1
|
Pepe S, Guerra F, Russo M, Duardo RC, Capranico G. Genomic context influences translesion synthesis DNA polymerase-dependent mechanisms of micronuclei induction by G-quadruplexes. Cell Rep 2025; 44:115706. [PMID: 40349342 DOI: 10.1016/j.celrep.2025.115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/11/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025] Open
Abstract
Guanine quadruplexes (G4s) are non-canonical DNA structures that can trigger micronuclei (MNi). Mechanisms of micronuclei formation by G4s are not fully understood. Here, we show that G4 stabilization can trigger cell-cycle-phase-specific mechanisms of replication fork stalling and DNA synthesis restart dependent on translesion synthesis (TLS) DNA polymerases (Pols). Fork stalling is caused by G-loops and high transcription during early S only. Moreover, while induction of micronuclei is dependent on DNA Pol η throughout S phase, primase and DNA-directed polymerase (PrimPol) is required in late S only. DNA breakage is not an immediate response to stabilized G4s but rather a consequence of persistent G4-mediated replication stress. Thus, different modes of fork stalling and restart, based on genomic context and TLS Pols, avoid immediate DNA breakage at stalled forks but at the expense of a risk of later mitotic chromosomal instability. The insights can lead to the development of more effective therapies for cancer and neurological diseases.
Collapse
Affiliation(s)
- Simona Pepe
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Preclinical & Translational Research in Oncology (PRO), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Renée C Duardo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Preclinical & Translational Research in Oncology (PRO), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Liu Y, Zhangding Z, Liu X, Hu J. Chromatin-centric insights into DNA replication. Trends Genet 2025; 41:412-424. [PMID: 39765445 DOI: 10.1016/j.tig.2024.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 05/08/2025]
Abstract
DNA replication ensures the precise transmission of genetic information from parent to daughter cells. In eukaryotes, this process involves the replication of every base pair within a highly complex chromatin environment, encompassing multiple levels of chromatin structure and various chromatin metabolic processes. Recent evidence has demonstrated that DNA replication is strictly regulated in both temporal and spatial dimensions by factors such as 3D genome structure and transcription, which is crucial for maintaining genomic stability in each cell cycle. In this review, we discuss the diverse mechanisms that govern eukaryotic DNA replication, emphasizing the roles of chromatin architecture and transcriptional activity within the mammalian chromatin landscape. These insights provide a foundation for future investigations in this field.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xuhao Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China.
| |
Collapse
|
3
|
Subramanian H. Joint optimization of replicative rate and information storage set the letter size of primordial genetic alphabet. Biosystems 2025; 251:105442. [PMID: 40081460 DOI: 10.1016/j.biosystems.2025.105442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/01/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
The simplest possible informational heteropolymer requires only a two-letter alphabet to be able to store information. The evolutionary choice of four monomers in the informational biomolecules RNA/DNA or their progenitors is intriguing, given the inherent difficulties in the simultaneous and localized prebiotic synthesis of all four monomers of progenitors of RNA/DNA from common precursors on early Earth. Excluding the scenario where a two-letter alphabet genome eventually expanded to include two more letters to code for more amino acids on teleological grounds, we show here that a replicatively superior heteropolymer sequence in an RNA-world-like scenario would have to be composed of at least four letters in order to predictably fold into a specific secondary structure, and hence must have out-competed the two-letter alphabet genomes. As a consequence of our earlier demonstration of the replicative rate advantage of maximal-nucleotide-skew sequences, in this follow-up article, we show that the competing constraints of maximum replicative rate and predictable secondary structure formation can be simultaneously satisfied only by maximally-skewed palindromic heteropolymer sequences composed of a minimum of four letters.
Collapse
|
4
|
Shibata Y, Peycheva M, Shibata E, Malzl D, Pavri R, Dutta A. Specific origin selection and excess functional MCM2-7 loading in ORC-deficient cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621095. [PMID: 39554186 PMCID: PMC11565923 DOI: 10.1101/2024.10.30.621095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The six subunit Origin Recognition Complex (ORC) loads excess MCM2-7 on chromosomes to promote initiation of DNA replication and is believed to be important for origin specification. Mapping of origins in cancer cell lines engineered to delete three of the subunits, ORC1 , ORC2 or ORC5 shows that specific origins are still used and are mostly at the same sites in the genome as in wild type cells. The few thousand origins that were up-regulated in the absence of ORC suggest that GC/TA skewness and simple repeat sequences facilitate, but are not essential for, origin selection in the absence of the six-subunit ORC. Despite the lack of ORC, excess MCM2-7 is still loaded at comparable rates in G1 phase to license dormant origins and is also repeatedly loaded in the same S phase to permit re-replication. Thus, origin specification and excess MCM2-7 loading on origins do not require the six-subunit ORC in human cancer cell lines.
Collapse
|
5
|
Krude T, Bi J, Doran R, Jones R, Smith J. Human DNA replication initiation sites are specified epigenetically by oxidation of 5-methyl-deoxycytidine. Nucleic Acids Res 2025; 53:gkaf362. [PMID: 40323014 PMCID: PMC12051107 DOI: 10.1093/nar/gkaf362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
DNA replication initiates at tens of thousands of sites on the human genome during each S phase. However, no consensus DNA sequence has been found that specifies the locations of these replication origins. Here, we investigate modifications of human genomic DNA by density equilibrium centrifugation and DNA sequencing. We identified short discrete sites with increased density during quiescence and G1 phase that overlap with DNA replication origins before their activation in S phase. The increased density is due to the oxidation of 5-methyl-deoxycytidines by ten-eleven-translocation DNA dioxygenase (TET) enzymes at GC-rich domains. Reversible inhibition of de novo methylation and of subsequent oxidation of deoxycytidines results in a reversible inhibition of DNA replication and of cell proliferation. Our findings suggest a mechanism for the epigenetic specification and semiconservative inheritance of DNA replication origin sites in human cells that also provides a stable integral DNA replication licence to support once-per-cell cycle control of origin activation.
Collapse
Affiliation(s)
- Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Jiaming Bi
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Rachel Doran
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Rebecca A Jones
- Developmental Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James C Smith
- Developmental Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
6
|
Segura J, Gómez M. Replication-transcription symbiosis in the mammalian nucleus: The art of living together. Curr Opin Cell Biol 2025; 93:102479. [PMID: 39938136 DOI: 10.1016/j.ceb.2025.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Similarly to life in our planet, where thousands of species inhabit the same ecosystem, the cell nucleus hosts different essential processes that share the same territory, making the interaction between them unavoidable. DNA replication and transcription are essential processes that copy and decode the information contained in our genomes, sharing -and competing for- the same chromatin template. Both activities are executed by large macromolecular machines with similar requirements to access the DNA, remodel the nucleosomes ahead of them and reassemble the chromatin make-up behind. Mechanistically, both processes cannot simultaneously act on the same DNA sequence, but emerging evidence shows that they frequently interact. Here we revise recent data on how transcription and replication occur in chromatin highlighting the symbiotic relationship between both processes, which might help explain how their activities contribute to shape the structure and function of the mammalian genome.
Collapse
Affiliation(s)
- Joana Segura
- Functional Organization of the Genome Group, Centro de Biología Molecular Severo Ochoa, CBM (CSIC/UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | - María Gómez
- Functional Organization of the Genome Group, Centro de Biología Molecular Severo Ochoa, CBM (CSIC/UAM), Nicolás Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
7
|
Hyrien O, Guilbaud G, Krude T. The double life of mammalian DNA replication origins. Genes Dev 2025; 39:304-324. [PMID: 39904559 PMCID: PMC11874978 DOI: 10.1101/gad.352227.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Mammalian DNA replication origins have been historically difficult to identify and their determinants are still unresolved. Here, we first review methods developed over the last decades to map replication initiation sites either directly via initiation intermediates or indirectly via determining replication fork directionality profiles. We also discuss the factors that may specify these sites as replication initiation sites. Second, we address the controversy that has emerged from these results over whether origins are narrowly defined and localized to specific sites or are more dispersed and organized into broad zones. Ample evidence in favor of both scenarios currently creates an impression of unresolved confusion in the field. We attempt to formulate a synthesis of both models and to reconcile discrepant findings. It is evident that not only one approach is sufficient in isolation but that the combination of several is instrumental toward understanding initiation sites in mammalian genomes. We argue that an aggregation of several individual and often inefficient initiation sites into larger initiation zones and the existence of efficient unidirectional initiation sites and fork stalling at the borders of initiation zones can reconcile the different observations.
Collapse
Affiliation(s)
- Olivier Hyrien
- Département de Biologie, École Normale Supérieure, Université Paris Science and Letters, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'Ecole Normale Superieure, 75005 Paris, France
| | - Guillaume Guilbaud
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
8
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Sahu P, Barik S, Ghosh K, Subramanian H. High Nucleotide Skew Palindromic DNA Sequences Function as Potential Replication Origins due to their Unzipping Propensity. J Mol Evol 2024; 92:761-775. [PMID: 39313579 DOI: 10.1007/s00239-024-10202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Locations of DNA replication initiation in prokaryotes, called "origins of replication", are well-characterized. However, a mechanistic understanding of the sequence dependence of the local unzipping of double-stranded DNA, the first step towards replication initiation, is lacking. Here, utilizing a Markov chain model that was created to address the directional nature of DNA unzipping and replication, we model the sequence dependence of local melting of double-stranded linear DNA segments. We show that generalized palindromic sequences with high nucleotide skews have a low kinetic barrier for local melting near melting temperatures. This allows for such sequences to function as potential replication origins. We support our claim with evidence for high-skew palindromic sequences within the replication origins of mitochondrial DNA, bacteria, archaea and plasmids.
Collapse
Affiliation(s)
- Parthasarathi Sahu
- Department of Physics, National Institute of Technology, Durgapur, India
| | - Sashikanta Barik
- Department of Physics, National Institute of Technology, Durgapur, India
| | - Koushik Ghosh
- Department of Physics, National Institute of Technology, Durgapur, India
| | | |
Collapse
|
10
|
Rossetti GG, Dommann N, Karamichali A, Dionellis VS, Asensio Aldave A, Yarahmadov T, Rodriguez-Carballo E, Keogh A, Candinas D, Stroka D, Halazonetis TD. In vivo DNA replication dynamics unveil aging-dependent replication stress. Cell 2024; 187:6220-6234.e13. [PMID: 39293447 DOI: 10.1016/j.cell.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/16/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
The genome duplication program is affected by multiple factors in vivo, including developmental cues, genotoxic stress, and aging. Here, we monitored DNA replication initiation dynamics in regenerating livers of young and old mice after partial hepatectomy to investigate the impact of aging. In young mice, the origin firing sites were well defined; the majority were located 10-50 kb upstream or downstream of expressed genes, and their position on the genome was conserved in human cells. Old mice displayed the same replication initiation sites, but origin firing was inefficient and accompanied by a replication stress response. Inhibitors of the ATR checkpoint kinase fully restored origin firing efficiency in the old mice but at the expense of an inflammatory response and without significantly enhancing the fraction of hepatocytes entering the cell cycle. These findings unveil aging-dependent replication stress and a crucial role of ATR in mitigating the stress-associated inflammation, a hallmark of aging.
Collapse
Affiliation(s)
- Giacomo G Rossetti
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Noëlle Dommann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Angeliki Karamichali
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Vasilis S Dionellis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Ainhoa Asensio Aldave
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tural Yarahmadov
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Adrian Keogh
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland.
| |
Collapse
|
11
|
Zhu X, Kanemaki MT. Replication initiation sites and zones in the mammalian genome: Where are they located and how are they defined? DNA Repair (Amst) 2024; 141:103713. [PMID: 38959715 DOI: 10.1016/j.dnarep.2024.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Eukaryotic DNA replication is a tightly controlled process that occurs in two main steps, i.e., licensing and firing, which take place in the G1 and S phases of the cell cycle, respectively. In Saccharomyces cerevisiae, the budding yeast, replication origins contain consensus sequences that are recognized and bound by the licensing factor Orc1-6, which then recruits the replicative Mcm2-7 helicase. By contrast, mammalian initiation sites lack such consensus sequences, and the mammalian ORC does not exhibit sequence specificity. Studies performed over the past decades have identified replication initiation sites in the mammalian genome using sequencing-based assays, raising the question of whether replication initiation occurs at confined sites or in broad zones across the genome. Although recent reports have shown that the licensed MCMs in mammalian cells are broadly distributed, suggesting that ORC-dependent licensing may not determine the initiation sites/zones, they are predominantly located upstream of actively transcribed genes. This review compares the mechanism of replication initiation in yeast and mammalian cells, summarizes the sequencing-based technologies used for the identification of initiation sites/zones, and proposes a possible mechanism of initiation-site/zone selection in mammalian cells. Future directions and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Xiaoxuan Zhu
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan.
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Shizuoka, Mishima 411-8540, Japan; Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Martins F, Rosspopoff O, Carlevaro-Fita J, Forey R, Offner S, Planet E, Pulver C, Pak H, Huber F, Michaux J, Bassani-Sternberg M, Turelli P, Trono D. A Cluster of Evolutionarily Recent KRAB Zinc Finger Proteins Protects Cancer Cells from Replicative Stress-Induced Inflammation. Cancer Res 2024; 84:808-826. [PMID: 38345497 PMCID: PMC10940857 DOI: 10.1158/0008-5472.can-23-1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/15/2023] [Accepted: 01/19/2024] [Indexed: 03/16/2024]
Abstract
Heterochromatin loss and genetic instability enhance cancer progression by favoring clonal diversity, yet uncontrolled replicative stress leads to mitotic catastrophe and inflammatory responses that promote immune rejection. KRAB domain-containing zinc finger proteins (KZFP) contribute to heterochromatin maintenance at transposable elements (TE). Here, we identified an association of upregulation of a cluster of primate-specific KZFPs with poor prognosis, increased copy-number alterations, and changes in the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL). Depleting two of these KZFPs targeting evolutionarily recent TEs, ZNF587 and ZNF417, impaired the proliferation of cells derived from DLBCL and several other tumor types. ZNF587 and ZNF417 depletion led to heterochromatin redistribution, replicative stress, and cGAS-STING-mediated induction of an interferon/inflammatory response, which enhanced susceptibility to macrophage-mediated phagocytosis and increased surface expression of HLA-I, together with presentation of a neoimmunopeptidome. Thus, cancer cells can exploit KZFPs to dampen TE-originating surveillance mechanisms, which likely facilitates clonal expansion, diversification, and immune evasion. SIGNIFICANCE Upregulation of a cluster of primate-specific KRAB zinc finger proteins in cancer cells prevents replicative stress and inflammation by regulating heterochromatin maintenance, which could facilitate the development of improved biomarkers and treatments.
Collapse
Affiliation(s)
- Filipe Martins
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Clinics of Medical Oncology, Cantonal Hospital of Fribourg (HFR), Fribourg, Switzerland
| | - Olga Rosspopoff
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joana Carlevaro-Fita
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Forey
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cyril Pulver
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - HuiSong Pak
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Florian Huber
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Justine Michaux
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Geng Y, Liu C, Xu N, Shi X, Suen MC, Zhou B, Yan B, Wu C, Li H, Song Y, Chen X, Wang Z, Cai Q, Zhu G. The N-terminal region of Cdc6 specifically recognizes human DNA G-quadruplex. Int J Biol Macromol 2024; 260:129487. [PMID: 38237821 DOI: 10.1016/j.ijbiomac.2024.129487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Guanine (G)-rich nucleic acid sequences can form diverse G-quadruplex structures located in functionally significant genome regions, exerting regulatory control over essential biological processes, including DNA replication in vivo. During the initiation of DNA replication, Cdc6 is recruited by the origin recognition complex (ORC) to target specific chromosomal DNA sequences. This study reveals that human Cdc6 interacts with G-quadruplex structure through a distinct region within the N-terminal intrinsically disordered region (IDR), encompassing residues 7-20. The binding region assumes a hook-type conformation, as elucidated by the NMR solution structure in complex with htel21T18. Significantly, mutagenesis and in vivo investigations confirm the highly specific nature of Cdc6's recognition of G-quadruplex. This research enhances our understanding of the fundamental mechanism governing the interaction between G-quadruplex and the N-terminal IDR region of Cdc6, shedding light on the intricate regulation of DNA replication processes.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Changdong Liu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Naining Xu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiao Shi
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Monica Ching Suen
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bo Zhou
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bing Yan
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Caiming Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueqin Chen
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Guang Zhu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
14
|
Ahmad H, Chetlangia N, Prasanth SG. Chromatin's Influence on Pre-Replication Complex Assembly and Function. BIOLOGY 2024; 13:152. [PMID: 38534422 PMCID: PMC10968542 DOI: 10.3390/biology13030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
In all eukaryotes, the initiation of DNA replication requires a stepwise assembly of factors onto the origins of DNA replication. This is pioneered by the Origin Recognition Complex, which recruits Cdc6. Together, they bring Cdt1, which shepherds MCM2-7 to form the OCCM complex. Sequentially, a second Cdt1-bound hexamer of MCM2-7 is recruited by ORC-Cdc6 to form an MCM double hexamer, which forms a part of the pre-RC. Although the mechanism of ORC binding to DNA varies across eukaryotes, how ORC is recruited to replication origins in human cells remains an area of intense investigation. This review discusses how the chromatin environment influences pre-RC assembly, function, and, eventually, origin activity.
Collapse
Affiliation(s)
- Hina Ahmad
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; (H.A.); (N.C.)
| | - Neha Chetlangia
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; (H.A.); (N.C.)
| | - Supriya G. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; (H.A.); (N.C.)
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Fenstermaker TK, Petruk S, Mazo A. An emerging paradigm in epigenetic marking: coordination of transcription and replication. Transcription 2024; 15:22-37. [PMID: 38378467 PMCID: PMC11093037 DOI: 10.1080/21541264.2024.2316965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.
Collapse
Affiliation(s)
- Tyler K. Fenstermaker
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Castellano CM, Lacroix L, Mathis E, Prorok P, Hennion M, Lopez-Rubio JJ, Méchali M, Gomes A. The genetic landscape of origins of replication in P. falciparum. Nucleic Acids Res 2024; 52:660-676. [PMID: 38038269 PMCID: PMC10810204 DOI: 10.1093/nar/gkad1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Various origin mapping approaches have enabled genome-wide identification of origins of replication (ORI) in model organisms, but only a few studies have focused on divergent organisms. By employing three complementary approaches we provide a high-resolution map of ORIs in Plasmodium falciparum, the deadliest human malaria parasite. We profiled the distribution of origin of recognition complex (ORC) binding sites by ChIP-seq of two PfORC subunits and mapped active ORIs using NFS and SNS-seq. We show that ORIs lack sequence specificity but are not randomly distributed, and group in clusters. Licensing is biased towards regions of higher GC content and associated with G-quadruplex forming sequences (G4FS). While strong transcription likely enhances firing, active origins are depleted from transcription start sites. Instead, most accumulate in transcriptionally active gene bodies. Single molecule analysis of nanopore reads containing multiple initiation events, which could have only come from individual nuclei, showed a relationship between the replication fork pace and the distance to the nearest origin. While some similarities were drawn with the canonic eukaryote model, the distribution of ORIs in P. falciparum is likely shaped by unique genomic features such as extreme AT-richness-a product of evolutionary pressure imposed by the parasitic lifestyle.
Collapse
Affiliation(s)
| | - Laurent Lacroix
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Paris, France
| | - Emilie Mathis
- LPHI, CNRS, Université de Montpellier, 34095 Montpellier, France
| | - Paulina Prorok
- Institute of Human Genetics, CNRS, 34396 Montpellier, France
| | - Magali Hennion
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | | | - Marcel Méchali
- Institute of Human Genetics, CNRS, 34396 Montpellier, France
| | - Ana Rita Gomes
- LPHI, CNRS, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
17
|
González-Acosta D, Lopes M. DNA replication and replication stress response in the context of nuclear architecture. Chromosoma 2024; 133:57-75. [PMID: 38055079 PMCID: PMC10904558 DOI: 10.1007/s00412-023-00813-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
The DNA replication process needs to be coordinated with other DNA metabolism transactions and must eventually extend to the full genome, regardless of chromatin status, gene expression, secondary structures and DNA lesions. Completeness and accuracy of DNA replication are crucial to maintain genome integrity, limiting transformation in normal cells and offering targeting opportunities for proliferating cancer cells. DNA replication is thus tightly coordinated with chromatin dynamics and 3D genome architecture, and we are only beginning to understand the underlying molecular mechanisms. While much has recently been discovered on how DNA replication initiation is organised and modulated in different genomic regions and nuclear territories-the so-called "DNA replication program"-we know much less on how the elongation of ongoing replication forks and particularly the response to replication obstacles is affected by the local nuclear organisation. Also, it is still elusive how specific components of nuclear architecture participate in the replication stress response. Here, we review known mechanisms and factors orchestrating replication initiation, and replication fork progression upon stress, focusing on recent evidence linking genome organisation and nuclear architecture with the cellular responses to replication interference, and highlighting open questions and future challenges to explore this exciting new avenue of research.
Collapse
Affiliation(s)
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Malzl D, Peycheva M, Rahjouei A, Gnan S, Klein KN, Nazarova M, Schoeberl UE, Gilbert DM, Buonomo SCB, Di Virgilio M, Neumann T, Pavri R. RIF1 regulates early replication timing in murine B cells. Nat Commun 2023; 14:8049. [PMID: 38081811 PMCID: PMC10713614 DOI: 10.1038/s41467-023-43778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The mammalian DNA replication timing (RT) program is crucial for the proper functioning and integrity of the genome. The best-known mechanism for controlling RT is the suppression of late origins of replication in heterochromatin by RIF1. Here, we report that in antigen-activated, hypermutating murine B lymphocytes, RIF1 binds predominantly to early-replicating active chromatin and promotes early replication, but plays a minor role in regulating replication origin activity, gene expression and genome organization in B cells. Furthermore, we find that RIF1 functions in a complementary and non-epistatic manner with minichromosome maintenance (MCM) proteins to establish early RT signatures genome-wide and, specifically, to ensure the early replication of highly transcribed genes. These findings reveal additional layers of regulation within the B cell RT program, driven by the coordinated activity of RIF1 and MCM proteins.
Collapse
Affiliation(s)
- Daniel Malzl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Lazarettgasse 14, Vienna, Austria
| | - Mihaela Peycheva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Lazarettgasse 14, Vienna, Austria
| | - Ali Rahjouei
- Max-Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Stefano Gnan
- School of Biological Sciences, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Kyle N Klein
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Mariia Nazarova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
| | - Ursula E Schoeberl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Sara C B Buonomo
- School of Biological Sciences, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Michela Di Virgilio
- Max-Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria.
- Quantro Therapeutics, Vienna Biocenter, 1030, Vienna, Austria.
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria.
| |
Collapse
|
19
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
20
|
Eladl A, Yamaoki Y, Kamba K, Hoshina S, Horinouchi H, Kondo K, Waga S, Nagata T, Katahira M. NMR characterization of the structure of the intrinsically disordered region of human origin recognition complex subunit 1, hORC1, and of its interaction with G-quadruplex DNAs. Biochem Biophys Res Commun 2023; 683:149112. [PMID: 37857165 DOI: 10.1016/j.bbrc.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Human origin recognition complex (hORC) binds to the DNA replication origin and then initiates DNA replication. However, hORC does not exhibit DNA sequence-specificity and how hORC recognizes the replication origin on genomic DNA remains elusive. Previously, we found that hORC recognizes G-quadruplex structures potentially formed near the replication origin. Then, we showed that hORC subunit 1 (hORC1) preferentially binds to G-quadruplex DNAs using a hORC1 construct comprising residues 413 to 511 (hORC1413-511). Here, we investigate the structural characteristics of hORC1413-511 in its free and complex forms with G-quadruplex DNAs. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopic studies indicated that hORC1413-511 is disordered except for a short α-helical region in both the free and complex forms. NMR chemical shift perturbation (CSP) analysis suggested that basic residues, arginines and lysines, and polar residues, serines and threonines, are involved in the G-quadruplex DNA binding. Then, this was confirmed by mutation analysis. Interestingly, CSP analysis indicated that hORC1413-511 binds to both parallel- and (3 + 1)-type G-quadruplex DNAs using the same residues, and thereby in the same manner. Our study suggests that hORC1 uses its intrinsically disordered G-quadruplex binding region to recognize parallel-type and (3 + 1)-type G-quadruplex structures at replication origin.
Collapse
Affiliation(s)
- Afaf Eladl
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shoko Hoshina
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Haruka Horinouchi
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shou Waga
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
21
|
Lu Y, Lee J, Li J, Allu SR, Wang J, Kim H, Bullaughey KL, Fisher SA, Nordgren CE, Rosario JG, Anderson SA, Ulyanova AV, Brem S, Chen HI, Wolf JA, Grady MS, Vinogradov SA, Kim J, Eberwine J. CHEX-seq detects single-cell genomic single-stranded DNA with catalytical potential. Nat Commun 2023; 14:7346. [PMID: 37963886 PMCID: PMC10645931 DOI: 10.1038/s41467-023-43158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Genomic DNA (gDNA) undergoes structural interconversion between single- and double-stranded states during transcription, DNA repair and replication, which is critical for cellular homeostasis. We describe "CHEX-seq" which identifies the single-stranded DNA (ssDNA) in situ in individual cells. CHEX-seq uses 3'-terminal blocked, light-activatable probes to prime the copying of ssDNA into complementary DNA that is sequenced, thereby reporting the genome-wide single-stranded chromatin landscape. CHEX-seq is benchmarked in human K562 cells, and its utilities are demonstrated in cultures of mouse and human brain cells as well as immunostained spatially localized neurons in brain sections. The amount of ssDNA is dynamically regulated in response to perturbation. CHEX-seq also identifies single-stranded regions of mitochondrial DNA in single cells. Surprisingly, CHEX-seq identifies single-stranded loci in mouse and human gDNA that catalyze porphyrin metalation in vitro, suggesting a catalytic activity for genomic ssDNA. We posit that endogenous DNA enzymatic activity is a function of genomic ssDNA.
Collapse
Affiliation(s)
- Youtao Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jaehee Lee
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jifen Li
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jinhui Wang
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - HyunBum Kim
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin L Bullaughey
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen A Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - C Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean G Rosario
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, ARC 517, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Alexandra V Ulyanova
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Sean Grady
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Polêto MD, Lemkul JA. Differences in Conformational Sampling and Intrinsic Electric Fields Drive Ion Binding in Telomeric and TERRA G-Quadruplexes. J Chem Inf Model 2023; 63:6851-6862. [PMID: 37847037 PMCID: PMC10841373 DOI: 10.1021/acs.jcim.3c01305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The formation of G-quadruplexes (GQs) occurs in guanine-rich sequences of DNA and RNA, producing highly stable and structurally diverse noncanonical nucleic acid structures. GQs play crucial roles in regulating transcription, translation, and replication and maintaining the genome, among others; thus, changes to their structures can lead to diseases such as cancer. Previous studies using polarizable molecular dynamics simulations have shown differences in ion binding properties between telomeric and telomeric repeat-containing RNA GQs despite architectural similarities. Here, we used volume-based metadynamics and repulsive potential simulations in conjunction with polarizable force fields to quantify the impact of ion binding on the GQ dynamics and ion binding free energies. Furthermore, we describe how GQs exert electric fields on their surroundings to link dynamics with variations in the electronic structure. Our findings provide new insights into the energetic, physical, and conformational properties of GQs and expose subtle but important differences between DNA and RNA GQs with the same fold.
Collapse
Affiliation(s)
- Marcelo D Polêto
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
23
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
24
|
Heuzé J, Lin YL, Lengronne A, Poli J, Pasero P. Impact of R-loops on oncogene-induced replication stress in cancer cells. C R Biol 2023; 346:95-105. [PMID: 37779381 DOI: 10.5802/crbiol.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023]
Abstract
Replication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops. These structures form during transcription when nascent RNA reanneals with DNA behind the RNA polymerase, forming a stable DNA:RNA hybrid. In this review, we discuss how these different cotranscriptional processes disrupt the progression of replication forks and how they contribute to genetic instability in cancer cells.
Collapse
|
25
|
Polêto MD, Lemkul JA. Differences in Conformational Sampling and Intrinsic Electric Fields Drive Ion Binding in Telomeric and TERRA G-Quadruplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552810. [PMID: 37645825 PMCID: PMC10461924 DOI: 10.1101/2023.08.10.552810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The formation of G-quadruplexes (GQs) occurs in guanine-rich sequences of DNA and RNA, producing highly stable and structurally diverse noncanonical nucleic acid structures. GQs play crucial roles in regulating transcription, translation, and replication; and maintaining the genome, among others, thus changes to their structures can lead to diseases such as cancer. Previous studies using polarizable molecular dynamics simulations have shown differences in ion binding properties between telomeric and TERRA GQs despite architectural similarities. Here, we used volume-based metadynamics and repulsive potential simulations in conjunction with polarizable force fields to quantify the impact of ion binding on GQ dynamics and ion binding free energies. Furthermore, we describe how GQs exert electric fields on their surroundings to link dynamics with variations in electronic structure. Our findings provide new insights into the energetic, physical, and conformational properties of GQs and expose subtle, but important, differences between DNA and RNA GQs with the same fold.
Collapse
Affiliation(s)
- Marcelo D Polêto
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
26
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
27
|
Prorok P, Forouzanfar F, Murugarren N, Peiffer I, Charton R, Akerman I, Méchali M. Loss of Ezh2 function remodels the DNA replication initiation landscape. Cell Rep 2023; 42:112280. [PMID: 36995935 DOI: 10.1016/j.celrep.2023.112280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/13/2022] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
In metazoan cells, DNA replication initiates from thousands of genomic loci scattered throughout the genome called DNA replication origins. Origins are strongly associated with euchromatin, particularly open genomic regions such as promoters and enhancers. However, over a third of transcriptionally silent genes are associated with DNA replication initiation. Most of these genes are bound and repressed by the Polycomb repressive complex-2 (PRC2) through the repressive H3K27me3 mark. This is the strongest overlap observed for a chromatin regulator with replication origin activity. Here, we asked whether Polycomb-mediated gene repression is functionally involved in recruiting DNA replication origins to transcriptionally silent genes. We show that the absence of EZH2, the catalytic subunit of PRC2, results in increased DNA replication initiation, specifically in the vicinity of EZH2 binding sites. The increase in DNA replication initiation does not correlate with transcriptional de-repression or the acquisition of activating histone marks but does correlate with loss of H3K27me3 from bivalent promoters.
Collapse
Affiliation(s)
- Paulina Prorok
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France.
| | - Faezeh Forouzanfar
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France
| | - Nerea Murugarren
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B152TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B152TT, UK
| | - Isabelle Peiffer
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France
| | - Romain Charton
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B152TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B152TT, UK.
| | - Marcel Méchali
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France.
| |
Collapse
|
28
|
Jaksik R, Wheeler DA, Kimmel M. Detection and characterization of constitutive replication origins defined by DNA polymerase epsilon. BMC Biol 2023; 21:41. [PMID: 36829160 PMCID: PMC9960419 DOI: 10.1186/s12915-023-01527-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Despite the process of DNA replication being mechanistically highly conserved, the location of origins of replication (ORI) may vary from one tissue to the next, or between rounds of replication in eukaryotes, suggesting flexibility in the choice of locations to initiate replication. Lists of human ORI therefore vary widely in number and location, and there are currently no methods available to compare them. Here, we propose a method of detection of ORI based on somatic mutation patterns generated by the mutator phenotype of damaged DNA polymerase epsilon (POLE). RESULTS We report the genome-wide localization of constitutive ORI in POLE-mutated human tumors using whole genome sequencing data. Mutations accumulated after many rounds of replication of unsynchronized dividing cell populations in tumors allow to identify constitutive origins, which we show are shared with high fidelity between individuals and tumor types. Using a Smith-Waterman-like dynamic programming approach, we compared replication origin positions obtained from multiple different methods. The comparison allowed us to define a consensus set of replication origins, identified consistently by multiple ORI detection methods. Many DNA features co-localized with the consensus set of ORI, including chromatin loop anchors, G-quadruplexes, S/MARs, and CpGs. Among all features, the H2A.Z histone exhibited the most significant association. CONCLUSIONS Our results show that mutation-based detection of replication origins is a viable approach to determining their location and associated sequence features.
Collapse
Affiliation(s)
- Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - David A. Wheeler
- grid.39382.330000 0001 2160 926XHuman Genome Sequencing Centre, Baylor College of Medicine, Houston, TX USA ,grid.240871.80000 0001 0224 711XPresent Address: Clinical Genomics Group, Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN 38103 USA
| | - Marek Kimmel
- grid.6979.10000 0001 2335 3149Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, Houston, TX USA
| |
Collapse
|
29
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
30
|
Brush GS. Anomalies in dye-terminator DNA sequencing caused by a natural G-quadruplex. PLoS One 2022; 17:e0279423. [PMID: 36574393 PMCID: PMC9794070 DOI: 10.1371/journal.pone.0279423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/24/2022] [Indexed: 12/29/2022] Open
Abstract
A G-rich DNA sequence from yeast that can form a non-canonical G-quadruplex structure was cloned into a plasmid vector and subjected to Sanger sequencing using dye-labeled dideoxynucleotides. Two different effects were observed. In one, presence of the G4 sequence on the template strand led to incorrect incorporation of an A residue at an internal position in the G4 sequence. In the other, the nascent strand caused attenuation of the readout coincident with synthesis of the G-rich DNA. The two effects are novel examples of disruption in DNA synthesis caused by a G4 sequence. These results provide a new example of a DNA structure that could influence genomic stability in human cells.
Collapse
Affiliation(s)
- George S. Brush
- Department of Oncology, Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine,Detroit, MI, United States of America
- * E-mail:
| |
Collapse
|
31
|
Pessina F, Romussi A, Piccini D, Mazzucco G, Varasi M, Doksani Y. Enrichment of DNA replication intermediates by EdU pull down. Methods Cell Biol 2022; 182:83-94. [PMID: 38359989 DOI: 10.1016/bs.mcb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Analysis of replication fork structures in electron microscopy (EM) can provide important mechanistic insights in DNA replication studies. A major challenge in this type of analysis is the paucity of replication intermediates. At any given time only a small fraction of the restriction fragments of genomic DNA will contain a replication fork. To address this issue, we have developed an EdU-pull-down procedure to enrich for replicating DNA. Cells are exposed to a brief pulse of EdU, a cleavable biotin moiety is attached to EdU by copper-catalyzed azide-alkyne cycloaddition (CuAAC), in conditions that minimize the damage to DNA. Biotinylated DNA is purified with streptavidin beads, in conditions that facilitate association of long DNA filaments. Finally, the DNA is eluted by cleaving the biotin moiety. This approach can enrich over 150-times for replicating DNA and about 50-times in replication fork structures, as verified by EM. This procedure could benefit analysis of replication intermediates in EM as well as other techniques for the study of replicating DNA.
Collapse
Affiliation(s)
- Fabio Pessina
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alessia Romussi
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Daniele Piccini
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giulia Mazzucco
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mario Varasi
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ylli Doksani
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
32
|
Murat P, Perez C, Crisp A, van Eijk P, Reed SH, Guilbaud G, Sale JE. DNA replication initiation shapes the mutational landscape and expression of the human genome. SCIENCE ADVANCES 2022; 8:eadd3686. [PMID: 36351018 PMCID: PMC9645720 DOI: 10.1126/sciadv.add3686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The interplay between active biological processes and DNA repair is central to mutagenesis. Here, we show that the ubiquitous process of replication initiation is mutagenic, leaving a specific mutational footprint at thousands of early and efficient replication origins. The observed mutational pattern is consistent with two distinct mechanisms, reflecting the two-step process of origin activation, triggering the formation of DNA breaks at the center of origins and local error-prone DNA synthesis in their immediate vicinity. We demonstrate that these replication initiation-dependent mutational processes exert an influence on phenotypic diversity in humans that is disproportionate to the origins' genomic size: By increasing mutational loads at gene promoters and splice junctions, the presence of an origin significantly influences both gene expression and mRNA isoform usage. Last, we show that mutagenesis at origins not only drives the evolution of origin sequences but also contributes to sculpting regulatory domains of the human genome.
Collapse
Affiliation(s)
- Pierre Murat
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alastair Crisp
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Patrick van Eijk
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Simon H. Reed
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Guillaume Guilbaud
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E. Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
33
|
Richards L, Lord CL, Benton ML, Capra JA, Nordman JT. Nucleoporins facilitate ORC loading onto chromatin. Cell Rep 2022; 41:111590. [PMID: 36351393 PMCID: PMC10040217 DOI: 10.1016/j.celrep.2022.111590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/10/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The origin recognition complex (ORC) binds throughout the genome to initiate DNA replication. In metazoans, it is still unclear how ORC is targeted to specific loci to facilitate helicase loading and replication initiation. Here, we perform immunoprecipitations coupled with mass spectrometry for ORC2 in Drosophila embryos. Surprisingly, we find that ORC2 associates with multiple subunits of the Nup107-160 subcomplex of the nuclear pore. Bioinformatic analysis reveals that, relative to all modENCODE factors, nucleoporins are among the most enriched factors at ORC2 binding sites. Critically, depletion of the nucleoporin Elys, a member of the Nup107-160 complex, decreases ORC2 loading onto chromatin. Depleting Elys also sensitizes cells to replication fork stalling, which could reflect a defect in establishing dormant replication origins. Our work reveals a connection between ORC, replication initiation, and nucleoporins, suggesting a function for nucleoporins in metazoan replication initiation.
Collapse
Affiliation(s)
- Logan Richards
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher L Lord
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA 94143, USA
| | - Jared T Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
34
|
Dao FY, Lv H, Fullwood MJ, Lin H. Accurate Identification of DNA Replication Origin by Fusing Epigenomics and Chromatin Interaction Information. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9780293. [PMID: 36405252 PMCID: PMC9667886 DOI: 10.34133/2022/9780293] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 07/29/2023]
Abstract
DNA replication initiation is a complex process involving various genetic and epigenomic signatures. The correct identification of replication origins (ORIs) could provide important clues for the study of a variety of diseases caused by replication. Here, we design a computational approach named iORI-Epi to recognize ORIs by incorporating epigenome-based features, sequence-based features, and 3D genome-based features. The iORI-Epi displays excellent robustness and generalization ability on both training datasets and independent datasets of K562 cell line. Further experiments confirm that iORI-Epi is highly scalable in other cell lines (MCF7 and HCT116). We also analyze and clarify the regulatory role of epigenomic marks, DNA motifs, and chromatin interaction in DNA replication initiation of eukaryotic genomes. Finally, we discuss gene enrichment pathways from the perspective of ORIs in different replication timing states and heuristically dissect the effect of promoters on replication initiation. Our computational methodology is worth extending to ORI identification in other eukaryotic species.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
| | - Hao Lv
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melissa J. Fullwood
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
35
|
Episomes and Transposases-Utilities to Maintain Transgene Expression from Nonviral Vectors. Genes (Basel) 2022; 13:genes13101872. [PMID: 36292757 PMCID: PMC9601623 DOI: 10.3390/genes13101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and adverse immunological reactions. Nonviral vector systems have been extensively studied and refined during the last decades. Emerging knowledge of the epigenetic regulation of replication and spatial chromatin organisation, as well as new technologies, such as Crispr/Cas, were employed to enhance the performance of different nonviral vector systems. Thus, nonviral vectors are in focus and hold some promising perspectives for future applications in gene therapy. This review addresses three prominent nonviral vector systems: the Sleeping Beauty transposase, S/MAR-based episomes, and viral plasmid replicon-based EBV vectors. Exemplarily, we review different utilities, modifications, and new concepts that were pursued to overcome limitations regarding stable transgene expression and mitotic stability. New insights into the nuclear localisation of nonviral vector molecules and the potential consequences thereof are highlighted. Finally, we discuss the remaining limitations and provide an outlook on possible future developments in nonviral vector technology.
Collapse
|
36
|
Peycheva M, Neumann T, Malzl D, Nazarova M, Schoeberl UE, Pavri R. DNA replication timing directly regulates the frequency of oncogenic chromosomal translocations. Science 2022; 377:eabj5502. [DOI: 10.1126/science.abj5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chromosomal translocations result from the joining of DNA double-strand breaks (DSBs) and frequently cause cancer. However, the steps linking DSB formation to DSB ligation remain undeciphered. We report that DNA replication timing (RT) directly regulates lymphomagenic
Myc
translocations during antibody maturation in B cells downstream of DSBs and independently of DSB frequency. Depletion of minichromosome maintenance complexes alters replication origin activity, decreases translocations, and deregulates global RT. Ablating a single origin at
Myc
causes an early-to-late RT switch, loss of translocations, and reduced proximity with the immunoglobulin heavy chain (
Igh
) gene, its major translocation partner. These phenotypes were reversed by restoring early RT. Disruption of early RT also reduced tumorigenic translocations in human leukemic cells. Thus, RT constitutes a general mechanism in translocation biogenesis linking DSB formation to DSB ligation.
Collapse
Affiliation(s)
- Mihaela Peycheva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Daniel Malzl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Mariia Nazarova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Ursula E. Schoeberl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
37
|
Méchali M. Replication timing and genetic instability. Science 2022; 377:1259-1260. [DOI: 10.1126/science.ade4734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Synchronized activation of DNA replication origins induces genetic instability in lymphoma
Collapse
Affiliation(s)
- Marcel Méchali
- Institute of Human Genetics, CNRS–University of Montpellier, Montpellier, France
| |
Collapse
|
38
|
Guilbaud G, Murat P, Wilkes HS, Lerner LK, Sale JE, Krude T. Determination of human DNA replication origin position and efficiency reveals principles of initiation zone organisation. Nucleic Acids Res 2022; 50:7436-7450. [PMID: 35801867 PMCID: PMC9303276 DOI: 10.1093/nar/gkac555] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/16/2022] Open
Abstract
Replication of the human genome initiates within broad zones of ∼150 kb. The extent to which firing of individual DNA replication origins within initiation zones is spatially stochastic or localised at defined sites remains a matter of debate. A thorough characterisation of the dynamic activation of origins within initiation zones is hampered by the lack of a high-resolution map of both their position and efficiency. To address this shortcoming, we describe a modification of initiation site sequencing (ini-seq), based on density substitution. Newly replicated DNA is rendered 'heavy-light' (HL) by incorporation of BrdUTP while unreplicated DNA remains 'light-light' (LL). Replicated HL-DNA is separated from unreplicated LL-DNA by equilibrium density gradient centrifugation, then both fractions are subjected to massive parallel sequencing. This allows precise mapping of 23,905 replication origins simultaneously with an assignment of a replication initiation efficiency score to each. We show that origin firing within early initiation zones is not randomly distributed. Rather, origins are arranged hierarchically with a set of very highly efficient origins marking zone boundaries. We propose that these origins explain much of the early firing activity arising within initiation zones, helping to unify the concept of replication initiation zones with the identification of discrete replication origin sites.
Collapse
Affiliation(s)
- Guillaume Guilbaud
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Pierre Murat
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Helen S Wilkes
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Leticia Koch Lerner
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E Sale
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
39
|
Impact of Chromosomal Context on Origin Selection and the Replication Program. Genes (Basel) 2022; 13:genes13071244. [PMID: 35886027 PMCID: PMC9318681 DOI: 10.3390/genes13071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic DNA replication is regulated by conserved mechanisms that bring about a spatial and temporal organization in which distinct genomic domains are copied at characteristic times during S phase. Although this replication program has been closely linked with genome architecture, we still do not understand key aspects of how chromosomal context modulates the activity of replication origins. To address this question, we have exploited models that combine engineered genomic rearrangements with the unique replication programs of post-quiescence and pre-meiotic S phases. Our results demonstrate that large-scale inversions surprisingly do not affect cell proliferation and meiotic progression, despite inducing a restructuring of replication domains on each rearranged chromosome. Remarkably, these alterations in the organization of DNA replication are entirely due to changes in the positions of existing origins along the chromosome, as their efficiencies remain virtually unaffected genome wide. However, we identified striking alterations in origin firing proximal to the fusion points of each inversion, suggesting that the immediate chromosomal neighborhood of an origin is a crucial determinant of its activity. Interestingly, the impact of genome reorganization on replication initiation is highly comparable in the post-quiescent and pre-meiotic S phases, despite the differences in DNA metabolism in these two physiological states. Our findings therefore shed new light on how origin selection and the replication program are governed by chromosomal architecture.
Collapse
|
40
|
Greenberg A, Simon I. S Phase Duration Is Determined by Local Rate and Global Organization of Replication. BIOLOGY 2022; 11:718. [PMID: 35625446 PMCID: PMC9139170 DOI: 10.3390/biology11050718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
The duration of the cell cycle has been extensively studied and a wide degree of variability exists between cells, tissues and organisms. However, the duration of S phase has often been neglected, due to the false assumption that S phase duration is relatively constant. In this paper, we describe the methodologies to measure S phase duration, summarize the existing knowledge about its variability and discuss the key factors that control it. The local rate of replication (LRR), which is a combination of fork rate (FR) and inter-origin distance (IOD), has a limited influence on S phase duration, partially due to the compensation between FR and IOD. On the other hand, the organization of the replication program, specifically the amount of replication domains that fire simultaneously and the degree of overlap between the firing of distinct replication timing domains, is the main determinant of S phase duration. We use these principles to explain the variation in S phase length in different tissues and conditions.
Collapse
Affiliation(s)
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
41
|
High-throughput analysis of single human cells reveals the complex nature of DNA replication timing control. Nat Commun 2022; 13:2402. [PMID: 35504890 PMCID: PMC9065153 DOI: 10.1038/s41467-022-30212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
DNA replication initiates from replication origins firing throughout S phase. Debate remains about whether origins are a fixed set of loci, or a loose agglomeration of potential sites used stochastically in individual cells, and about how consistent their firing time is. We develop an approach to profile DNA replication from whole-genome sequencing of thousands of single cells, which includes in silico flow cytometry, a method for discriminating replicating and non-replicating cells. Using two microfluidic platforms, we analyze up to 2437 replicating cells from a single sample. The resolution and scale of the data allow focused analysis of replication initiation sites, demonstrating that most occur in confined genomic regions. While initiation order is remarkably similar across cells, we unexpectedly identify several subtypes of initiation regions in late-replicating regions. Taken together, high throughput, high resolution sequencing of individual cells reveals previously underappreciated variability in replication initiation and progression.
Collapse
|
42
|
Shu H, Zhang R, Xiao K, Yang J, Sun X. G-Quadruplex-Binding Proteins: Promising Targets for Drug Design. Biomolecules 2022; 12:biom12050648. [PMID: 35625576 PMCID: PMC9138358 DOI: 10.3390/biom12050648] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical secondary nucleic acid structures. Sequences with the potential to form G4s are abundant in regulatory regions of the genome including telomeres, promoters and 5′ non-coding regions, indicating they fulfill important genome regulatory functions. Generally, G4s perform various biological functions by interacting with proteins. In recent years, an increasing number of G-quadruplex-binding proteins have been identified with biochemical experiments. G4-binding proteins are involved in vital cellular processes such as telomere maintenance, DNA replication, gene transcription, mRNA processing. Therefore, G4-binding proteins are also associated with various human diseases. An intensive study of G4-protein interactions provides an attractive approach for potential therapeutics and these proteins can be considered as drug targets for novel medical treatment. In this review, we present biological functions and structural properties of G4-binding proteins, and discuss how to exploit G4-protein interactions to develop new therapeutic targets.
Collapse
|
43
|
Gnan S, Josephides JM, Wu X, Spagnuolo M, Saulebekova D, Bohec M, Dumont M, Baudrin LG, Fachinetti D, Baulande S, Chen CL. Kronos scRT: a uniform framework for single-cell replication timing analysis. Nat Commun 2022; 13:2329. [PMID: 35484127 PMCID: PMC9050662 DOI: 10.1038/s41467-022-30043-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Mammalian genomes are replicated in a cell type-specific order and in coordination with transcription and chromatin organization. Currently, single-cell replication studies require individual processing of sorted cells, yielding a limited number (<100) of cells. Here, we develop Kronos scRT, a software for single-cell Replication Timing (scRT) analysis. Kronos scRT does not require a specific platform or cell sorting, which allows investigating large datasets obtained from asynchronous cells. By applying our tool to published data as well as droplet-based single-cell whole-genome sequencing data generated in this study, we exploit scRT from thousands of cells for different mouse and human cell lines. Our results demonstrate that although genomic regions are frequently replicated around their population average RT, replication can occur stochastically throughout S phase. Altogether, Kronos scRT allows fast and comprehensive investigations of the RT programme at the single-cell resolution for both homogeneous and heterogeneous cell populations. A scalable approach to explore DNA replication in single cells reveals that although aneuploidy does not have a major impact on the pattern of replication, different cell types and sub-populations display distinguished replication paths.
Collapse
Affiliation(s)
- Stefano Gnan
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Joseph M Josephides
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Xia Wu
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Manuela Spagnuolo
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Dalila Saulebekova
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Mylène Bohec
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, 75005, Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, CNRS UMR144, Cell Biology and Cancer, 75005, Paris, France
| | - Laura G Baudrin
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, 75005, Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS UMR144, Cell Biology and Cancer, 75005, Paris, France
| | - Sylvain Baulande
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, 75005, Paris, France
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France.
| |
Collapse
|
44
|
Mei L, Kedziora KM, Song EA, Purvis JE, Cook J. The consequences of differential origin licensing dynamics in distinct chromatin environments. Nucleic Acids Res 2022; 50:9601-9620. [PMID: 35079814 PMCID: PMC9508807 DOI: 10.1093/nar/gkac003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic chromosomes contain regions of varying accessibility, yet DNA replication factors must access all regions. The first replication step is loading MCM complexes to license replication origins during the G1 cell cycle phase. It is not yet known how mammalian MCM complexes are adequately distributed to both accessible euchromatin regions and less accessible heterochromatin regions. To address this question, we combined time-lapse live-cell imaging with immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in euchromatin and heterochromatin throughout G1. We report here that MCM loading in euchromatin is faster than that in heterochromatin in early G1, but surprisingly, heterochromatin loading accelerates relative to euchromatin loading in middle and late G1. This differential acceleration allows both chromatin types to begin S phase with similar concentrations of loaded MCM. The different loading dynamics require ORCA-dependent differences in origin recognition complex distribution. A consequence of heterochromatin licensing dynamics is that cells experiencing a truncated G1 phase from premature cyclin E expression enter S phase with underlicensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase. Thus, G1 length is critical for sufficient MCM loading, particularly in heterochromatin, to ensure complete genome duplication and to maintain genome stability.
Collapse
Affiliation(s)
- Liu Mei
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Bioinformatics and Analytics Research Collaborative (BARC), University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eun-Ah Song
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
45
|
The genetic architecture of DNA replication timing in human pluripotent stem cells. Nat Commun 2021; 12:6746. [PMID: 34799581 PMCID: PMC8604924 DOI: 10.1038/s41467-021-27115-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
DNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome's replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) - sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.
Collapse
|
46
|
Kemiha S, Poli J, Lin YL, Lengronne A, Pasero P. Toxic R-loops: Cause or consequence of replication stress? DNA Repair (Amst) 2021; 107:103199. [PMID: 34399314 DOI: 10.1016/j.dnarep.2021.103199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.
Collapse
Affiliation(s)
- Samira Kemiha
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
47
|
Efficiency and equity in origin licensing to ensure complete DNA replication. Biochem Soc Trans 2021; 49:2133-2141. [PMID: 34545932 DOI: 10.1042/bst20210161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.
Collapse
|
48
|
Moqtaderi Z, Brown S, Bender W. Genome-wide oscillations in G + C density and sequence conservation. Genome Res 2021; 31:2050-2057. [PMID: 34649930 PMCID: PMC8559709 DOI: 10.1101/gr.274332.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Eukaryotic genomes typically show a uniform G + C content among chromosomes, but on smaller scales, many species have a G + C density that fluctuates with a characteristic wavelength. This oscillation is evident in many insect species, with wavelengths ranging between 700 bp and 4 kb. Measures of evolutionary conservation oscillate in phase with G + C content, with conserved regions having higher G + C. Loci with large regulatory regions show more regular oscillations; coding sequences and heterochromatic regions show little or no oscillation. There is little oscillation in vertebrate genomes in regions with densely distributed mobile repetitive elements. However, species with few repeats show oscillation in both G + C density and sequence conservation. These oscillations may reflect optimal spacing of cis-regulatory elements.
Collapse
Affiliation(s)
- Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Susan Brown
- Department of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
49
|
Sato K, Martin-Pintado N, Post H, Altelaar M, Knipscheer P. Multistep mechanism of G-quadruplex resolution during DNA replication. SCIENCE ADVANCES 2021; 7:eabf8653. [PMID: 34559566 PMCID: PMC8462899 DOI: 10.1126/sciadv.abf8653] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
G-quadruplex (or G4) structures form in guanine-rich DNA sequences and threaten genome stability when not properly resolved. G4 unwinding occurs during S phase via an unknown mechanism. Using Xenopus egg extracts, we define a three-step G4 unwinding mechanism that acts during DNA replication. First, the replicative helicase composed of Cdc45, MCM2-7 and GINS (CMG) stalls at a leading strand G4 structure. Second, the DEAH-box helicase 36 (DHX36) mediates bypass of the CMG past the intact G4 structure, allowing approach of the leading strand to the G4. Third, G4 structure unwinding by the Fanconi anemia complementation group J helicase (FANCJ) enables DNA polymerase to synthesize past the G4 motif. A G4 on the lagging strand template does not stall CMG but still requires DNA replication for unwinding. DHX36 and FANCJ have partially redundant roles, conferring pathway robustness. This previously unknown genome maintenance pathway promotes faithful G4 replication, thereby avoiding genome instability.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | - Nerea Martin-Pintado
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
- Corresponding author.
| |
Collapse
|
50
|
Shi J, Zhang X, Li J, Huang W, Wang Y, Wang Y, Qin J. MTA2 sensitizes gastric cancer cells to PARP inhibition by induction of DNA replication stress. Transl Oncol 2021; 14:101167. [PMID: 34280886 PMCID: PMC8313750 DOI: 10.1016/j.tranon.2021.101167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib selectively kills cancer cells with BRCA-deficiency and is approved for BRCA-mutated breast, ovarian and pancreatic cancers by FDA. However, phase III study of olaparib failed to show a significant improvement in overall survival in patients with gastric cancer (GC). To discover an effective biomarker for GC patient-selection in olaparib treatment, we analyzed proteomic profiling of 12 GC cell lines. MTA2 was identified to confer sensitivity to olaparib by aggravating olaparib-induced replication stress in cancer cells. Mechanistically, we applied Cleavage Under Targets and Tagmentation assay to find that MTA2 proteins preferentially bind regions of replication origin-associated DNA sequences, which could be enhanced by olaparib treatment. Furthermore, MTA2 was validated here to render cancer cells susceptible to combination of olaparib with ATR inhibitor AZD6738. In general, our study identified MTA2 as a potential biomarker for olaparib sensitivity by aggravating olaparib-induced replication stress.
Collapse
Affiliation(s)
- Jinwen Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaofeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenwen Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|