1
|
Rodrigues PS, Burssed B, Bellucco F, Rosolen DCB, Kim CA, Melaragno MI. Cytogenomic characterization of karyotypes with additional autosomal material. Sci Rep 2025; 15:12191. [PMID: 40204846 PMCID: PMC11982272 DOI: 10.1038/s41598-025-97077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Chromosomal rearrangements involving additional material in individuals with phenotypic alterations usually result in partial trisomy, often accompanied by partial monosomy. To characterize chromosomal rearrangements and analyze genomic characteristics in the breakpoint regions in 31 patients with additional material on an autosomal chromosome. Different tests were performed to characterize these patients, including karyotyping, chromosomal microarray analysis (CMA), and fluorescent in situ hybridization (FISH). In silico analyses evaluated A/B chromosomal compartments, segmental duplications, and repetitive elements at breakpoints. The 31 rearrangements resulted in 47 copy number variations (CNVs) and a range of structural aberrations were identified, including six tandem duplications, 19 derivative chromosomes, two intrachromosomal rearrangements, one recombinant, two dicentric chromosomes, and one triplication. A deleted segment was associated with the duplication in 16 of the 19 patients with derivative chromosomes from translocation. Among the trios whose chromosome rearrangement origin could be investigated, 54,5% were de novo, 31,9% were maternally inherited, and 13,6% were paternally inherited from balanced translocations or inversion. Breakpoint analysis revealed that 22 were in the A compartment (euchromatin), 25 were in the B compartment (heterochromatin), and five were in an undefined compartment. Additionally, 14 patients had breakpoints in regions of segmental duplications and repeat elements. Our study found that a deletion accompanied by additional genetic material was present in 51.6% of the patients, uncovering the underlying genetic imbalances. Statistical analyses revealed a positive correlation between chromosome size and the occurrence of CNVs in the rearrangements. Furthermore, no preference was observed for breakpoints occurring in compartments A and B, repetitive elements, or segmental duplications.
Collapse
Affiliation(s)
| | - Bruna Burssed
- Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Bellucco
- Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Chong Ae Kim
- Genetics Unit, Instituto da Criança, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil.
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, CEP 04023-900, SP, Brazil.
| |
Collapse
|
2
|
Cheng YHH, Bohaczuk SC, Stergachis AB. Functional categorization of gene regulatory variants that cause Mendelian conditions. Hum Genet 2024; 143:559-605. [PMID: 38436667 PMCID: PMC11078748 DOI: 10.1007/s00439-023-02639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
Much of our current understanding of rare human diseases is driven by coding genetic variants. However, non-coding genetic variants play a pivotal role in numerous rare human diseases, resulting in diverse functional impacts ranging from altered gene regulation, splicing, and/or transcript stability. With the increasing use of genome sequencing in clinical practice, it is paramount to have a clear framework for understanding how non-coding genetic variants cause disease. To this end, we have synthesized the literature on hundreds of non-coding genetic variants that cause rare Mendelian conditions via the disruption of gene regulatory patterns and propose a functional classification system. Specifically, we have adapted the functional classification framework used for coding variants (i.e., loss-of-function, gain-of-function, and dominant-negative) to account for features unique to non-coding gene regulatory variants. We identify that non-coding gene regulatory variants can be split into three distinct categories by functional impact: (1) non-modular loss-of-expression (LOE) variants; (2) modular loss-of-expression (mLOE) variants; and (3) gain-of-ectopic-expression (GOE) variants. Whereas LOE variants have a direct corollary with coding loss-of-function variants, mLOE and GOE variants represent disease mechanisms that are largely unique to non-coding variants. These functional classifications aim to provide a unified terminology for categorizing the functional impact of non-coding variants that disrupt gene regulatory patterns in Mendelian conditions.
Collapse
Affiliation(s)
- Y H Hank Cheng
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie C Bohaczuk
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
3
|
Berdan EL, Blanckaert A, Slotte T, Suh A, Westram AM, Fragata I. Unboxing mutations: Connecting mutation types with evolutionary consequences. Mol Ecol 2021; 30:2710-2723. [PMID: 33955064 DOI: 10.1111/mec.15936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023]
Abstract
A key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Alexander Suh
- School of Biological Sciences - Organisms and the Environment, University of East Anglia, Norwich, UK.,Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja M Westram
- IST Austria, Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Inês Fragata
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
5
|
Elhady GM, Kholeif S, Nazmy N. Chromosomal Aberrations in 224 Couples with Recurrent Pregnancy Loss. J Hum Reprod Sci 2020; 13:340-348. [PMID: 33627985 PMCID: PMC7879846 DOI: 10.4103/jhrs.jhrs_11_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/04/2020] [Accepted: 10/16/2020] [Indexed: 11/04/2022] Open
Abstract
Background Recurrent pregnancy loss (RPL) is a major reproductive health issue, affecting 2%-5% of couples. Genetic factors, mainly chromosomal abnormalities, are the most common cause of early miscarriage accounting for 50%-60% of first trimester abortion. Aim To estimate the prevalence and nature of chromosomal anomalies in couples with recurrent miscarriage. Patients and Methods This study included 224 couples with a history of 2 or more abortions. Both partners were karyotyped as part of the primary investigation. Cytogenetic analysis was carried out using the standard method. Results A total of 224 couples with a history of two or more recurrent abortions were enrolled in this study. Chromosomal abnormalities were detected in 26 couples (11.6%) and 28 individuals (6.25%). We found a structural chromosome abnormality in 17/28 patients (60.7%); 12 patients had a reciprocal translocation (42.9%) including one patient with an additional inversion of the Y chromosome, 4 (14.3%) had a Robertsonian translocation, and one patient (3.6%) carried a paracentric inversion of chromosome 2. Numerical chromosome aberrations were detected in 5 patients; three patients (10.7%) with sex chromosome abnormalities and two (7.1%) with a marker chromosome. Six patients (21.4%) showed a heteromorphic variant involving chromosome 9. Conclusion The prevalence of chromosomal abnormalities in couples with RPL is within the range reported worldwide. Cytogenetic analysis should become an integral part of the investigations of couples with at least two pregnancy losses of undetermined etiology.
Collapse
Affiliation(s)
- Ghada Mohamed Elhady
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Soha Kholeif
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nahla Nazmy
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Xiao B, Ye X, Wang L, Fan Y, Gu X, Ji X, Sun Y, Yu Y. Whole Genome Low-Coverage Sequencing Concurrently Detecting Copy Number Variations and Their Underlying Complex Chromosomal Rearrangements by Systematic Breakpoint Mapping in Intellectual Deficiency/Developmental Delay Patients. Front Genet 2020; 11:616. [PMID: 32733533 PMCID: PMC7357533 DOI: 10.3389/fgene.2020.00616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 01/30/2023] Open
Abstract
Simple copy number variations (CNVs) detected by chromosomal microarray (CMA) can result from complex structural changes. Therefore, it is necessary to characterize potential structural changes that cause pathogenic CNVs. We applied whole-genome low-coverage sequencing (WGLCS) to concurrently detect pathogenic CNVs and their associated chromosomal rearrangements in 15 patients. All the patients had an average of 2–3 pathogenic CNVs involving 1–2 chromosomes. WGLCS identified all the 34 pathogenic CNVs found by microarray. By identifying chimeric read pairs, WGLCS mapped 70 breakpoints in these patients, of which 47 were finely mapped at the nucleotide level and confirmed by subsequent PCR amplification and Sanger sequencing of the junction fragments. In 15 patients, structural rearrangements were defined at molecular level in 13 patients. In 13 patients, WGLCS reveal no additional results in two patients. In another 11 patients, WGLCS revealed new breakpoints or finely mapped the genes disrupted by breakpoints or 1–6 bp microhomology and/or short insertion (4–70 bp) in the breakpoints junctions. However, structural changes in the other two patients still remained unclear after WGLCS was performed. The structural alteration identified in the 13 patients could be divided into the following categories: (1) interstitial inverted duplication with concomitant terminal deletion (inv dup del) (P1,P4,P9,P11); (2) the product of pericentric inversion (P5); (3) ring chromosome (P8); (4) interstitial duplication and/or triplication (P6, P7); and (5) +der(22)t(11;22) (P2,P15); (6) complex structural rearrangements (P3,P12,P14). WGLCS displayed the ability to discover CNVs and define breakpoints and its disrupted genes and its surrounding sequences in one experiment at base-pair-resolution, which help us to learn more about the mechanisms of formation of observed genomic rearrangements, and in which DNA replicative/repair mechanism might contribute to the formation of complex rearrangements in 11 patients. Clear karyotype at molecular level could help provide an accurate evaluation of recurrent risk and guide prenatal diagnosis or reproductive planning.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Pediatric Endocrinology and Genetic Metabolism, School of Medicine, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiantao Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, School of Medicine, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Wang
- Department of Pediatric Endocrinology and Genetic Metabolism, School of Medicine, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetic Metabolism, School of Medicine, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, School of Medicine, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Ji
- Department of Pediatric Endocrinology and Genetic Metabolism, School of Medicine, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Sun
- Department of Pediatric Endocrinology and Genetic Metabolism, School of Medicine, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, School of Medicine, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
7
|
Zhang J, Zhang B, Liu T, Xie H, Zhai J. Partial trisomy 4q and monosomy 5p inherited from a maternal translocationt(4;5)(q33; p15) in three adverse pregnancies. Mol Cytogenet 2020; 13:26. [PMID: 32625247 PMCID: PMC7329393 DOI: 10.1186/s13039-020-00492-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
Background Carriers of balanced reciprocal chromosomal translocations are at known reproductive risk for offspring with unbalanced genotypes and resultantly abnormal phenotypes. Once fertilization of a balanced translocation gamete with a normal gamete, the partial monosomy or partial trisomy embryo will undergo abortion, fetal arrest or fetal malformations. We reported a woman with chromosomal balanced translocation who had two adverse pregnancies. Prenatal diagnosis was made for her third pregnancy to provide genetic counseling and guide her fertility. Case presentation We presented a woman with chromosomal balanced translocation who had three adverse pregnancies. Routine G banding and CNV-seq were used to analyze the chromosome karyotypes and copy number variants of amniotic fluid cells and peripheral blood. The karyotype of the woman was 46,XX,t(4;5)(q33;p15). During her first pregnancy, odinopoeia was performed due to fetal edema and abdominal fluid. The umbilical cord tissue of the fetus was examined by CNV-seq. The results showed a genomic gain of 24.18 Mb at 4q32.3-q35.2 and a genomic deletion of 10.84 Mb at 5p15.2-p15.33 and 2.36 Mb at 15q11.1-q11.2. During her second pregnancy, she did not receive a prenatal diagnosis because a routine prenatal ultrasound examination found no abnormalities. In 2016, she gave birth to a boy. The karyotype the of the boy was 46,XY,der(5)t(4;5)(q33;p15)mat. The results of CNV-seq showed a deletion of short arm of chromosome 5 capturing regions 5p15.2-p15.33, a copy gain of the distal region of chromosome 4 at segment 4q32.3q35.2, a duplication of chromosome 1 at segment 1q41q42.11 and a duplication of chromosome 17 at segment 17p12. During her third pregnancy, she underwent amniocentesis at 17 weeks of gestation. Chromosome karyotype hinted 46,XY,der(5)t(4;5)(q33;p15)mat. Results of CNV-seq showed a deletion of short arm (p) of chromosome 5 at the segment 5p15.2p15.33 and a duplication of the distal region of chromosome 4 at segment 4q32.3q35.2. Conclusions Chromosomal abnormalities in three pregnancies were inherited from the mother. Preimplantation genetic diagnosis is recommended to prevent the birth of children with chromosomal abnormalities.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Bei Zhang
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Tong Liu
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Huihui Xie
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Jingfang Zhai
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| |
Collapse
|
8
|
Identifying NAHR mechanism between two distinct Alu elements through breakpoint junction mapping by NGS. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
O’Donnell ST, Ross RP, Stanton C. The Progress of Multi-Omics Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level Approach. Front Microbiol 2020; 10:3084. [PMID: 32047482 PMCID: PMC6997344 DOI: 10.3389/fmicb.2019.03084] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic Acid Bacteria (LAB) have long been recognized as having a significant impact ranging from commercial to health domains. A vast amount of research has been carried out on these microbes, deciphering many of the pathways and components responsible for these desirable effects. However, a large proportion of this functional information has been derived from a reductionist approach working with pure culture strains. This provides limited insight into understanding the impact of LAB within intricate systems such as the gut microbiome or multi strain starter cultures. Whole genome sequencing of strains and shotgun metagenomics of entire systems are powerful techniques that are currently widely used to decipher function in microbes, but they also have their limitations. An available genome or metagenome can provide an image of what a strain or microbiome, respectively, is potentially capable of and the functions that they may carry out. A top-down, multi-omics approach has the power to resolve the functional potential of an ecosystem into an image of what is being expressed, translated and produced. With this image, it is possible to see the real functions that members of a system are performing and allow more accurate and impactful predictions of the effects of these microorganisms. This review will discuss how technological advances have the potential to increase the yield of information from genomics, transcriptomics, proteomics and metabolomics. The potential for integrated omics to resolve the role of LAB in complex systems will also be assessed. Finally, the current software approaches for managing these omics data sets will be discussed.
Collapse
Affiliation(s)
- Shane Thomas O’Donnell
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
10
|
Dutta UR, Rao SN, Pidugu VK, V.S. V, Bhattacherjee A, Bhowmik AD, Ramaswamy SK, Singh KG, Dalal A. Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing. Genomics 2019; 111:1108-1114. [DOI: 10.1016/j.ygeno.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 01/20/2023]
|
11
|
Zhang S, Liang F, Lei C, Wu J, Fu J, Yang Q, Luo X, Yu G, Wang D, Zhang Y, Lu D, Sun X, Liang Y, Xu C. Long-read sequencing and haplotype linkage analysis enabled preimplantation genetic testing for patients carrying pathogenic inversions. J Med Genet 2019; 56:741-749. [PMID: 31439719 PMCID: PMC6860410 DOI: 10.1136/jmedgenet-2018-105976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/31/2019] [Accepted: 06/13/2019] [Indexed: 01/04/2023]
Abstract
Background Preimplantation genetic testing (PGT) has already been applied in patients known to carry chromosomal structural variants to improve the clinical outcome of assisted reproduction. However, conventional molecular techniques are not capable of reliably distinguishing embryos that carry balanced inversion from those with a normal karyotype. We aim to evaluate the use of long-read sequencing in combination with haplotype linkage analysis to address this challenge. Methods Long-read sequencing on Oxford Nanopore platform was employed to identify the precise positions of inversion break points in four patients. Comprehensive chromosomal screening and genome-wide haplotype linkage analysis were performed based on SNP microarray. The haplotypes, including the break point regions, the whole chromosomes involved in the inversion and the corresponding homologous chromosomes, were established using informative SNPs. Results All the inversion break points were successfully identified by long-read sequencing and validated by Sanger sequencing, and on average only 13 bp differences were observed between break points inferred by long-read sequencing and Sanger sequencing. Eighteen blastocysts were biopsied and tested, in which 10 were aneuploid or unbalanced and eight were diploid with normal or balanced inversion karyotypes. Diploid embryos were transferred back to patients, the predictive results of the current methodology were consistent with fetal karyotypes of amniotic fluid or cord blood. Conclusions Nanopore long-read sequencing is a powerful method to assay chromosomal inversions and identify exact break points. Identification of inversion break points combined with haplotype linkage analysis is an efficient strategy to distinguish embryos with normal or balanced inversion karyotypes, facilitating PGT applications.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Fan Liang
- GrandOmics Biosciences, Beijing, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jing Fu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qi Yang
- GrandOmics Biosciences, Beijing, China
| | - Xiao Luo
- GrandOmics Biosciences, Beijing, China
| | | | | | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Daru Lu
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yu Liang
- GrandOmics Biosciences, Beijing, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Simioni M, Artiguenave F, Meyer V, Sgardioli IC, Viguetti-Campos NL, Lopes Monlleó I, Maciel-Guerra AT, Steiner CE, Gil-da-Silva-Lopes VL. Genomic Investigation of Balanced Chromosomal Rearrangements in Patients with Abnormal Phenotypes. Mol Syndromol 2017; 8:187-194. [PMID: 28690484 DOI: 10.1159/000477084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Balanced chromosomal rearrangements (BCR) are associated with abnormal phenotypes in approximately 6% of balanced translocations and 9.4% of balanced inversions. Abnormal phenotypes can be caused by disruption of genes at the breakpoints, deletions, or positional effects. Conventional cytogenetic techniques have a limited resolution and do not enable a thorough genetic investigation. Molecular techniques applied to BCR carriers can contribute to the characterization of this type of chromosomal rearrangement and to the phenotype-genotype correlation. Fifteen individuals among 35 with abnormal phenotypes and BCR were selected for further investigation by molecular techniques. Chromosomal rearrangements involved 11 reciprocal translocations, 3 inversions, and 1 balanced insertion. Array genomic hybridization (AGH) was performed and genomic imbalances were detected in 20% of the cases, 1 at a rearrangement breakpoint and 2 further breakpoints in other chromosomes. Alterations were further confirmed by FISH and associated with the phenotype of the carriers. In the analyzed cases not showing genomic imbalances by AGH, next-generation sequencing (NGS), using whole genome libraries, prepared following the Illumina TruSeq DNA PCR-Free protocol (Illumina®) and then sequenced on an Illumina HiSEQ 2000 as 150-bp paired-end reads, was done. The NGS results suggested breakpoints in 7 cases that were similar or near those estimated by karyotyping. The genes overlapping 6 breakpoint regions were analyzed. Follow-up of BCR carriers would improve the knowledge about these chromosomal rearrangements and their consequences.
Collapse
Affiliation(s)
- Milena Simioni
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Ilária C Sgardioli
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nilma L Viguetti-Campos
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabella Lopes Monlleó
- Clinical Genetics Service, Faculty of Medicine, University Hospital, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Andréa T Maciel-Guerra
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos E Steiner
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vera L Gil-da-Silva-Lopes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
13
|
Zhang L, Wang J, Zhang C, Li D, Carvalho CM, Ji H, Xiao J, Wu Y, Zhou W, Wang H, Jin L, Luo Y, Wu X, Lupski JR, Zhang F, Jiang Y. Efficient CNV breakpoint analysis reveals unexpected structural complexity and correlation of dosage-sensitive genes with clinical severity in genomic disorders. Hum Mol Genet 2017; 26:1927-1941. [PMID: 28334874 PMCID: PMC6075079 DOI: 10.1093/hmg/ddx102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/13/2023] Open
Abstract
Genomic disorders are the clinical conditions manifested by submicroscopic genomic rearrangements including copy number variants (CNVs). The CNVs can be identified by array-based comparative genomic hybridization (aCGH), the most commonly used technology for molecular diagnostics of genomic disorders. However, clinical aCGH only informs CNVs in the probe-interrogated regions. Neither orientational information nor the resulting genomic rearrangement structure is provided, which is a key to uncovering mutational and pathogenic mechanisms underlying genomic disorders. Long-range polymerase chain reaction (PCR) is a traditional approach to obtain CNV breakpoint junction, but this method is inefficient when challenged by structural complexity such as often found at the PLP1 locus in association with Pelizaeus-Merzbacher disease (PMD). Here we introduced 'capture and single-molecule real-time sequencing' (cap-SMRT-seq) and newly developed 'asymmetry linker-mediated nested PCR walking' (ALN-walking) for CNV breakpoint sequencing in 49 subjects with PMD-associated CNVs. Remarkably, 29 (94%) of the 31 CNV breakpoint junctions unobtainable by conventional long-range PCR were resolved by cap-SMRT-seq and ALN-walking. Notably, unexpected CNV complexities, including inter-chromosomal rearrangements that cannot be resolved by aCGH, were revealed by efficient breakpoint sequencing. These sequence-based structures of PMD-associated CNVs further support the role of DNA replicative mechanisms in CNV mutagenesis, and facilitate genotype-phenotype correlation studies. Intriguingly, the lengths of gained segments by CNVs are strongly correlated with clinical severity in PMD, potentially reflecting the functional contribution of other dosage-sensitive genes besides PLP1. Our study provides new efficient experimental approaches (especially ALN-walking) for CNV breakpoint sequencing and highlights their importance in uncovering CNV mutagenesis and pathogenesis in genomic disorders.
Collapse
Affiliation(s)
- Ling Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Cheng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Dongxiao Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haoran Ji
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jianqiu Xiao
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Weichen Zhou
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200032, China
| | - Yang Luo
- MOE Key Laboratory of Medical Cell Biology, The Research Center for Medical Genomics, College of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
14
|
Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing. PLoS One 2017; 12:e0169935. [PMID: 28072833 PMCID: PMC5225008 DOI: 10.1371/journal.pone.0169935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged as an efficacious methodology for precise detection of translocation breakpoints. However, studies so far have mainly focused on de novo translocations. The present study focuses specifically on familial cases in order to shed some light to this diagnostic dilemma. Whole-genome mate-pair sequencing (WG-MPS) was applied to map the breakpoints in nine two-way ABT carriers from four families. Translocation breakpoints and patient-specific structural variants were validated by Sanger sequencing and quantitative Real Time PCR, respectively. Identical sequencing patterns and breakpoints were identified in affected and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any pathogenic mutations or unique variants in the affected individuals that could explain the phenotypic differences between carriers of the same translocations. In conclusion, we suggest that NGS-based methods, such as WG-MPS, can be successfully used for detailed mapping of translocation breakpoints, which can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been excluded. Future whole-exome or whole-genome sequencing will potentially reveal unidentified mutations in the patients underlying the discordant phenotypes within each family. In addition, larger studies are needed to determine the exact percentage for phenotypic risk in families with ABTs.
Collapse
|
15
|
Hu L, Cheng D, Gong F, Lu C, Tan Y, Luo K, Wu X, He W, Xie P, Feng T, Yang K, Lu G, Lin G. Reciprocal Translocation Carrier Diagnosis in Preimplantation Human Embryos. EBioMedicine 2016; 14:139-147. [PMID: 27840008 PMCID: PMC5161423 DOI: 10.1016/j.ebiom.2016.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022] Open
Abstract
Preimplantation genetic diagnosis (PGD) is widely applied in reciprocal translocation carriers to increase the chance for a successful live birth. However, reciprocal translocation carrier embryos were seldom discriminated from the normal ones mainly due to the technique restriction. Here we established a clinical applicable approach to identify precise breakpoint of reciprocal translocation and to further distinguish normal embryos in PGD. In the preclinical phase, rearrangement breakpoints and adjacent single nucleotide polymorphisms (SNPs) were characterized by next-generation sequencing following microdissecting junction region (MicroSeq) from 8 reciprocal translocation carriers. Junction-spanning PCR and sequencing further discovered precise breakpoints. The precise breakpoints were identified in 7/8 patients and we revealed that translocations in 6 patients caused 9 gene disruptions. In the clinical phase of embryo analysis, informative SNPs were chosen for linkage analyses combined with PCR analysis of the breakpoints to identify the carrier embryos. From 15 blastocysts diagnosed to be chromosomal balanced, 13 blastocysts were identified to be carriers and 2 to be normal. Late prenatal diagnoses for five carriers and one normal fetus confirmed the carrier diagnosis results. Our results suggest that MicroSeq can accurately evaluate the genetic risk of translocation carriers and carrier screen is possible in later PGD treatment.
Collapse
Affiliation(s)
- Liang Hu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China
| | - Dehua Cheng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Fei Gong
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Changfu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Yueqiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China
| | - Keli Luo
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Xianhong Wu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Wenbing He
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Pingyuan Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China
| | - Tao Feng
- Peking Jabrehoo Med Tech., Ltd., Beijing 100089, China
| | - Kai Yang
- Peking Jabrehoo Med Tech., Ltd., Beijing 100089, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China.
| |
Collapse
|
16
|
Wyrwa K, Książkiewicz M, Szczepaniak A, Susek K, Podkowiński J, Naganowska B. Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes. Chromosome Res 2016; 24:355-78. [PMID: 27168155 PMCID: PMC4969343 DOI: 10.1007/s10577-016-9526-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 11/30/2022]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) has recently been considered a reference genome for the Lupinus genus. In the present work, genetic and cytogenetic maps of L. angustifolius were supplemented with 30 new molecular markers representing lupin genome regions, harboring genes involved in nitrogen fixation during the symbiotic interaction of legumes and soil bacteria (Rhizobiaceae). Our studies resulted in the precise localization of bacterial artificial chromosomes (BACs) carrying sequence variants for early nodulin 40, nodulin 26, nodulin 45, aspartate aminotransferase P2, asparagine synthetase, cytosolic glutamine synthetase, and phosphoenolpyruvate carboxylase. Together with previously mapped chromosomes, the integrated L. angustifolius map encompasses 73 chromosome markers, including 5S ribosomal DNA (rDNA) and 45S rDNA, and anchors 20 L. angustifolius linkage groups to corresponding chromosomes. Chromosomal identification using BAC fluorescence in situ hybridization identified two BAC clones as narrow-leafed lupin centromere-specific markers, which served as templates for preliminary studies of centromere composition within the genus. Bioinformatic analysis of these two BACs revealed that centromeric/pericentromeric regions of narrow-leafed lupin chromosomes consisted of simple sequence repeats ordered into tandem repeats containing the trinucleotide and pentanucleotide simple sequence repeats AGG and GATAC, structured into long arrays. Moreover, cross-genus microsynteny analysis revealed syntenic patterns of 31 single-locus BAC clones among several legume species. The gene and chromosome level findings provide evidence of ancient duplication events that must have occurred very early in the divergence of papilionoid lineages. This work provides a strong foundation for future comparative mapping among legumes and may facilitate understanding of mechanisms involved in shaping legume chromosomes.
Collapse
Affiliation(s)
- Katarzyna Wyrwa
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland.
| | - Michał Książkiewicz
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| | - Anna Szczepaniak
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| | - Karolina Susek
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| | - Jan Podkowiński
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Z. Noskowskiego 12/14, Poznań, 61-704, Poland
| | - Barbara Naganowska
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| |
Collapse
|
17
|
Poot M. Chromothripsis after Stumbling through DNA Replication. Mol Syndromol 2016; 6:207-9. [PMID: 26997940 DOI: 10.1159/000441081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
|
18
|
Schneider A, Puechberty J, Ng BL, Coubes C, Gatinois V, Tournaire M, Girard M, Dumont B, Bouret P, Magnetto J, Baghdadli A, Pellestor F, Geneviève D. Identification of disrupted AUTS2 and EPHA6 genes by array painting in a patient carrying a de novo balanced translocation t(3;7) with intellectual disability and neurodevelopment disorder. Am J Med Genet A 2015; 167A:3031-7. [PMID: 26333717 DOI: 10.1002/ajmg.a.37350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/12/2015] [Indexed: 11/09/2022]
Abstract
Intellectual disability (ID) is a frequent feature but is highly clinically and genetically heterogeneous. The establishment of the precise diagnosis in patients with ID is challenging due to this heterogeneity but crucial for genetic counseling and appropriate care for the patients. Among the etiologies of patients with ID, apparently balanced de novo rearrangements represent 0.6%. Several mechanisms explain the ID in patients with apparently balanced de novo rearrangement. Among them, disruption of a disease gene at the breakpoint, is frequently evoked. In this context, technologies recently developed are used to characterize precisely such chromosomal rearrangements. Here, we report the case of a boy with ID, facial features and autistic behavior who is carrying a de novo balanced reciprocal translocation t(3;7)(q11.2;q11.22)dn. Using microarray analysis, array painting (AP) technology combined with molecular study, we have identified the interruption of the autism susceptibility candidate 2 gene (AUTS2) and EPH receptor A6 gene (EPHA6). We consider that the disruption of AUTS2 explains the phenotype of the patient; the exact role of EPHA6 in human pathology is not well defined. Based on the observation of recurrent germinal and somatic translocations involving AUTS2 and the molecular environment content, we put forward the hypothesis that the likely chromosomal mechanism responsible for the translocation could be due either to replicative stress or to recombination-based mechanisms.
Collapse
Affiliation(s)
- Anouck Schneider
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | | | - Bee Ling Ng
- Cytometry Core Facility, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Vincent Gatinois
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Magali Tournaire
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Manon Girard
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Bruno Dumont
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Pauline Bouret
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Julia Magnetto
- CRA, Département de Psychiatrie de l'Enfant et de l'Adolescent, Centre de Ressources Autisme, CHRU de Montpellier, France
| | - Amaria Baghdadli
- CRA, Département de Psychiatrie de l'Enfant et de l'Adolescent, Centre de Ressources Autisme, CHRU de Montpellier, France
| | - Franck Pellestor
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - David Geneviève
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France.,Département de Génétique Médicale, CHRU de Montpellier, France
| |
Collapse
|
19
|
Ji X, Liang D, Sun R, Liu C, Ma D, Wang Y, Hu P, Xu Z. Molecular characterization of ring chromosome 18 by low-coverage next generation sequencing. BMC MEDICAL GENETICS 2015. [PMID: 26224010 PMCID: PMC4557216 DOI: 10.1186/s12881-015-0206-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Ring chromosomes are one category of structurally abnormal chromosomes that can lead to severe growth retardation and other clinical defects. Traditionally, their diagnosis and characterization has largely relied on conventional cytogenetics and fluorescence in situ hybridization, array-based comparative genomic hybridization and single nucleotide polymorphism array-based comparative genomic hybridization. However, these methods are ineffectively at characterizing the ring chromosome structure and only offer a low resolution mapping of breakpoints. Here, we applied whole-genome low-coverage paired-end next generation sequencing (NGS) to two suspected cases of ring chromosome 18 (r(18)) and characterized the ring structure including the chromosome dosage changes and the breakpoint junction. Methods The breakpoints and chromosome copy number variations (CNVs) of r(18) were characterized by whole-genome low-coverage paired-end NGS. We confirmed the dosage change by single nucleotide polymorphisms array, and validated the junction site regions using PCR followed by Sanger sequencing. Results We successfully and fully characterized the r(18) in two cases by NGS. We mapped the breakpoints with a high resolution and identified all CNVs in both cases. We analyzed the breakpoint regions and discovered two breakpoints located within repetitive sequence regions, and two near the repetitive sequence regions. One of the breakpoints in case 2 was located within the gene METTL4, while the other breakpoints were intergenic. Conclusions We demonstrated that whole-genome low-coverage paired-end NGS can be used directly to map breakpoints with a high molecular resolution and detect all CNVs on r(18). This approach will provide new insights into the genotype-phenotype correlations on r(18) and the underlying mechanism of ring chromosomes formation. Our results also demonstrate that this can be a powerful approach for the diagnosis and characterization of ring chromosomes in the clinic. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0206-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuqing Ji
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| | - Dong Liang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| | - Ruihong Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,National Key Clinical Department of Laboratory Medicine, Nanjing, China.
| | - Cuiyun Liu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| | - Dingyuan Ma
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| | - Yan Wang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| | - Ping Hu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| | - Zhengfeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Weckselblatt B, Hermetz KE, Rudd MK. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res 2015; 25:937-47. [PMID: 26070663 PMCID: PMC4484391 DOI: 10.1101/gr.191247.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
Abstract
Unbalanced translocations are a relatively common type of copy number variation and a major contributor to neurodevelopmental disorders. We analyzed the breakpoints of 57 unique unbalanced translocations to investigate the mechanisms of how they form. Fifty-one are simple unbalanced translocations between two different chromosome ends, and six rearrangements have more than three breakpoints involving two to five chromosomes. Sequencing 37 breakpoint junctions revealed that simple translocations have between 0 and 4 base pairs (bp) of microhomology (n = 26), short inserted sequences (n = 8), or paralogous repeats (n = 3) at the junctions, indicating that translocations do not arise primarily from nonallelic homologous recombination but instead form most often via nonhomologous end joining or microhomology-mediated break-induced replication. Three simple translocations fuse genes that are predicted to produce in-frame transcripts of SIRPG-WWOX, SMOC2-PROX1, and PIEZO2-MTA1, which may lead to gain of function. Three complex translocations have inversions, insertions, and multiple breakpoint junctions between only two chromosomes. Whole-genome sequencing and fluorescence in situ hybridization analysis of two de novo translocations revealed at least 18 and 33 breakpoints involving five different chromosomes. Breakpoint sequencing of one maternally inherited translocation involving four chromosomes uncovered multiple breakpoints with inversions and insertions. All of these breakpoint junctions had 0-4 bp of microhomology consistent with chromothripsis, and both de novo events occurred on paternal alleles. Together with other studies, these data suggest that germline chromothripsis arises in the paternal genome and may be transmitted maternally. Breakpoint sequencing of our large collection of chromosome rearrangements provides a comprehensive analysis of the molecular mechanisms behind translocation formation.
Collapse
Affiliation(s)
- Brooke Weckselblatt
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
21
|
Kloosterman WP, Hochstenbach R. Deciphering the pathogenic consequences of chromosomal aberrations in human genetic disease. Mol Cytogenet 2014; 7:100. [PMID: 25606056 PMCID: PMC4299681 DOI: 10.1186/s13039-014-0100-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/08/2014] [Indexed: 01/14/2023] Open
Abstract
Chromosomal aberrations include translocations, deletions, duplications, inversions, aneuploidies and complex rearrangements. They underlie genetic disease in roughly 15% of patients with multiple congenital abnormalities and/or mental retardation (MCA/MR). In genetic diagnostics, the pathogenicity of chromosomal aberrations in these patients is typically assessed based on criteria such as phenotypic similarity to other patients with the same or overlapping aberration, absence in healthy individuals, de novo occurrence, and protein coding gene content. However, a thorough understanding of the molecular mechanisms that lead to MCA/MR as a result of chromosome aberrations is often lacking. Chromosome aberrations can affect one or more genes in a complex manner, such as by changing the regulation of gene expression, by disrupting exons, and by creating fusion genes. The precise delineation of breakpoints by whole-genome sequencing enables the construction of local genomic architecture and facilitates the prediction of the molecular determinants of the patient's phenotype. Here, we review current methods for breakpoint identification and their impact on the interpretation of chromosome aberrations in patients with MCA/MR. In addition, we discuss opportunities to dissect disease mechanisms based on large-scale genomic technologies and studies in model organisms.
Collapse
Affiliation(s)
- Wigard P Kloosterman
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Ron Hochstenbach
- Department of Medical Genetics, Genome Diagnostics, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
22
|
Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell 2014; 55:829-842. [PMID: 25201414 DOI: 10.1016/j.molcel.2014.08.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 01/28/2023]
Abstract
Breakpoint junctions of the chromosomal translocations that occur in human cancers display hallmarks of nonhomologous end-joining (NHEJ). In mouse cells, translocations are suppressed by canonical NHEJ (c-NHEJ) components, which include DNA ligase IV (LIG4), and instead arise from alternative NHEJ (alt-NHEJ). Here we used designer nucleases (ZFNs, TALENs, and CRISPR/Cas9) to introduce DSBs on two chromosomes to study translocation joining mechanisms in human cells. Remarkably, translocations were altered in cells deficient for LIG4 or its interacting protein XRCC4. Translocation junctions had significantly longer deletions and more microhomology, indicative of alt-NHEJ. Thus, unlike mouse cells, translocations in human cells are generated by c-NHEJ. Human cancer translocations induced by paired Cas9 nicks also showed a dependence on c-NHEJ, despite having distinct joining characteristics. These results demonstrate an unexpected and striking species-specific difference for common genomic rearrangements associated with tumorigenesis.
Collapse
|
23
|
Zanardo ÉA, Piazzon FB, Dutra RL, Dias AT, Montenegro MM, Novo-Filho GM, Costa TVMM, Nascimento AM, Kim CA, Kulikowski LD. Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome. Mol Genet Genomics 2014; 289:1037-43. [PMID: 24985706 DOI: 10.1007/s00438-014-0876-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Genome rearrangements are caused by the erroneous repair of DNA double-strand breaks, leading to several alterations that result in loss or gain of the structural genomic of a dosage-sensitive genes. However, the mechanisms that promote the complexity of rearrangements of congenital or developmental defects in human disease are unclear. The investigation of complex genomic abnormalities could help to elucidate the mechanisms and causes for the formation and facilitate the understanding of congenital or developmental defects in human disease. We here report one case of a patient with atypical clinical features of the 1p36 syndrome and the use of cytogenomic techniques to characterize the genomic alterations. Analysis by multiplex ligation-dependent probe amplification and array revealed a complex rearrangement in the 1p36.3 region with deletions and duplication interspaced by normal sequences. We also suggest that chromoanagenesis could be a possible mechanism involved in the repair and stabilization of this rearrangement.
Collapse
Affiliation(s)
- Évelin Aline Zanardo
- Department of Pathology, Laboratório de Citogenômica, LIM 03, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 155, 2° floor, block 12, Cerqueira César, São Paulo, SP, CEP: 05403-000, Brazil,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dong Z, Jiang L, Yang C, Hu H, Wang X, Chen H, Choy KW, Hu H, Dong Y, Hu B, Xu J, Long Y, Cao S, Chen H, Wang WJ, Jiang H, Xu F, Yao H, Xu X, Liang Z. A robust approach for blind detection of balanced chromosomal rearrangements with whole-genome low-coverage sequencing. Hum Mutat 2014; 35:625-36. [PMID: 24610732 DOI: 10.1002/humu.22541] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/25/2014] [Indexed: 11/06/2022]
Abstract
Balanced chromosomal rearrangement (or balanced chromosome abnormality, BCA) is a common chromosomal structural variation. Next-generation sequencing has been reported to detect BCA-associated breakpoints with the aid of karyotyping. However, the complications associated with this approach and the requirement for cytogenetics information has limited its application. Here, we provide a whole-genome low-coverage sequencing approach to detect BCA events independent of knowing the affected regions and with low false positives. First, six samples containing BCAs were used to establish a detection protocol and assess the efficacy of different library construction approaches. By clustering anomalous read pairs and filtering out the false-positive results with a control cohort and the concomitant mapping information, we could directly detect BCA events for each sample. Through optimizing the read depth, BCAs in all samples could be blindly detected with only 120 million read pairs per sample for data from a small-insert library and 30 million per sample for data from nonsize-selected mate-pair library. This approach was further validated using another 13 samples that contained BCAs. Our approach advances the application of high-throughput whole-genome low-coverage analysis for robust BCA detection-especially for clinical samples-without the need for karyotyping.
Collapse
|
25
|
Baliakas P, Iskas M, Gardiner A, Davis Z, Plevova K, Nguyen-Khac F, Malcikova J, Anagnostopoulos A, Glide S, Mould S, Stepanovska K, Brejcha M, Belessi C, Davi F, Pospisilova S, Athanasiadou A, Stamatopoulos K, Oscier D. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol 2014; 89:249-55. [PMID: 24166834 DOI: 10.1002/ajh.23618] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 02/02/2023]
Abstract
The significance of chromosomal translocations (CTRAs) and karyotype complexity (KC) in chronic lymphocytic leukemia (CLL) remains uncertain. To gain insight into these issues, we evaluated a series of 1001 CLL cases with reliable classic cytogenetic data obtained within 6 months from diagnosis before any treatment. Overall, 320 cases were found to carry ≥ 1 CTRAs. The most frequent chromosome breakpoints were 13q, followed by 14q, 18q, 17q, and 17p; notably, CTRAs involving chromosome 13q showed a wide spectrum of translocation partners. KC (≥ 3 aberrations) was detected in 157 cases and significantly (P < 0.005) associated with unmutated IGHV genes and aberrations of chromosome 17p. Furthermore, it was identified as an independent prognostic factor for shorter time-to-first-treatment. CTRAs were assigned to two categories (i) CTRAs present in the context of KC, often with involvement of chromosome 17p aberrations, occurring mostly in CLL with unmutated IGHV genes; in such cases, we found that KC rather than the presence of CTRAs per se negatively impacts on survival; (ii) CTRAs in cases without KC, having limited if any impact on survival. On this evidence, we propose that all CTRAs in CLL are not equivalent but rather develop by different processes and are associated with distinct clonal behavior.
Collapse
Affiliation(s)
- Panagiotis Baliakas
- Hematology Department and HCT Unit; G. Papanicolaou Hospital; Thessaloniki Greece
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala Sweden
| | - Michalis Iskas
- Hematology Department and HCT Unit; G. Papanicolaou Hospital; Thessaloniki Greece
| | - Anne Gardiner
- Department of Haematology; Royal Bournemouth Hospital; Bournemouth United Kingdom
| | - Zadie Davis
- Department of Haematology; Royal Bournemouth Hospital; Bournemouth United Kingdom
| | - Karla Plevova
- Department of Internal Medicine, Hematology and Oncology; University Hospital Brno and Central European Institute of Technology, Masaryk University; Brno Czech Republic
| | - Florence Nguyen-Khac
- Hematology Department and University Pierre et Marie Curie; Hôpital Pitié-Salpètrière; Paris France
| | - Jitka Malcikova
- Department of Internal Medicine, Hematology and Oncology; University Hospital Brno and Central European Institute of Technology, Masaryk University; Brno Czech Republic
| | | | - Sharron Glide
- Department of Haematology; Royal Bournemouth Hospital; Bournemouth United Kingdom
| | - Sarah Mould
- Department of Haematology; Royal Bournemouth Hospital; Bournemouth United Kingdom
| | - Kristina Stepanovska
- Department of Internal Medicine, Hematology and Oncology; University Hospital Brno and Central European Institute of Technology, Masaryk University; Brno Czech Republic
| | - Martin Brejcha
- Department of Hematology; J.G. Mendel Cancer Center Novy Jicin; Czech Republic
| | | | - Frederic Davi
- Hematology Department and University Pierre et Marie Curie; Hôpital Pitié-Salpètrière; Paris France
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology; University Hospital Brno and Central European Institute of Technology, Masaryk University; Brno Czech Republic
| | | | - Kostas Stamatopoulos
- Hematology Department and HCT Unit; G. Papanicolaou Hospital; Thessaloniki Greece
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala Sweden
- Institute of Applied Biosciences; CERTH Thessaloniki Greece
| | - David Oscier
- Department of Haematology; Royal Bournemouth Hospital; Bournemouth United Kingdom
| |
Collapse
|
26
|
Hermetz KE, Newman S, Conneely KN, Martin CL, Ballif BC, Shaffer LG, Cody JD, Rudd MK. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet 2014; 10:e1004139. [PMID: 24497845 PMCID: PMC3907307 DOI: 10.1371/journal.pgen.1004139] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/09/2013] [Indexed: 11/27/2022] Open
Abstract
Inverted duplications are a common type of copy number variation (CNV) in germline and somatic genomes. Large duplications that include many genes can lead to both neurodevelopmental phenotypes in children and gene amplifications in tumors. There are several models for inverted duplication formation, most of which include a dicentric chromosome intermediate followed by breakage-fusion-bridge (BFB) cycles, but the mechanisms that give rise to the inverted dicentric chromosome in most inverted duplications remain unknown. Here we have combined high-resolution array CGH, custom sequence capture, next-generation sequencing, and long-range PCR to analyze the breakpoints of 50 nonrecurrent inverted duplications in patients with intellectual disability, autism, and congenital anomalies. For half of the rearrangements in our study, we sequenced at least one breakpoint junction. Sequence analysis of breakpoint junctions reveals a normal-copy disomic spacer between inverted and non-inverted copies of the duplication. Further, short inverted sequences are present at the boundary of the disomic spacer and the inverted duplication. These data support a mechanism of inverted duplication formation whereby a chromosome with a double-strand break intrastrand pairs with itself to form a “fold-back” intermediate that, after DNA replication, produces a dicentric inverted chromosome with a disomic spacer corresponding to the site of the fold-back loop. This process can lead to inverted duplications adjacent to terminal deletions, inverted duplications juxtaposed to translocations, and inverted duplication ring chromosomes. Chromosomes with large inverted duplications and terminal deletions cause neurodevelopmental disorders in children. These chromosome rearrangements typically involve hundreds of genes, leading to significant changes in gene dosage. Though inverted duplications adjacent to terminal deletions are a relatively common type of chromosomal imbalance, the DNA repair mechanism responsible for their formation is not known. In this study, we analyze the genomic organization of the largest collection of human inverted duplications. We find a common inverted duplication structure, consistent with a model that requires DNA to fold back and form a dicentric chromosome intermediate. These data provide insight into the formation of nonrecurrent inverted duplications in the human genome.
Collapse
Affiliation(s)
- Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Scott Newman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America ; Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Christa L Martin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Blake C Ballif
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Lisa G Shaffer
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Jannine D Cody
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America ; The Chromosome 18 Registry and Research Society, San Antonio, Texas, United States of America
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
27
|
Iżykowska K, Zawada M, Nowicka K, Grabarczyk P, Braun FC, Delin M, Möbs M, Beyer M, Sterry W, Schmidt CA, Przybylski GK. Identification of Multiple Complex Rearrangements Associated with Deletions in the 6q23-27 Region in Sézary Syndrome. J Invest Dermatol 2013; 133:2617-2625. [DOI: 10.1038/jid.2013.188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/24/2013] [Accepted: 03/29/2013] [Indexed: 11/09/2022]
|
28
|
Ranjan P, Desai K, Gada Saxena S. Derivative chromosome 11 in a child resulting from a complex rearrangement involving chromosomes 3, 6 and 11 in father: Significance of parental karyotyping. INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:262-5. [PMID: 24019632 PMCID: PMC3758737 DOI: 10.4103/0971-6866.116105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The presence of derivative chromosome in a child with phenotypic features necessitates the need of parental karyotyping to ascertain the exact amount of loss or gain of the genetic material. The aim of this study was to emphasize the importance of parental karyotyping. Cytogenetic evaluation of the proband and his father were carried out at Laboratory. Cytogenetic analysis was performed on phytohemagglutinin stimulated cultures. The derivative chromosome 11 in proband was ascertained to have additional material from chromosome 6p arising from complex chromosomal rearrangement in the father. Karyotyping is the basic, cost-effective preliminary investigation in a child with mental subnormality or congenital anomalies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Molecular Medicine, Reliance Life Sciences, Navi Mumbai, India
| | | | | |
Collapse
|
29
|
Weier C, Haffner MC, Mosbruger T, Esopi DM, Hicks J, Zheng Q, Fedor H, Isaacs WB, De Marzo AM, Nelson WG, Yegnasubramanian S. Nucleotide resolution analysis of TMPRSS2 and ERG rearrangements in prostate cancer. J Pathol 2013; 230:174-83. [PMID: 23447416 DOI: 10.1002/path.4186] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 01/01/2023]
Abstract
TMPRSS2-ERG rearrangements occur in approximately 50% of prostate cancers and therefore represent one of the most frequently observed structural rearrangements in all cancers. However, little is known about the genomic architecture of such rearrangements. We therefore designed and optimized a pipeline involving target capture of TMPRSS2 and ERG genomic sequences coupled with paired-end next-generation sequencing to resolve genomic rearrangement breakpoints in TMPRSS2 and ERG at nucleotide resolution in a large series of primary prostate cancer specimens (n = 83). This strategy showed > 90% sensitivity and specificity in identifying TMPRSS2-ERG rearrangements, and allowed identification of intra- and inter-chromosomal rearrangements involving TMPRSS2 and ERG with known and novel fusion partners. Our results indicate that rearrangement breakpoints show strong clustering in specific intronic regions of TMPRSS2 and ERG. The observed TMPRSS2-ERG rearrangements often exhibited complex chromosomal architecture associated with several intra- and inter-chromosomal rearrangements. Nucleotide resolution analysis of breakpoint junctions revealed that the majority of TMPRSS2 and ERG rearrangements (~88%) occurred at or near regions of microhomology or involved insertions of one or more base pairs. This architecture implicates non-homologous end joining (NHEJ) and microhomology-mediated end joining (MMEJ) pathways in the generation of such rearrangements. These analyses have provided important insights into the molecular mechanisms involved in generating prostate cancer-specific recurrent rearrangements.
Collapse
Affiliation(s)
- Christopher Weier
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guilherme RS, Cernach MCSP, Sfakianakis TE, Takeno SS, Nardozza LMM, Rossi C, Bhatt SS, Liehr T, Melaragno MI. A complex chromosome rearrangement involving four chromosomes, nine breakpoints and a cryptic 0.6-Mb deletion in a boy with cerebellar hypoplasia and defects in skull ossification. Cytogenet Genome Res 2013; 141:317-23. [PMID: 23817307 DOI: 10.1159/000353302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
Constitutional complex chromosomal rearrangements (CCRs) are considered rare cytogenetic events. Most apparently balanced CCRs are de novo and are usually found in patients with abnormal phenotypes. High-resolution techniques are unveiling genomic imbalances in a great percentage of these cases. In this paper, we report a patient with growth and developmental delay, dysmorphic features, nervous system anomalies (pachygyria, hypoplasia of the corpus callosum and cerebellum), a marked reduction in the ossification of the cranial vault, skull base sclerosis, and cardiopathy who presents a CCR with 9 breakpoints involving 4 chromosomes (3, 6, 8 and 14) and a 0.6-Mb deletion in 14q24.1. Although the only genomic imbalance revealed by the array technique was a deletion, the clinical phenotype of the patient most likely cannot be attributed exclusively to haploinsufficiency. Other events must also be considered, including the disruption of critical genes and position effects. A combination of several different investigative approaches (G-banding, FISH with different probes and SNP array techniques) was required to describe this CCR in full, suggesting that CCRs may be more frequent than initially thought. Additionally, we propose that a chain chromosome breakage mechanism may have occurred as a single rearrangement event resulting in this CCR. This study demonstrates the importance of applying different cytogenetic and molecular techniques to detect subtle rearrangements and to delineate the rearrangements at a more accurate level, providing a better understanding of the mechanisms involved in CCR formation and a better correlation with phenotype.
Collapse
Affiliation(s)
- R S Guilherme
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fonseca ACS, Bonaldi A, Bertola DR, Kim CA, Otto PA, Vianna-Morgante AM. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia. BMC MEDICAL GENETICS 2013; 14:50. [PMID: 23648064 PMCID: PMC3658899 DOI: 10.1186/1471-2350-14-50] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/23/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND The association of balanced rearrangements with breakpoints near SOX9 [SRY (sex determining region Y)-box 9] with skeletal abnormalities has been ascribed to the presumptive altering of SOX9 expression by the direct disruption of regulatory elements, their separation from SOX9 or the effect of juxtaposed sequences. CASE PRESENTATION We report on two sporadic apparently balanced translocations, t(7;17)(p13;q24) and t(17;20)(q24.3;q11.2), whose carriers have skeletal abnormalities that led to the diagnosis of acampomelic campomelic dysplasia (ACD; MIM 114290). No pathogenic chromosomal imbalances were detected by a-CGH. The chromosome 17 breakpoints were mapped, respectively, 917-855 kb and 601-585 kb upstream of the SOX9 gene. A distal cluster of balanced rearrangements breakpoints on chromosome 17 associated with SOX9-related skeletal disorders has been mapped to a segment 932-789 kb upstream of SOX9. In this cluster, the breakpoint of the herein described t(17;20) is the most telomeric to SOX9, thus allowing the redefining of the telomeric boundary of the distal breakpoint cluster region related to skeletal disorders to 601-585 kb upstream of SOX9. Although both patients have skeletal abnormalities, the t(7;17) carrier presents with relatively mild clinical features, whereas the t(17;20) was detected in a boy with severe broncheomalacia, depending on mechanical ventilation. Balanced and unbalanced rearrangements associated with disorders of sex determination led to the mapping of a regulatory region of SOX9 function on testicular differentiation to a 517-595 kb interval upstream of SOX9, in addition to TESCO (Testis-specific enhancer of SOX9 core). As the carrier of t(17;20) has an XY sex-chromosome constitution and normal male development for his age, the segment of chromosome 17 distal to the translocation breakpoint should contain the regulatory elements for normal testis development. CONCLUSIONS These two novel translocations illustrate the clinical variability in carriers of balanced translocations with breakpoints near SOX9. The translocation t(17;20) breakpoint provides further evidence for an additional testis-specific SOX9 enhancer 517 to 595 kb upstream of the SOX9 gene.
Collapse
Affiliation(s)
- Ana Carolina S Fonseca
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo 05508-090, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Familial complex chromosome rearrangement (CCR) involving 5 breakpoints on chromosomes 1, 3 and 13 in a severe oligozoospermic patient. J Assist Reprod Genet 2013; 30:423-9. [PMID: 23381550 DOI: 10.1007/s10815-013-9934-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/15/2013] [Indexed: 01/16/2023] Open
|
33
|
High throughput sequencing approaches to mutation discovery in the mouse. Mamm Genome 2012; 23:499-513. [PMID: 22991087 DOI: 10.1007/s00335-012-9424-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022]
Abstract
Phenotype-driven approaches in mice are powerful strategies for the discovery of genes and gene functions and for unravelling complex biological mechanisms. Traditional methods for mutation discovery are reliable and robust, but they can also be laborious and time consuming. Recently, high-throughput sequencing (HTS) technologies have revolutionised the process of forward genetics in mice by paving the way to rapid mutation discovery. However, successful application of HTS for mutation discovery relies heavily on the sequencing approach employed and strategies for data analysis. Here we review current HTS applications and resources for mutation discovery and provide an overview of the practical considerations for HTS implementation and data analysis.
Collapse
|
34
|
Abstract
Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing and increasing the throughput. Now, the focus is on using NGS technology for diagnostics and therapeutics. In this review, we discuss the possible clinical applications of NGS and the potential of some of the current systems to transition to the clinic. Clinical use of NGS technologies will enable the identification of causative mutations for rare genetic disorders through whole-genome or targeted genome resequencing, rapid pathogen screening and cancer diagnosis along with the identification of appropriate therapy. Routine clinical use of NGS technologies is appealing, but mandates high accuracy, simple assays, small inexpensive instruments, flexible throughput, short run times and most importantly, easy data analysis as well as interpretation. A number of NGS systems launched recently have least some of these characteristics, namely, small instruments, flexible throughput and short run time, but still face a few challenges. Moreover, simplified data analysis tools will need to be developed to minimize the requirement of sophisticated bioinformatics support in clinics. In summary, for successful transition of NGS to clinic, a sustained collaboration between research labs, clinical practitioners and vendors offering sequencing based genetic tests is required.
Collapse
Affiliation(s)
- A N Desai
- Persistent LABS, Persistent Systems Ltd., Erandwane, Pune.
| | | |
Collapse
|