2148-10-49] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/17/2010] [Indexed: 11/23/2022] Open
Abstract
Background Giardia are a group of widespread intestinal protozoan parasites in a number of vertebrates. Much evidence from G. lamblia indicated they might be the most primitive extant eukaryotes. When and how such a group of the earliest branching unicellular eukaryotes developed the ability to successfully parasitize the latest branching higher eukaryotes (vertebrates) is an intriguing question. Gene duplication has long been thought to be the most common mechanism in the production of primary resources for the origin of evolutionary novelties. In order to parse the evolutionary trajectory of Giardia parasitic lifestyle, here we carried out a genome-wide analysis about gene duplication patterns in G. lamblia. Results Although genomic comparison showed that in G. lamblia the contents of many fundamental biologic pathways are simplified and the whole genome is very compact, in our study 40% of its genes were identified as duplicated genes. Evolutionary distance analyses of these duplicated genes indicated two rounds of large scale duplication events had occurred in G. lamblia genome. Functional annotation of them further showed that the majority of recent duplicated genes are VSPs (Variant-specific Surface Proteins), which are essential for the successful parasitic life of Giardia in hosts. Based on evolutionary comparison with their hosts, it was found that the rapid expansion of VSPs in G. lamblia is consistent with the evolutionary radiation of placental mammals. Conclusions Based on the genome-wide analysis of duplicated genes in G. lamblia, we found that gene duplication was essential for the origin and evolution of Giardia parasitic lifestyle. The recent expansion of VSPs uniquely occurring in G. lamblia is consistent with the increment of its hosts. Therefore we proposed a hypothesis that the increment of Giradia hosts might be the driving force for the rapid expansion of VSPs.
Collapse
Affiliation(s)
- Jun Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China
| | | | | | | |
Collapse
|
31
|
|
32
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
33
|
Traba J, Satrústegui J, del Arco A. Transport of adenine nucleotides in the mitochondria of Saccharomyces cerevisiae: interactions between the ADP/ATP carriers and the ATP-Mg/Pi carrier. Mitochondrion 2009; 9:79-85. [PMID: 19460304 DOI: 10.1016/j.mito.2009.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/09/2008] [Accepted: 01/05/2009] [Indexed: 01/09/2023]
Abstract
The ADP/ATP and ATP-Mg/Pi carriers are widespread among eukaryotes and constitute two systems to transport adenine nucleotides in mitochondria. ADP/ATP carriers carry out an electrogenic exchange of ADP for ATP essential for oxidative phosphorylation, whereas ATP-Mg/Pi carriers perform an electroneutral exchange of ATP-Mg for phosphate and are able to modulate the net content of adenine nucleotides in mitochondria. The functional interplay between both carriers has been shown to modulate viability in Saccharomyces cerevisiae. The simultaneous absence of both carriers is lethal. In the light of the new evidence we suggest that, in addition to exchange of cytosolic ADP for mitochondrial ATP, the specific function of the ADP/ATP carriers required for respiration, both transporters have a second function, which is the import of cytosolic ATP in mitochondria. The participation of these carriers in the generation of mitochondrial membrane potential is discussed. Both are necessary for the function of the mitochondrial protein import and assembly systems, which are the only essential mitochondrial functions in S. cerevisiae.
Collapse
Affiliation(s)
- Javier Traba
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma, CIBER de Enfermedades Raras, c/Nicolas Cabrera 1, 28049 Madrid, Spain.
| | | | | |
Collapse
|