1
|
Morales-Díaz N, Sushko S, Campos-Dominguez L, Kopalli V, Golicz AA, Castanera R, Casacuberta JM. Tandem LTR-retrotransposon structures are common and highly polymorphic in plant genomes. Mob DNA 2025; 16:10. [PMID: 40075446 PMCID: PMC11899658 DOI: 10.1186/s13100-025-00347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND LTR-retrotransposons (LTR-RT) are a major component of plant genomes and important drivers of genome evolution. Most LTR-RT copies in plant genomes are defective elements found as truncated copies, nested insertions or as part of more complex structures. The recent availability of highly contiguous plant genome assemblies based on long-read sequences now allows to perform detailed characterization of these complex structures and to evaluate their importance for plant genome evolution. RESULTS The detailed analysis of two rice loci containing complex LTR-RT structures showed that they consist of tandem arrays of LTR copies sharing internal LTRs. Our analyses suggests that these LTR-RT tandems are the result of a single insertion and not of the recombination of two independent LTR-RT elements. Our results also suggest that gypsy elements may be more prone to form these structures. We show that these structures are highly polymorphic in rice and therefore have the potential to generate genetic variability. We have developed a computational pipeline (IDENTAM) that scans genome sequences and identifies tandem LTR-RT candidates. Using this tool, we have detected 266 tandems in a pangenome built from the genomes of 76 accessions of cultivated and wild rice, showing that tandem LTR-RT structures are frequent and highly polymorphic in rice. Running IDENTAM in the Arabidopsis, almond and cotton genomes showed that LTR-RT tandems are frequent in plant genomes of different size, complexity and ploidy level. The complexity of differentiating intra-element variations at the nucleotide level among haplotypes is very high, and we found that graph-based pangenomic methodologies are appropriate to resolve these structures. CONCLUSIONS Our results show that LTR-RT elements can form tandem arrays. These structures are relatively abundant and highly polymorphic in rice and are widespread in the plant kingdom. Future studies will contribute to understanding how these structures originate and whether the variability that they generate has a functional impact.
Collapse
Affiliation(s)
- Noemia Morales-Díaz
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Svitlana Sushko
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Lucía Campos-Dominguez
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Agnieszka A Golicz
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Raúl Castanera
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
- IRTA, Genomics and Biotechnology, Edifici CRAG, Campus UAB, Bellaterra, Catalonia, 08193, Spain.
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
2
|
Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G. Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 2021; 210:104566. [PMID: 34718084 DOI: 10.1016/j.biosystems.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Transposable elements (TEs) contribute to genomic innovations, as well as genome instability, across a wide variety of species. Popular designations such as 'selfish DNA' and 'junk DNA,' common in the 1980s, may be either inaccurate or misleading, while a more enlightened view of the TE-host relationship covers a range from parasitism to mutualism. Both plant and animal hosts have evolved epigenetic mechanisms to reduce the impact of TEs, both by directly silencing them and by reducing their ability to transpose in the genome. However, TEs have also been co-opted by both plant and animal genomes to perform a variety of physiological functions, ranging from TE-derived proteins acting directly in normal biological functions to innovations in transcription factor activity and also influencing gene expression. Their presence, in fact, can affect a range of features at genome, phenotype, and population levels. The impact TEs have had on evolution is multifaceted, and many aspects still remain unexplored. In this review, the epigenetic control of TEs is contextualized according to the evolution of complex living systems.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy.
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| |
Collapse
|
3
|
Orłowska R, Pachota KA, Dynkowska WM, Niedziela A, Bednarek PT. Androgenic-Induced Transposable Elements Dependent Sequence Variation in Barley. Int J Mol Sci 2021; 22:ijms22136783. [PMID: 34202586 PMCID: PMC8268840 DOI: 10.3390/ijms22136783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
A plant genome usually encompasses different families of transposable elements (TEs) that may constitute up to 85% of nuclear DNA. Under stressful conditions, some of them may activate, leading to sequence variation. In vitro plant regeneration may induce either phenotypic or genetic and epigenetic changes. While DNA methylation alternations might be related, i.e., to the Yang cycle problems, DNA pattern changes, especially DNA demethylation, may activate TEs that could result in point mutations in DNA sequence changes. Thus, TEs have the highest input into sequence variation (SV). A set of barley regenerants were derived via in vitro anther culture. High Performance Liquid Chromatography (RP-HPLC), used to study the global DNA methylation of donor plants and their regenerants, showed that the level of DNA methylation increased in regenerants by 1.45% compared to the donors. The Methyl-Sensitive Transposon Display (MSTD) based on methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach demonstrated that, depending on the selected elements belonging to the TEs family analyzed, varying levels of sequence variation were evaluated. DNA sequence contexts may have a different impact on SV generated by distinct mobile elements belonged to various TE families. Based on the presented study, some of the selected mobile elements contribute differently to TE-related SV. The surrounding context of the TEs DNA sequence is possibly important here, and the study explained some part of SV related to those contexts.
Collapse
|
4
|
Yuan H, Huang Y, Mao Y, Zhang N, Nie Y, Zhang X, Zhou Y, Mao S. The Evolutionary Patterns of Genome Size in Ensifera (Insecta: Orthoptera). Front Genet 2021; 12:693541. [PMID: 34249107 PMCID: PMC8261143 DOI: 10.3389/fgene.2021.693541] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Genomic size variation has long been a focus for biologists. However, due to the lack of genome size data, the mechanisms behind this variation and the biological significance of insect genome size are rarely studied systematically. The detailed taxonomy and phylogeny of the Ensifera, as well as the extensive documentation concerning their morphological, ecological, behavioral, and distributional characteristics, make them a strong model for studying the important scientific problem of genome size variation. However, data on the genome size of Ensifera are rather sparse. In our study, we used flow cytometry to determine the genome size of 32 species of Ensifera, the smallest one being only 1C = 0.952 pg with the largest species up to 1C = 19.135 pg, representing a 20-fold range. This provides a broader blueprint for the genome size variation of Orthoptera than was previously available. We also completed the assembly of nine mitochondrial genomes and combined mitochondrial genome data from public databases to construct phylogenetic trees containing 32 species of Ensifera and three outgroups. Based on these inferred phylogenetic trees, we detected the phylogenetic signal of genome size variation in Ensifera and found that it was strong in both males and females. Phylogenetic comparative analyses revealed that there were no correlations between genome size and body size or flight ability in Tettigoniidae. Reconstruction of ancestral genome size revealed that the genome size of Ensifera evolved in a complex pattern, in which the genome size of the grylloid clade tended to decrease while that of the non-grylloid clade expanded significantly albeit with fluctuations. However, the evolutionary mechanisms underlying variation of genome size in Ensifera are still unknown.
Collapse
Affiliation(s)
- Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ying Mao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Nan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yimeng Nie
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xue Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yafu Zhou
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, China
| | - Shaoli Mao
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, China
| |
Collapse
|
5
|
Yañez-Santos AM, Paz RC, Paz-Sepúlveda PB, Urdampilleta JD. Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences. Chromosome Res 2021; 29:261-284. [PMID: 34086192 DOI: 10.1007/s10577-021-09663-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Capsicum annuum is a species that has undergone an expansion of the size of its genome caused mainly by the amplification of repetitive DNA sequences, including mobile genetic elements. Based on information obtained from sequencing the genome of pepper, the estimated fraction of retroelements is approximately 81%, and previous results revealed an important contribution of lineages derived from Gypsy superfamily. However, the dynamics of the retroelements in the C. annuum genome is poorly understood. In this way, the present work seeks to investigate the phylogenetic diversity and genomic abundance of the families of autonomous (complete and intact) LTR retroelements from C. annuum and inspect their distribution along its chromosomes. In total, we identified 1151 structurally full-length retroelements (340 Copia; 811 Gypsy) grouped in 124 phylogenetic families in the base of their retrotranscriptase. All the evolutive lineages of LTR retroelements identified in plants were present in pepper; however, three of them comprise 83% of the entire LTR retroelements population, the lineages Athila, Del/Tekay, and Ale/Retrofit. From them, only three families represent 70.8% of the total number of the identified retroelements. A massive family-specific wave of amplification of two of them occurred in the last 0.5 Mya (GypsyCa_16; CopiaCa_01), whereas the third is more ancient and occurred 3.0 Mya (GypsyCa_13). Fluorescent in situ hybridization performed with family and lineage-specific probes revealed contrasting patterns of chromosomal affinity. Our results provide a database of the populations LTR retroelements specific to C. annuum genome. The most abundant families were analyzed according to chromosome insertional preferences, suppling useful tools to the design of retroelement-based markers specific to the species.
Collapse
Affiliation(s)
- Anahí Mara Yañez-Santos
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Rosalía Cristina Paz
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.
| | - Paula Beatriz Paz-Sepúlveda
- Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) - Comisión de Investigaciones Científicas (CIC) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
6
|
Penin AA, Kasianov AS, Klepikova AV, Kirov IV, Gerasimov ES, Fesenko AN, Logacheva MD. High-Resolution Transcriptome Atlas and Improved Genome Assembly of Common Buckwheat, Fagopyrum esculentum. FRONTIERS IN PLANT SCIENCE 2021; 12:612382. [PMID: 33815435 PMCID: PMC8010679 DOI: 10.3389/fpls.2021.612382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Common buckwheat (Fagopyrum esculentum) is an important non-cereal grain crop and a prospective component of functional food. Despite this, the genomic resources for this species and for the whole family Polygonaceae, to which it belongs, are scarce. Here, we report the assembly of the buckwheat genome using long-read technology and a high-resolution expression atlas including 46 organs and developmental stages. We found that the buckwheat genome has an extremely high content of transposable elements, including several classes of recently (0.5-1 Mya) multiplied TEs ("transposon burst") and gradually accumulated TEs. The difference in TE content is a major factor contributing to the three-fold increase in the genome size of F. esculentum compared with its sister species F. tataricum. Moreover, we detected the differences in TE content between the wild ancestral subspecies F. esculentum ssp. ancestrale and buckwheat cultivars, suggesting that TE activity accompanied buckwheat domestication. Expression profiling allowed us to test a hypothesis about the genetic control of petaloidy of tepals in buckwheat. We showed that it is not mediated by B-class gene activity, in contrast to the prediction from the ABC model. Based on a survey of expression profiles and phylogenetic analysis, we identified the MYB family transcription factor gene tr_18111 as a potential candidate for the determination of conical cells in buckwheat petaloid tepals. The information on expression patterns has been integrated into the publicly available database TraVA: http://travadb.org/browse/Species=Fesc/. The improved genome assembly and transcriptomic resources will enable research on buckwheat, including practical applications.
Collapse
Affiliation(s)
- Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Artem S. Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | | | | | - Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
- *Correspondence: Maria D. Logacheva,
| |
Collapse
|
7
|
Comparative Study of Pine Reference Genomes Reveals Transposable Element Interconnected Gene Networks. Genes (Basel) 2020; 11:genes11101216. [PMID: 33081418 PMCID: PMC7602945 DOI: 10.3390/genes11101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing the giga-genomes of several pine species has enabled comparative genomic analyses of these outcrossing tree species. Previous studies have revealed the wide distribution and extraordinary diversity of transposable elements (TEs) that occupy the large intergenic spaces in conifer genomes. In this study, we analyzed the distribution of TEs in gene regions of the assembled genomes of Pinus taeda and Pinus lambertiana using high-performance computing resources. The quality of draft genomes and the genome annotation have significant consequences for the investigation of TEs and these aspects are discussed. Several TE families frequently inserted into genes or their flanks were identified in both species’ genomes. Potentially important sequence motifs were identified in TEs that could bind additional regulatory factors, promoting gene network formation with faster or enhanced transcription initiation. Node genes that contain many TEs were observed in multiple potential transposable element-associated networks. This study demonstrated the increased accumulation of TEs in the introns of stress-responsive genes of pines and suggests the possibility of rewiring them into responsive networks and sub-networks interconnected with node genes containing multiple TEs. Many such regulatory influences could lead to the adaptive environmental response clines that are characteristic of naturally spread pine populations.
Collapse
|
8
|
Lei GJ, Fujii-Kashino M, Wu DZ, Hisano H, Saisho D, Deng F, Yamaji N, Sato K, Zhao FJ, Ma JF. Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. ACTA ACUST UNITED AC 2020; 1:489-499. [PMID: 37128077 DOI: 10.1038/s43016-020-0130-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023]
Abstract
Barley is the fourth most produced cereal crop in the world and one of the major dietary sources of cadmium (Cd), which poses serious threats to human health. Here, we identify a gene that encodes a P-type heavy metal ATPase 3 (HvHMA3) responsible for grain Cd accumulation in barley. HvHMA3 from the high Cd barley variety Haruna Nijo in Japan and the low Cd variety BCS318 in Afghanistan shared 97% identity at the amino acid level. In addition, the HvHMA3 from both varieties showed similar transport activity for Cd and the same subcellular localization at the tonoplast. However, the expression of HvHMA3 was double in BCS318 than in Haruna Nijo. A 3.3-kilobase Sukkula-like transposable element was found to be inserted upstream of the gene in the low Cd variety, which functioned as a promoter and enhanced the expression of HvHMA3. Introgression of this insertion to an elite barley cultivar through backcrossing resulted in decreased Cd accumulation in the grain grown in Cd-contaminated soil without yield penalty. The decreased Cd accumulation resulting from the insertion was also found in some other barley landraces in the world. Our results indicate that insertion of the Sukkula-like transposable element plays an important role in upregulating HvHMA3 expression.
Collapse
|
9
|
Jedlicka P, Lexa M, Kejnovsky E. What Can Long Terminal Repeats Tell Us About the Age of LTR Retrotransposons, Gene Conversion and Ectopic Recombination? FRONTIERS IN PLANT SCIENCE 2020; 11:644. [PMID: 32508870 PMCID: PMC7251063 DOI: 10.3389/fpls.2020.00644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/27/2020] [Indexed: 05/10/2023]
Abstract
LTR retrotransposons constitute a significant part of plant genomes and their evolutionary dynamics play an important role in genome size changes. Current methods of LTR retrotransposon age estimation are based only on LTR (long terminal repeat) divergence. This has prompted us to analyze sequence similarity of LTRs in 25,144 LTR retrotransposons from fifteen plant species as well as formation of solo LTRs. We found that approximately one fourth of nested retrotransposons showed a higher LTR divergence than the pre-existing retrotransposons into which they had been inserted. Moreover, LTR similarity was correlated with LTR length. We propose that gene conversion can contribute to this phenomenon. Gene conversion prediction in LTRs showed potential converted regions in 25% of LTR pairs. Gene conversion was higher in species with smaller genomes while the proportion of solo LTRs did not change with genome size in analyzed species. The negative correlation between the extent of gene conversion and the abundance of solo LTRs suggests interference between gene conversion and ectopic recombination. Since such phenomena limit the traditional methods of LTR retrotransposon age estimation, we recommend an improved approach based on the exclusion of regions affected by gene conversion.
Collapse
Affiliation(s)
- Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Matej Lexa
- Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- *Correspondence: Eduard Kejnovsky,
| |
Collapse
|
10
|
Pavia I, Roque J, Rocha L, Ferreira H, Castro C, Carvalho A, Silva E, Brito C, Gonçalves A, Lima-Brito J, Correia C. Zinc priming and foliar application enhances photoprotection mechanisms in drought-stressed wheat plants during anthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:27-42. [PMID: 31078782 DOI: 10.1016/j.plaphy.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 04/21/2019] [Indexed: 05/24/2023]
Abstract
Drought is one of most important limiting factors in wheat productivity worldwide. The need to increase drought tolerance during anthesis is of the utmost importance for high yield potentials and yield stability. Photosynthesis is one of the major physiological processes affected by drought. Damages in the photosynthetic apparatus may also arise due to non-regulated dissipation of excessive energy. Zinc (Zn) is an indispensable micronutrient for plants and is required for a wide range of physiological and biochemical processes. In this work we evaluated the stress mitigation effects of Zn seed priming alone and coupled with Zn foliar application in wheat plants submitted to severe drought during anthesis, followed by a recovery period. Under such severe drought stress, photosynthesis was constrained by both stomatal and non-stomatal limitation. Severe drought also induced an increase in non-regulated energy dissipation and hindered a full recovery of the plant's photosynthetic processes after rewatering. We also report possible activation of transposable elements due to drought stress and Zn application. Yield was severely decreased by drought and Zn treatments were unable to counteract this effect. Although unable to oppose the reduction of net photosynthesis, Zn treatments positively enhance photoprotection. At the end of drought period, Zn priming alone and coupled with Zn foliar application increased, respectively, over 2- and 3- fold the regulated dissipation of excess energy. Zn treatments lessened the non-regulated energy dissipation caused by drought, protected the plants against irreversible damages to the photosynthetic apparatus and enabled a better recovery of wheat plants after stress relief.
Collapse
Affiliation(s)
- Ivo Pavia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - João Roque
- BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Luís Rocha
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Helena Ferreira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cláudia Castro
- BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Carvalho
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ermelinda Silva
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cátia Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Alexandre Gonçalves
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Lima-Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Carlos Correia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
11
|
Spontaneous mutations in maize pollen are frequent in some lines and arise mainly from retrotranspositions and deletions. Proc Natl Acad Sci U S A 2019; 116:10734-10743. [PMID: 30992374 DOI: 10.1073/pnas.1903809116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While studying spontaneous mutations at the maize bronze (bz) locus, we made the unexpected discovery that specific low-copy number retrotransposons are mobile in the pollen of some maize lines, but not of others. We conducted large-scale genetic experiments to isolate new bz mutations from several Bz stocks and recovered spontaneous stable mutations only in the pollen parent in reciprocal crosses. Most of the new stable bz mutations resulted from either insertions of low-copy number long terminal repeat (LTR) retrotransposons or deletions, the same two classes of mutations that predominated in a collection of spontaneous wx mutations [Wessler S (1997) The Mutants of Maize, pp 385-386]. Similar mutations were recovered at the closely linked sh locus. These events occurred with a frequency of 2-4 × 10-5 in two lines derived from W22 and in 4Co63, but not at all in B73 or Mo17, two inbreds widely represented in Corn Belt hybrids. Surprisingly, the mutagenic LTR retrotransposons differed in the active lines, suggesting differences in the autonomous element make-up of the lines studied. Some active retrotransposons, like Hopscotch, Magellan, and Bs2, a Bs1 variant, were described previously; others, like Foto and Focou in 4Co63, were not. By high-throughput sequencing of retrotransposon junctions, we established that retrotranposition of Hopscotch, Magellan, and Bs2 occurs genome-wide in the pollen of active lines, but not in the female germline or in somatic tissues. We discuss here the implications of these results, which shed light on the source, frequency, and nature of spontaneous mutations in maize.
Collapse
|
12
|
Marakli S, Calis A, Gozukirmizi N. Determination of Barley-Specific Retrotransposons’ Movements in Pinus nigra ssp. pallasiana Varieties: pyramidata and Seneriana. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Dhar MK, Kour J, Kaul S. Origin, Behaviour, and Transmission of B Chromosome with Special Reference to Plantago lagopus. Genes (Basel) 2019; 10:E152. [PMID: 30781667 PMCID: PMC6410184 DOI: 10.3390/genes10020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022] Open
Abstract
B chromosomes have been reported in many eukaryotic organisms. These chromosomes occur in addition to the standard complement of a species. Bs do not pair with any of the A chromosomes and they have generally been considered to be non-essential and genetically inert. However, due to tremendous advancements in the technologies, the molecular composition of B chromosomes has been determined. The sequencing data has revealed that B chromosomes have originated from A chromosomes and they are rich in repetitive elements. In our laboratory, a novel B chromosome was discovered in Plantago lagopus. Using molecular cytogenetic techniques, the B chromosome was found to be composed of ribosomal DNA sequences. However, further characterization of the chromosome using next generation sequencing (NGS) etc. revealed that the B chromosome is a mosaic of sequences derived from A chromosomes, 5S ribosomal DNA (rDNA), 45S rDNA, and various types of repetitive elements. The transmission of B chromosome through the female sex track did not follow the Mendelian principles. The chromosome was found to have drive due to which it was perpetuating in populations. The present paper attempts to summarize the information on nature, transmission, and origin of B chromosomes, particularly the current status of our knowledge in P. lagopus.
Collapse
Affiliation(s)
- Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Jasmeet Kour
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| |
Collapse
|
14
|
Marques A, Klemme S, Houben A. Evolution of Plant B Chromosome Enriched Sequences. Genes (Basel) 2018; 9:genes9100515. [PMID: 30360448 PMCID: PMC6210368 DOI: 10.3390/genes9100515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
B chromosomes are supernumerary chromosomes found in addition to the normal standard chromosomes (A chromosomes). B chromosomes are well known to accumulate several distinct types of repeated DNA elements. Although the evolution of B chromosomes has been the subject of numerous studies, the mechanisms of accumulation and evolution of repetitive sequences are not fully understood. Recently, new genomic approaches have shed light on the origin and accumulation of different classes of repetitive sequences in the process of B chromosome formation and evolution. Here we discuss the impact of repetitive sequences accumulation on the evolution of plant B chromosomes.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Av. Manoel Severino Barbosa, 57309-005 Arapiraca-AL, Brazil.
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|
15
|
Marakli S. Transferability of Barley Retrotransposons (Sukkula and Nikita) to Investigate Genetic Structure of Pimpinella anisum L. ACTA ACUST UNITED AC 2018. [DOI: 10.7240/marufbd.395068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Nakashima K, Abe J, Kanazawa A. Chromosomal distribution of soybean retrotransposon SORE-1 suggests its recent preferential insertion into euchromatic regions. Chromosome Res 2018; 26:199-210. [PMID: 29789973 DOI: 10.1007/s10577-018-9579-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
Retrotransposons constitute a large portion of plant genomes. The chromosomal distribution of a wide variety of retrotransposons has been analyzed using genome sequencing data in several plants, but the evolutionary profile of transposition has been characterized for a limited number of retrotransposon families. Here, we characterized 96 elements of the SORE-1 family of soybean retrotransposons using genome sequencing data. Insertion time of each SORE-1 element into the genome was estimated on the basis of sequence differences between the 5' and 3' long terminal repeats (LTRs). Combining this estimation with information on the chromosomal location of these elements, we found that the insertion of the existing SORE-1 into gene-rich chromosome arms occurred on average more recently than that into gene-poor pericentromeric regions. In addition, both the number of insertions and the proportion of insertions into chromosome arms profoundly increased after 1 million years ago. Solo LTRs were detected in these regions at a similar frequency, suggesting that elimination of SORE-1 via unequal homologous recombination was unbiased. Taken together, these results suggest the preference of a recent insertion of SORE-1 into chromosome arms comprising euchromatic regions. This notion is contrary to an earlier view deduced from an overall profiling of soybean retrotransposons and suggests that the pattern of chromosomal distribution can be more diverse than previously thought between different families of retrotransposons.
Collapse
Affiliation(s)
- Kenta Nakashima
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
17
|
Schrader L, Schmitz J. The impact of transposable elements in adaptive evolution. Mol Ecol 2018; 28:1537-1549. [PMID: 30003608 DOI: 10.1111/mec.14794] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022]
Abstract
The growing knowledge about the influence of transposable elements (TEs) on (a) long-term genome and transcriptome evolution; (b) genomic, transcriptomic and epigenetic variation within populations; and (c) patterns of somatic genetic differences in individuals continues to spur the interest of evolutionary biologists in the role of TEs in adaptive evolution. As TEs can trigger a broad range of molecular variation in a population with potentially severe fitness and phenotypic consequences for individuals, different mechanisms evolved to keep TE activity in check, allowing for a dynamic interplay between the host, its TEs and the environment in evolution. Here, we review evidence for adaptive phenotypic changes associated with TEs and the basic molecular mechanisms by which the underlying genetic changes arise: (a) domestication, (b) exaptation, (c) host gene regulation, (d) TE-mediated formation of intronless gene copies-so-called retrogenes and (e) overall increased genome plasticity. Furthermore, we review and discuss how the stress-dependent incapacitation of defence mechanisms against the activity of TEs might facilitate adaptive responses to environmental challenges and how such mechanisms might be particularly relevant in species frequently facing novel environments, such as invasive, pathogenic or parasitic species.
Collapse
Affiliation(s)
- Lukas Schrader
- Institute for Evolution and Biodiversity (IEB), University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Assessments of genetic diversity in Iranian flax populations using retrotransposon microsatellite amplification polymorphisms (REMAP) markers. THE NUCLEUS 2018. [DOI: 10.1007/s13237-017-0218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
19
|
Gezeljeh Ali S, Darvishzadeh R, Ebrahimi A, Bihamta MR. Identification of SSR and retrotransposon-based molecular markers linked to morphological characters in oily sunflower ( $$\textit{Helianthus annuus}$$ Helianthus annuus L.) under natural and water-limited states. J Genet 2018. [DOI: 10.1007/s12041-018-0901-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Ali SG, Darvishzadeh R, Ebrahimi A, Bihamta MR. Identification of SSR and retrotransposon-based molecular markers linked to morphological characters in oily sunfl ower (Helianthus annuus L.) under natural and water-limited states. J Genet 2018; 97:189-203. [PMID: 29666338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sunflower is an important source of edible oil. Drought is known as an important factor limiting the growth and productivity of field crops in most parts of the world. Agricultural biotechnology mainly aims at developing crops with higher tolerance to the challenging environmental conditions, such as drought. This study examined a number of morphological characters, along with relative water content (RWC) in 100 inbred sunflower lines. A 10 × 10 simple lattice design with two replications was employed to measure the mentioned parameters under natural and water-limited states during two successive years. In molecular trial, 30 simple sequence repeat (SSR) primer pairs, as well as 14 inter-retrotransposon amplified polymorphism (IRAP) and 14 retrotransposon-microsatellite amplified polymorphism (REMAP) primer combinations were used for DNA fingerprinting of the lines. Most of the examined characters had lower average values under water-limited than natural states. Maximum and minimum reductions were observed in the cases of yield and oil percentage, respectively. The broad-sense heritabilities for all the examined characters were 0.20-0.73 and 0.10-0.34 under natural and water-limited states, respectively. In the studied samples, 8.97% of the 435 possible locus pairs of the SSRs represented significant linkage disequilibrium (LD) levels. In the association analysis using SSR markers, 22 and 21 markers were identified (P ≤ 0.05) for the studied characters under natural and water-limited states, respectively. The corresponding values were 50 and 37 using retrotransposon-based molecular markers. Some detected markers were communal between the characters under water-limited and natural states. This was in line with the phenotypic correlations detected between the characters. Communal markers facilitate the simultaneous selection of several characters and can thus improve the efficacy of selection based on markers in the plant-breeding activities.
Collapse
Affiliation(s)
- Soleimani Gezeljeh Ali
- Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, 14515-775 Tehran, Iran.
| | | | | | | |
Collapse
|
21
|
Kalendar R, Amenov A, Daniyarov A. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 46:15-29. [PMID: 30939255 DOI: 10.1071/fp18098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
Transposable elements (TEs) are common mobile genetic elements comprising several classes and making up the majority of eukaryotic genomes. The movement and accumulation of TEs has been a major force shaping the genes and genomes of most organisms. Most eukaryotic genomes are dominated by retrotransposons and minimal DNA transposon accumulation. The 'copy and paste' lifecycle of replicative transposition produces new genome insertions without excising the original element. Horizontal TE transfer among lineages is rare. TEs represent a reservoir of potential genomic instability and RNA-level toxicity. Many TEs appear static and nonfunctional, but some are capable of replicating and mobilising to new positions, and somatic transposition events have been observed. The overall structure of retrotransposons and the domains responsible for the phases of their replication are highly conserved in all eukaryotes. TEs are important drivers of species diversity and exhibit great variety in their structure, size and transposition mechanisms, making them important putative actors in evolution. Because TEs are abundant in plant genomes, various applications have been developed to exploit polymorphisms in TE insertion patterns, including conventional or anchored PCR, and quantitative or digital PCR with primers for the 5' or 3' junction. Alternatively, the retrotransposon junction can be mapped using high-throughput next-generation sequencing and bioinformatics. With these applications, TE insertions can be rapidly, easily and accurately identified, or new TE insertions can be found. This review provides an overview of the TE-based applications developed for plant species and assesses the contributions of TEs to the analysis of plants' genetic diversity.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Department of Agricultural Sciences, PO Box 27 (Latokartanonkaari 5), FI-00014 University of Helsinki, Helsinki, Finland
| | - Asset Amenov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Asset Daniyarov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|
22
|
Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1400401] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Muhammad Azhar Nadeem
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, School of Engineering, Chonnam National University, Yeosu, Korea
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, P. R. China
| | - Yıldız Doğan
- Department of Field Crops, Eastern Mediterranean Agricultural Research Institute, Agricultural Ministry, Adana, Turkey
| | - Gonul Comertpay
- Department of Field Crops, Eastern Mediterranean Agricultural Research Institute, Agricultural Ministry, Adana, Turkey
| | - Mehtap Yıldız
- Department of Agricultural Biotechnology, Faculty of Agriculture, Yuzuncu Yıl University, Van, Turkey
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Fiaz Ahmad
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Punjab, Pakistan
| | - Ahmad Alsaleh
- Molecular Genetics Laboratory, Science and Technology Application and Research Center, Bozok University, Yozgat, Turkey
| | - Nitin Labhane
- Department of Botany, Bhavan's College, University of Mumbai, Mumbai, India
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Gyuhwa Chung
- Department of Biotechnology, School of Engineering, Chonnam National University, Yeosu, Korea
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
23
|
Shang Y, Yang F, Schulman AH, Zhu J, Jia Y, Wang J, Zhang XQ, Jia Q, Hua W, Yang J, Li C. Gene Deletion in Barley Mediated by LTR-retrotransposon BARE. Sci Rep 2017; 7:43766. [PMID: 28252053 PMCID: PMC5333098 DOI: 10.1038/srep43766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/27/2017] [Indexed: 11/13/2022] Open
Abstract
A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study.
Collapse
Affiliation(s)
- Yi Shang
- National Barley Improvement Centre, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fei Yang
- Department of Genetics and Cell Biology, Yangtze University, Jingzhou, Hubei 434023, China
- Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch WA 6150, Australia
| | - Alan H. Schulman
- Luke/BI Plant Genomics Lab, Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, FIN-00014 Helsinki, Finland
- Green Technology, Natural Resources Institute Finland (Luke), Viikinkaari 1, FIN-00790 Helsinki, Finland
| | - Jinghuan Zhu
- National Barley Improvement Centre, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Yong Jia
- Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch WA 6150, Australia
| | - Junmei Wang
- National Barley Improvement Centre, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch WA 6150, Australia
| | - Qiaojun Jia
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Hua
- National Barley Improvement Centre, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Jianming Yang
- National Barley Improvement Centre, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Chengdao Li
- Department of Genetics and Cell Biology, Yangtze University, Jingzhou, Hubei 434023, China
- Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch WA 6150, Australia
| |
Collapse
|
24
|
Abstract
Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.
Collapse
|
25
|
Orłowska R, Machczyńska J, Oleszczuk S, Zimny J, Bednarek PT. DNA methylation changes and TE activity induced in tissue cultures of barley (Hordeum vulgare L.). JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2016; 23:19. [PMID: 27508170 PMCID: PMC4977862 DOI: 10.1186/s40709-016-0056-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/25/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND In vitro plant regeneration via androgenesis or somatic embryogenesis is capable of inducing (epi)mutations that may affect sexual progenies. While epimutations are associated with DNA methylation, mutations could be due to the movement of transposons. The common notion is that both processes are linked. It is being assumed that demethylation activates transposable elements (TEs). Analysis of methylation changes and their relation with TEs activation in tissue cultures requires uniquely derived donor plants (Ds), their regenerants (Rs) and respective progeny (Ps) that would allow discrimination of processes not related to changes introduced via in vitro cultures. Moreover, a set of methods (RP-HPLC, SSAP, and MSTD) is needed to study whether different TEs families are being activated during in vitro tissue culture plant regeneration and whether their activity could be linked to DNA methylation changes or alternative explanations should be considered. RESULTS The in vitro tissue culture plant regeneration in barley was responsible for the induction of DNA methylation in regenerants and conservation of the methylation level in the progeny as shown by the RP-HPLC approach. No difference between andro- and embryo-derived Rs and Ps was observed. The SSAP and MSTD approach revealed that Ds and Rs were more polymorphic than Ps. Moreover, Rs individuals exhibited more polymorphisms with the MSTD than SSAP approach. The differences between Ds, Rs and Ps were also evaluated via ANOVA and AMOVA. CONCLUSIONS Stressful conditions during plant regeneration via in vitro tissue cultures affect regenerants and their sexual progeny leading to an increase in global DNA methylation of Rs and Ps compared to Ds in barley. The increased methylation level noted among regenerants remains unchanged in the Ps as indicated via RP-HPLC data. Marker-based experiments suggest that TEs are activated via in vitro tissue cultures and that, independently of the increased methylation, their activity in Rs is greater than in Ps. Thus, the increased methylation level may not correspond to the stabilization of TEs movement at least at the level of regenerants. The presence of TEs variation among Ds that were genetically and epigenetically uniform may suggest that at least some mobile elements may be active, and they may mask variation related to tissue cultures. Thus, tissue cultures may activate some TEs whereas the others remain intact, or their level of movement is changed. Finally, we suggest that sexual reproduction may be responsible for the stabilization of TEs.
Collapse
Affiliation(s)
- Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Joanna Machczyńska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Sylwia Oleszczuk
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
26
|
Horizontal transfers of transposable elements in eukaryotes: The flying genes. C R Biol 2016; 339:296-9. [PMID: 27234293 DOI: 10.1016/j.crvi.2016.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
Abstract
Transposable elements (TEs) are the major components of eukaryotic genomes. Their propensity to densely populate and in some cases invade the genomes of plants and animals is in contradiction with the fact that transposition is strictly controlled by several molecular pathways acting at either transcriptional or post-transcriptional levels. Horizontal transfers, defined as the transmission of genetic material between sexually isolated species, have long been considered as rare phenomena. Here, we show that the horizontal transfers of transposable elements (HTTs) are very frequent in ecosystems. The exact mechanisms of such transfers are not well understood, but species involved in close biotic interactions, like parasitism, show a propensity to exchange genetic material horizontally. We propose that HTTs allow TEs to escape the silencing machinery of their host genome and may therefore be an important mechanism for their survival and their dissemination in eukaryotes.
Collapse
|
27
|
Evtushenko EV, Levitsky VG, Elisafenko EA, Gunbin KV, Belousov AI, Šafář J, Doležel J, Vershinin AV. The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genomics 2016; 17:337. [PMID: 27146967 PMCID: PMC4857426 DOI: 10.1186/s12864-016-2667-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A prominent and distinctive feature of the rye (Secale cereale) chromosomes is the presence of massive blocks of subtelomeric heterochromatin, the size of which is correlated with the copy number of tandem arrays. The rapidity with which these regions have formed over the period of speciation remains unexplained. RESULTS Using a BAC library created from the short arm telosome of rye chromosome 1R we uncovered numerous arrays of the pSc200 and pSc250 tandem repeat families which are concentrated in subtelomeric heterochromatin and identified the adjacent DNA sequences. The arrays show significant heterogeneity in monomer organization. 454 reads were used to gain a representation of the expansion of these tandem repeats across the whole rye genome. The presence of multiple, relatively short monomer arrays, coupled with the mainly star-like topology of the monomer phylogenetic trees, was taken as indicative of a rapid expansion of the pSc200 and pSc250 arrays. The evolution of subtelomeric heterochromatin appears to have included a significant contribution of illegitimate recombination. The composition of transposable elements (TEs) within the regions flanking the pSc200 and pSc250 arrays differed markedly from that in the genome a whole. Solo-LTRs were strongly enriched, suggestive of a history of active ectopic exchange. Several DNA motifs were over-represented within the LTR sequences. CONCLUSION The large blocks of subtelomeric heterochromatin have arisen from the combined activity of TEs and the expansion of the tandem repeats. The expansion was likely based on a highly complex network of recombination mechanisms.
Collapse
Affiliation(s)
- E V Evtushenko
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia
| | - V G Levitsky
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - E A Elisafenko
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
| | - K V Gunbin
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - A I Belousov
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia
| | - J Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - J Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - A V Vershinin
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia.
| |
Collapse
|
28
|
Datta AK, Mandal A, Das D, Gupta S, Saha A, Paul R, Sengupta S. B chromosomes in angiosperm—a review. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Hsu YC, Wang CS, Lin YR, Wu YP. Structural Diversity of a Novel LTR Retrotransposon, RTPOSON, in the Genus Oryza. Evol Bioinform Online 2016; 12:29-40. [PMID: 26819544 PMCID: PMC4718150 DOI: 10.4137/ebo.s35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
Retrotransposons with long terminal repeats (LTRs) are the most abundant transposable elements in plant genomes. A novel LTR retrotransposon named RTPOSON primarily occurs in the genus Oryza and in several species of the Poaceae family. RTPOSON has been identified in the Ty1-copia group of retrotransposons because two of its open reading frames encode an uncharacterized protein and UBN2_2 and zinc knuckle, respectively. More than 700 RTPOSONs were identified in Oryza genomes; 127 RTPOSONs with LTRs and gag-pol elements were classified into three subgroups. The subgroup RTPOSON_sub3 had the smallest DNA size and 97% (32/33) of RTPOSON elements from Oryza punctata are classified in this group. The insertion time of these RTPOSONs varied and their proliferation occurred within the last 8 Mya, with two bursting periods within the last 1.5–5.0 Mya. A total of 37 different orthologous insertions of RTPOSONs, with different nested transposable elements and gene fragments, were identified by comparing the genomes of ssp. japonica cv. Nipponbare and ssp. indica cv. 93–11. A part of intact RTPOSON elements was evolved independently after the divergence of indica and japonica. In addition, intact RTPOSONs and homologous fragments were preferentially retained or integrated in genic regions. This novel LTR retrotransposon, RTPOSON, might have an impact on genome evolution, genic innovation, and genetic variation.
Collapse
Affiliation(s)
- Yu-Chia Hsu
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yong-Pei Wu
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| |
Collapse
|
30
|
Krupovic M, Shmakov S, Makarova KS, Forterre P, Koonin EV. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity. Genome Biol Evol 2016; 8:375-86. [PMID: 26764427 PMCID: PMC4779613 DOI: 10.1093/gbe/evw006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
Casposons are a superfamily of putative self-synthesizing transposable elements that are predicted to employ a homolog of Cas1 protein as a recombinase and could have contributed to the origin of the CRISPR-Cas adaptive immunity systems in archaea and bacteria. Casposons remain uncharacterized experimentally, except for the recent demonstration of the integrase activity of the Cas1 homolog, and given their relative rarity in archaea and bacteria, original comparative genomic analysis has not provided direct indications of their mobility. Here, we report evidence of casposon mobility obtained by comparison of the genomes of 62 strains of the archaeon Methanosarcina mazei. In these genomes, casposons are variably inserted in three distinct sites indicative of multiple, recent gains, and losses. Some casposons are inserted into other mobile genetic elements that might provide vehicles for horizontal transfer of the casposons. Additionally, many M. mazei genomes contain previously undetected solo terminal inverted repeats that apparently are derived from casposons and could resemble intermediates in CRISPR evolution. We further demonstrate the sequence specificity of casposon insertion and note clear parallels with the adaptation mechanism of CRISPR-Cas. Finally, besides identifying additional representatives in each of the three originally defined families, we describe a new, fourth, family of casposons.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire Du Gène Chez Les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France
| | - Sergey Shmakov
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Kira S Makarova
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| | - Patrick Forterre
- Unité Biologie Moléculaire Du Gène Chez Les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France
| | - Eugene V Koonin
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Molecular cytogenetic use of BAC clones in Neofinetia falcata and Rhynchostylis coelestis. THE NUCLEUS 2015. [DOI: 10.1007/s13237-015-0147-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol Biol 2015; 15:194. [PMID: 26377000 PMCID: PMC4574184 DOI: 10.1186/s12862-015-0473-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background Although homologous recombination affects the efficacy of selection in populations, the pattern of recombination rate evolution and its effects on genome evolution across plants are largely unknown. Recombination can reduce genome size by enabling the removal of LTR retrotransposons, alter codon usage by GC biased gene conversion, contribute to complex histories of gene duplication and loss through tandem duplication, and enhance purifying selection on genes. Therefore, variation in recombination rate across species may explain some of the variation in genomic architecture as well as rates of molecular evolution. We used phylogenetic comparative methods to investigate the evolution of global meiotic recombination rate in angiosperms and its effects on genome architecture and selection at the molecular level using genetic maps and genome sequences from thirty angiosperm species. Results Recombination rate is negatively correlated with genome size, which is likely caused by the removal of LTR retrotransposons. After correcting recombination rates for euchromatin content, we also found an association between global recombination rate and average gene family size. This suggests a role for recombination in the preservation of duplicate genes or expansion of gene families. An analysis of the correlation between the ratio of nonsynonymous to synonymous substitution rates (dN/dS) and recombination rate in 3748 genes indicates that higher recombination rates are associated with an increased efficacy of purifying selection, suggesting that global recombination rates affect variation in rates of molecular evolution across distantly related angiosperm species, not just between populations. We also identified shifts in dN/dS for recombination proteins that are associated with shifts in global recombination rate across our sample of angiosperms. Conclusions Although our analyses only reveal correlations, not mechanisms, and do not include potential covariates of recombination rate, like effective population size, they suggest that global recombination rates may play an important role in shaping the macroevolutionary patterns of gene and genome evolution in plants. Interspecific recombination rate variation is tightly correlated with genome size as well as variation in overall LTR retrotransposon abundances. Recombination may shape gene-to-gene variation in dN/dS between species, which might impact the overall gene duplication and loss rates. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0473-3) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Zhang L, Mao D, Xing F, Bai X, Zhao H, Yao W, Li G, Xie W, Xing Y. Loss of function of OsMADS3 via the insertion of a novel retrotransposon leads to recessive male sterility in rice (Oryza sativa). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:188-97. [PMID: 26259187 DOI: 10.1016/j.plantsci.2015.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/27/2015] [Accepted: 06/06/2015] [Indexed: 05/10/2023]
Abstract
Natural mutation is the source of natural variation, which is the fundamental basis for the genetic improvement of crops. During the process of developing a recombinant inbred line (RI), a spontaneous mutagenesis in RI127 led to the production of the recessive male-sterile line RI127S. Via a map-based cloning approach, the gene controlling the male sterility was identified as OsMADS3, which was previously reported to be associated with floral organ development and male sterility. Thermal asymmetric interlaced PCR isolated one 1633-bp insertion in OsMADS3 in RI127S, which damaged its function due to failed transcription. The 1633-bp insertion was derived from a fragment flanked by retrotransposon genes on chromosome 5. Seven haplotypes of OsMADS3 were observed among 529 cultivars and 107 wild rice accessions, and 98% of the investigated genotypes carried the same H2 haplotype, indicating that OsMADS3 is highly conserved. RI127S has the combined genome constitution of its parents, indica rice Teqing and japonica 02428, and carries the widely compatible S5 gene donated by 02428. RI127 exhibits good performance in regard to its agronomic traits and has a wide compatibility. Therefore, RI127S would be an elite mediator for recurrent breeding in cases requiring a tedious hand-crossing-based inter-crossing phase. RI127S can be crossed not only with indica rice but also with japonica rice, thus providing breeders with flexible arrangements in recurrent breeding programs.
Collapse
Affiliation(s)
- Li Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Donghai Mao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Feng Xing
- State Key Laboratory of Agricultural Microbiology, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Yao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Guangwei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtz University, Jingzhou 434025, China.
| |
Collapse
|
34
|
Abdollahi Mandoulakani B, Yaniv E, Kalendar R, Raats D, Bariana HS, Bihamta MR, Schulman AH. Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:211-9. [PMID: 25388968 DOI: 10.1007/s00122-014-2422-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/27/2014] [Indexed: 05/08/2023]
Abstract
Yr15 provides broad resistance to stripe rust, an important wheat disease. REMAP- and IRAP-derived co-dominant SCAR markers were developed and localize Yr15 to a 1.2 cM interval. They are reliable across many cultivars. Stripe rust [Pucinia striiformis f.sp. tritici (Pst)] is one of the most important fungal diseases of wheat, found on all continents and in over 60 countries. Wild emmer wheat (Triticum dicoccoides), which is the tetraploid progenitor of durum wheat, is a valuable source of novel stripe rust resistance genes for wheat breeding. T. dicoccoides accession G25 carries Yr15 on chromosome 1BS. Yr15 confers resistance to virtually all tested Pst isolates; it is effective in durum and bread wheat introgressions and their derivatives. Retrotransposons generate polymorphic insertions, which can be scored as Mendelian markers using techniques such as REMAP and IRAP. Six REMAP- and IRAP-derived SCAR markers were mapped using 1,256 F2 plants derived from crosses of the susceptible T. durum accession D447 (DW1) with its resistant BC3F9 and BC3F10 (B9 and B10) near isogenic lines, which carried Yr15 introgressed from G25. The nearest markers segregated 0.1 cM proximally and 1.1 cM distally to Yr15. These markers were also mapped and validated at the same position in another 500 independent F2 plants derived from crosses of B9 and B10 with the susceptible cultivar Langdon (LDN). SC2700 and SC790, defining Yr15 on an interval of 1.2 cM, were found to be reliable and robust co-dominant markers in a wide range of wheat lines and cultivars with and without Yr15. These markers are useful tags in marker-assisted wheat breeding programs that aim to incorporate Yr15 into elite wheat lines and cultivars for durable and broad-spectrum resistance to stripe rust.
Collapse
|
35
|
Frahry MB, Sun C, Chong RA, Mueller RL. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders. J Mol Evol 2015; 80:120-9. [PMID: 25608479 DOI: 10.1007/s00239-014-9663-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022]
Abstract
Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., <30 bp) deletions than do other vertebrate genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.
Collapse
Affiliation(s)
- Matthew Blake Frahry
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | | | | | |
Collapse
|
36
|
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol 2014; 27:2573-84. [PMID: 25290698 DOI: 10.1111/jeb.12513] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022]
Abstract
A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process.
Collapse
Affiliation(s)
- A Belyayev
- Institute of Botany, Czech Academy of Sciences, Pruhonice near Prague, Czech Republic
| |
Collapse
|
37
|
Renny-Byfield S, Wendel JF. Doubling down on genomes: polyploidy and crop plants. AMERICAN JOURNAL OF BOTANY 2014; 101:1711-25. [PMID: 25090999 DOI: 10.3732/ajb.1400119] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploidy, or whole genome multiplication, is ubiquitous among angiosperms. Many crop species are relatively recent allopolyploids, resulting from interspecific hybridization and polyploidy. Thus, an appreciation of the evolutionary consequences of (allo)polyploidy is central to our understanding of crop plant domestication, agricultural improvement, and the evolution of angiosperms in general. Indeed, many recent insights into plant biology have been gleaned from polyploid crops, including, but not limited to wheat, tobacco, sugarcane, apple, and cotton. A multitude of evolutionary processes affect polyploid genomes, including rapid and substantial genome reorganization, transgressive gene expression alterations, gene fractionation, gene conversion, genome downsizing, and sub- and neofunctionalization of duplicate genes. Often these genomic changes are accompanied by heterosis, robustness, and the improvement of crop yield, relative to closely related diploids. Historically, however, the genome-wide analysis of polyploid crops has lagged behind those of diploid crops and other model organisms. This lag is partly due to the difficulties in genome assembly, resulting from the genomic complexities induced by combining two or more evolutionarily diverged genomes into a single nucleus and by the significant size of polyploid genomes. In this review, we explore the role of polyploidy in angiosperm evolution, the domestication process and crop improvement. We focus on the potential of modern technologies, particularly next-generation sequencing, to inform us on the patterns and processes governing polyploid crop improvement and phenotypic change subsequent to domestication.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Jonathan F Wendel
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
38
|
Mun S, Lee J, Kim YJ, Kim HS, Han K. Chimpanzee-specific endogenous retrovirus generates genomic variations in the chimpanzee genome. PLoS One 2014; 9:e101195. [PMID: 24987855 PMCID: PMC4079660 DOI: 10.1371/journal.pone.0101195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs), eukaryotic transposable elements, exist as proviruses in vertebrates including primates and contribute to genomic changes during the evolution of their host genomes. Many studies about ERVs have focused on the elements residing in the human genome but only a few studies have focused on the elements which exist in non-human primate genomes. In this study, we identified 256 chimpanzee-specific endogenous retrovirus copies (PtERVs: Pan troglodyte endogenous retroviruses) from the chimpanzee reference genome sequence through comparative genomics. Among the chimpanzee-specific ERV copies, 121 were full-length chimpanzee-specific ERV elements while 110 were chimpanzee-specific solitary LTR copies. In addition, we found eight potential retrotransposition-competent full-length chimpanzee-specific ERV copies containing an intact env gene, and two of them were polymorphic in chimpanzee individuals. Through computational analysis and manual inspection, we found that some of the chimpanzee-specific ERVs have propagated via non-classical PtERV insertion (NCPI), and at least one of the PtERVs may have played a role in creating an alternative transcript of a chimpanzee gene. Based on our findings in this study, we state that the chimpanzee-specific ERV element is one of the sources of chimpanzee genomic variations, some of which might be related to the alternative transcripts in the chimpanzee population.
Collapse
Affiliation(s)
- Seyoung Mun
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea
| | - Jungnam Lee
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- Departments of Periodontology & Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Yun-Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
39
|
Moisy C, Schulman AH, Kalendar R, Buchmann JP, Pelsy F. The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1223-35. [PMID: 24590356 DOI: 10.1007/s00122-014-2293-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/21/2014] [Indexed: 05/18/2023]
Abstract
Combining several different approaches, we have examined the structure, variability, and distribution of Tvv1 retrotransposons. Tvv1 is an unusual example of a low-copy retrotransposon metapopulation dispersed unevenly among very distant species and is promising for the development of molecular markers. Retrotransposons are ubiquitous throughout the genomes of the vascular plants, but individual retrotransposon families tend to be confined to the level of plant genus or at most family. This restricts the general applicability of a family as molecular markers. Here, we characterize a new plant retrotransposon named Tvv1_Sdem, a member of the Copia superfamily of LTR retrotransposons, from the genome of the wild potato Solanum demissum. Comparative analyses based on structure and sequence showed a high level of similarity of Tvv1_Sdem with Tvv1-VB, a retrotransposon previously described in the grapevine genome Vitis vinifera. Extending the analysis to other species by in silico and in vitro approaches revealed the presence of Tvv1 family members in potato, tomato, and poplar genomes, and led to the identification of full-length copies of Tvv1 in these species. We were also able to identify polymorphism in UTL sequences between Tvv1_Sdem copies from wild and cultivated potatoes that are useful as molecular markers. Combining different approaches, our results suggest that the Tvv1 family of retrotransposons has a monophyletic origin and has been maintained in both the rosids and the asterids, the major clades of dicotyledonous plants, since their divergence about 100 MYA. To our knowledge, Tvv1 represents an unusual plant retrotransposon metapopulation comprising highly similar members disjointedly dispersed among very distant species. The twin features of Tvv1 presence in evolutionarily distant genomes and the diversity of its UTL region in each species make it useful as a source of robust molecular markers for diversity studies and breeding.
Collapse
Affiliation(s)
- Cédric Moisy
- MTT/BI Plant Genomics Lab, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Biocenter 3, Viikinkaari 1, 00014, Helsinki, Finland,
| | | | | | | | | |
Collapse
|
40
|
Yilmaz S, Gozukirmizi N. Variation of Retrotransposon Movement in Callus Culture and Regenerated Shoots of Barley. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
|
42
|
Kubat Z, Zluvova J, Vogel I, Kovacova V, Cermak T, Cegan R, Hobza R, Vyskot B, Kejnovsky E. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. THE NEW PHYTOLOGIST 2014; 202:662-678. [PMID: 24456522 DOI: 10.1111/nph.12669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/25/2013] [Indexed: 05/18/2023]
Abstract
Some transposable elements (TEs) show extraordinary variance in abundance along sex chromosomes but the mechanisms responsible for this variance are unknown. Here, we studied Ogre long terminal repeat (LTR) retrotransposons in Silene latifolia, a dioecious plant with evolutionarily young heteromorphic sex chromosomes. Ogre elements are ubiquitous in the S. latifolia genome but surprisingly absent on the Y chromosome. Bacterial artificial chromosome (BAC) library analysis and fluorescence in situ hybridization (FISH) were used to determine Ogre structure and chromosomal localization. Next generation sequencing (NGS) data were analysed to assess the transcription level and abundance of small RNAs. Methylation of Ogres was determined by bisulphite sequencing. Phylogenetic analysis was used to determine mobilization time and selection forces acting on Ogre elements. We characterized three Ogre families ubiquitous in the S. latifolia genome. One family is nearly absent on the Y chromosome despite all the families having similar structures and spreading mechanisms. We showed that Ogre retrotransposons evolved before sex chromosomes appeared but were mobilized after formation of the Y chromosome. Our data suggest that the absence of one Ogre family on the Y chromosome may be caused by 24-nucleotide (24-nt) small RNA-mediated silencing leading to female-specific spreading. Our findings highlight epigenetic silencing mechanisms as potentially crucial factors in sex-specific spreading of some TEs, but other possible mechanisms are also discussed.
Collapse
Affiliation(s)
- Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Ivan Vogel
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Tomas Cermak
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc, 77200, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| |
Collapse
|
43
|
Choi HI, Waminal NE, Park HM, Kim NH, Choi BS, Park M, Choi D, Lim YP, Kwon SJ, Park BS, Kim HH, Yang TJ. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:906-16. [PMID: 24456463 DOI: 10.1111/tpj.12441] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 05/12/2023]
Abstract
Ginseng (Panax ginseng) is a famous medicinal herb, but the composition and structure of its genome are largely unknown. Here we characterized the major repeat components and inspected their distribution in the ginseng genome. By analyzing three repeat-rich bacterial artificial chromosome (BAC) sequences from ginseng, we identified complex insertion patterns of 34 long terminal repeat retrotransposons (LTR-RTs) and 11 LTR-RT derivatives accounting for more than 80% of the BAC sequences. The LTR-RTs were classified into three Ty3/gypsy (PgDel, PgTat and PgAthila) and two Ty1/Copia (PgTork and PgOryco) families. Mapping of 30-Gbp Illumina whole-genome shotgun reads to the BAC sequences revealed that these five LTR-RT families occupy at least 34% of the ginseng genome. The Ty3/Gypsy families were predominant, comprising 74 and 33% of the BAC sequences and the genome, respectively. In particular, the PgDel family accounted for 29% of the genome and presumably played major roles in enlargement of the size of the ginseng genome. Fluorescence in situ hybridization (FISH) revealed that the PgDel1 elements are distributed throughout the chromosomes along dispersed heterochromatic regions except for ribosomal DNA blocks. The intensity of the PgDel2 FISH signals was biased toward 24 out of 48 chromosomes. Unique gene probes showed two pairs of signals with different locations, one pair in subtelomeric regions on PgDel2-rich chromosomes and the other in interstitial regions on PgDel2-poor chromosomes, demonstrating allotetraploidy in ginseng. Our findings promote understanding of the evolution of the ginseng genome and of that of related species in the Araliaceae.
Collapse
Affiliation(s)
- Hong-Il Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yilmaz S, Marakli S, Gozukirmizi N. BAGY2 retrotransposon analyses in barley calli cultures and regenerated plantlets. Biochem Genet 2014; 52:233-44. [PMID: 24509836 DOI: 10.1007/s10528-014-9643-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
Abstract
The stability of aging barley calli and regenerated plantlets from those calli was investigated by the BAGY2 retrotransposon-specific IRAP technique. Mature embryos of barley (Hordeum vulgare cv. Golden Promise) were cultured in Murashige and Skoog medium supplemented with 4 mg/L dicamba and maintained on the same medium for 45 and 90 days. Two IRAP-based primers were used, and the levels of variation of DNA isolated from 45- and 90-day-old calli and regenerated plantlets were found to be increased 0-21%, depending on the mature embryo material and the age of the callus. It has been observed that culture conditions cause genetic variations and evident BAGY2 retrotransposon alterations. Internal domains of BAGY2 were also analyzed by qPCR, and copy numbers were found to be increased. These findings are expected to contribute to understanding of how retrotransposons affect features like tissue culture (especially callus tissue) formation and genetic engineering studies.
Collapse
Affiliation(s)
- Sibel Yilmaz
- Department of Molecular Biology and Genetics, Istanbul University, Vezneciler, 34134, Istanbul, Turkey,
| | | | | |
Collapse
|
45
|
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 2014; 71:467-78. [PMID: 23912901 PMCID: PMC11113615 DOI: 10.1007/s00018-013-1437-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance and have been widely reported on over several thousand eukaryotes, but still remain an evolutionary mystery ever since their first discovery over a century ago [1]. Recent advances in genome analysis have significantly improved our knowledge on the origin and composition of Bs in the last few years. In contrast to the prevalent view that Bs do not harbor genes, recent analysis revealed that Bs of sequenced species are rich in gene-derived sequences. We summarize the latest findings on supernumerary chromosomes with a special focus on the origin, DNA composition, and the non-Mendelian accumulation mechanism of Bs.
Collapse
Affiliation(s)
- Andreas Houben
- Chromosome Structure and Function Laboratory, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany,
| | | | | | | |
Collapse
|
46
|
Sharma V, Nandineni MR. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems. Mol Phylogenet Evol 2014; 73:10-7. [PMID: 24440815 DOI: 10.1016/j.ympev.2014.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0.905 were observed for REMAP, IRAP and SSR, respectively. The widespread presence and distinct DNA profiles for copia-like and gypsy-like RTNs in the examined genotypes indicate that these elements are active in the genome and may have even contributed to the potato genome organization. Although the three marker systems were capable of distinguishing all the 47 varieties; high reproducibility, low cost and ease of DNA profiling data collection make IRAP and REMAP markers highly efficient whole-genome scanning molecular probes for population genetic studies. Information obtained from the present study regarding the genetic association and distinctiveness provides an useful guide for selection of germplasm for plant breeding and conservation efforts.
Collapse
Affiliation(s)
- Vishakha Sharma
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| | - Madhusudan R Nandineni
- Laboratory of DNA Fingerprinting Services, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India; Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India.
| |
Collapse
|
47
|
El Baidouri M, Panaud O. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol Evol 2013; 5:954-65. [PMID: 23426643 PMCID: PMC3673626 DOI: 10.1093/gbe/evt025] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.
Collapse
Affiliation(s)
- Moaine El Baidouri
- Université de Perpignan Via Domitia, Laboratoire Génome et développement des plantes, UMR UPVD/CNRS 5096, 66860 Perpignan, France
| | | |
Collapse
|
48
|
Jääskeläinen M, Chang W, Moisy C, Schulman AH. Retrotransposon BARE displays strong tissue-specific differences in expression. THE NEW PHYTOLOGIST 2013; 200:1000-8. [PMID: 24033286 DOI: 10.1111/nph.12470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/30/2013] [Indexed: 05/25/2023]
Abstract
The BARE retrotransposon comprises c. 10% of the barley (Hordeum vulgare) genome. It is actively transcribed, translated and forms virus-like particles (VLPs). For retrotransposons, the inheritance of new copies depends critically on where in the plant replication occurs. In order to shed light on the replication strategy of BARE in the plant, we have used immunolocalization and in situ hybridization to examine expression of the BARE capsid protein, Gag, at a tissue-specific level. Gag is expressed in provascular tissues and highly localized in companion cells surrounding the phloem sieve tubes in mature vascular tissues. BARE Gag and RNA was not seen in the shoot apical meristem of young seedlings, but appeared, following transition to flowering, in the developing floral spike. Moreover, Gag has a highly specific localization in pre-fertilization ovaries. The strong presence of Gag in the floral meristems suggests that newly replicated copies there will be passed to the next generation. BARE expression patterns are consistent with transcriptional regulation by predicted response elements in the BARE promoter, and in the ovary with release from epigenetic transcriptional silencing. To our knowledge, this is the first analysis of the expression of native retrotransposon proteins within a plant to be reported.
Collapse
Affiliation(s)
- Marko Jääskeläinen
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
49
|
Influence of long terminal repeat retrotransposons in the genomes of fission yeasts. Biochem Soc Trans 2013; 41:1629-33. [DOI: 10.1042/bst20130207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LTR (long terminal repeat) RTs (retrotransposons) are almost ubiquitous in eukaryotic genomes. Their abundance and selfish properties make them a major influence in the regulation and evolution of their host genome. Recently, several striking properties of the LTR RTs of fission yeast have been uncovered, affecting important cellular processes such as gene regulation, nuclear architecture and genome integrity. The present review summarizes the current information and puts it in the context of the wider search for understanding the influence of transposable elements on the host genome.
Collapse
|
50
|
Klemme S, Banaei-Moghaddam AM, Macas J, Wicker T, Novák P, Houben A. High-copy sequences reveal distinct evolution of the rye B chromosome. THE NEW PHYTOLOGIST 2013; 199:550-558. [PMID: 23614816 DOI: 10.1111/nph.12289] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/16/2013] [Indexed: 05/02/2023]
Abstract
B chromosomes (Bs) are supernumerary chromosomes that vary in number among individuals of the same species. Because of their dispensable nature, their non-Mendelian inheritance and their origin from A chromosomes (As), one might assume that Bs followed a different evolutionary pathway from As, this being reflected in differences in their high-copy DNA constitution. We provide detailed insight into the composition and distribution of rye (Secale cereale) B-located high-copy sequences. A- and B-specific high-copy sequences were identified in silico. Mobile elements and satellite sequences were verified by fluorescence in situ hybridization (FISH). Replication was analyzed via EdU incorporation. Although most repeats are similarly distributed along As and Bs, several transposons are either amplified or depleted on the B. An accumulation of B-enriched satellites was found mostly in the nondisjunction control region of the B, which is transcriptionally active and late-replicating. All B-enriched sequences are not unique to the B but are also present in other Secale species, suggesting the origin of the B from As of the same genus. Our findings highlight the differences between As and Bs. Although Bs originated from As, they have since taken a separate evolutionary pathway.
Collapse
Affiliation(s)
- Sonja Klemme
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466, Germany
| | | | - Jiri Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31/1160, České Budějovice, 370 05, Czech Republic
| | - Thomas Wicker
- University of Zurich, Institute of Plant Biology, Zurich, 8008, Switzerland
| | - Petr Novák
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31/1160, České Budějovice, 370 05, Czech Republic
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466, Germany
| |
Collapse
|