1
|
Stoneman HR, Price AM, Trout NS, Lamont R, Tifour S, Pozdeyev N, Crooks K, Lin M, Rafaels N, Gignoux CR, Marker KM, Hendricks AE. Characterizing substructure via mixture modeling in large-scale genetic summary statistics. Am J Hum Genet 2025; 112:235-253. [PMID: 39824191 PMCID: PMC11866976 DOI: 10.1016/j.ajhg.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Genetic summary data are broadly accessible and highly useful, including for risk prediction, causal inference, fine mapping, and incorporation of external controls. However, collapsing individual-level data into summary data, such as allele frequencies, masks intra- and inter-sample heterogeneity, leading to confounding, reduced power, and bias. Ultimately, unaccounted-for substructure limits summary data usability, especially for understudied or admixed populations. There is a need for methods to enable the harmonization of summary data where the underlying substructure is matched between datasets. Here, we present Summix2, a comprehensive set of methods and software based on a computationally efficient mixture model to enable the harmonization of genetic summary data by estimating and adjusting for substructure. In extensive simulations and application to public data, we show that Summix2 characterizes finer-scale population structure, identifies ascertainment bias, and scans for potential regions of selection due to local substructure deviation. Summix2 increases the robust use of diverse, publicly available summary data, resulting in improved and more equitable research.
Collapse
Affiliation(s)
- Hayley R Stoneman
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adelle M Price
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Nikole Scribner Trout
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Riley Lamont
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Souha Tifour
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Nikita Pozdeyev
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristy Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Meng Lin
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher R Gignoux
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katie M Marker
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Audrey E Hendricks
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Pasternack N, Doucet-O'Hare T, Johnson K, Paulsen O, Nath A. Endogenous retroviruses are dysregulated in ALS. iScience 2024; 27:110147. [PMID: 38989463 PMCID: PMC11233923 DOI: 10.1016/j.isci.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease with no cure. Human endogenous retroviruses (HERVs) have been implicated in its pathogenesis but their relevance to ALS is not fully understood. We examined bulk RNA-seq data from almost 2,000 ALS and unaffected control samples derived from the cortex and spinal cord. Using different methods of feature selection, including differential expression analysis and machine learning, we discovered that transcription of HERV-K loci 1q22 and 8p23.1 were significantly upregulated in the spinal cord of individuals with ALS. Additionally, we identified a subset of ALS patients with upregulated HERV-K expression in the cortex and spinal cord. We also found the expression of HERV-K loci 19q11 and 8p23.1 was correlated with protein coding genes previously implicated in ALS and dysregulated in ALS patients in this study. These results clarify the association of HERV-K and ALS and highlight specific genes in the pathobiology of late-stage ALS.
Collapse
Affiliation(s)
- Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tara Doucet-O'Hare
- Neuro-Oncology Branch Stem Cell Team, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kory Johnson
- Bioinformatics Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
3
|
Zhou C, Li H, Shi Y, He L, Duan H, Li J. Detection of an 8p23.1 Inversion Using High-Resolution Optical Genome Mapping. MATERNAL-FETAL MEDICINE 2024; 6:173-177. [PMID: 40406282 PMCID: PMC12087883 DOI: 10.1097/fm9.0000000000000238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/23/2024] [Indexed: 05/24/2025] Open
Abstract
Objective To evaluate the performance of optical genome mapping (OGM) in identifying an inversion located in the short arm of chromosome 8 (8p, 8p23.1), flanked by regions of complex segmental duplication (SD), using the GRCh38 and telomere-to-telomere (T2T) genome references. Methods We investigated a couple suspected of carrying the 8p23.1 inversion due to a terminal deletion combined with an interstitial duplication of 8p found in their abortus. OGM was performed on both individuals. The data were mapped to the current GRCh38 and the updated T2T genome references, respectively. Results The 8p23.1 inversion was observed in the female when mapping OGM data to the T2T assembly. In contrast, under the GRCh38 reference, the orientation between the suspected breakpoints within the SD regions could not be distinguished. Additional variants of uncertain significance were also identified in both individuals. Conclusion Our findings highlight the superiority of the T2T reference in recognizing structural variations involving SD regions. The enhanced SV detection using the T2T reference may contribute to a better understanding of genome instability and human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Li
- Obstetrics and Gynecology Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
4
|
Pedicone C, Weitzman SA, Renton AE, Goate AM. Unraveling the complex role of MAPT-containing H1 and H2 haplotypes in neurodegenerative diseases. Mol Neurodegener 2024; 19:43. [PMID: 38812061 PMCID: PMC11138017 DOI: 10.1186/s13024-024-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
A ~ 1 Mb inversion polymorphism exists within the 17q21.31 locus of the human genome as direct (H1) and inverted (H2) haplotype clades. This inversion region demonstrates high linkage disequilibrium, but the frequency of each haplotype differs across ancestries. While the H1 haplotype exists in all populations and shows a normal pattern of genetic variability and recombination, the H2 haplotype is enriched in European ancestry populations, is less frequent in African ancestry populations, and nearly absent in East Asian ancestry populations. H1 is a known risk factor for several neurodegenerative diseases, and has been associated with many other traits, suggesting its importance in cellular phenotypes of the brain and entire body. Conversely, H2 is protective for these diseases, but is associated with predisposition to recurrent microdeletion syndromes and neurodevelopmental disorders such as autism. Many single nucleotide variants and copy number variants define H1/H2 haplotypes and sub-haplotypes, but identifying the causal variant(s) for specific diseases and phenotypes is complex due to the extended linkage equilibrium. In this review, we assess the current knowledge of this inversion region regarding genomic structure, gene expression, cellular phenotypes, and disease association. We discuss recent discoveries and challenges, evaluate gaps in knowledge, and highlight the importance of understanding the effect of the 17q21.31 haplotypes to promote advances in precision medicine and drug discovery for several diseases.
Collapse
Affiliation(s)
- Chiara Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Weitzman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan E Renton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Stoneman HR, Price A, Trout NS, Lamont R, Tifour S, Pozdeyev N, Crooks K, Lin M, Rafaels N, Gignoux CR, Marker KM, Hendricks AE. Characterizing substructure via mixture modeling in large-scale genetic summary statistics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577805. [PMID: 38766180 PMCID: PMC11100604 DOI: 10.1101/2024.01.29.577805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Genetic summary data are broadly accessible and highly useful including for risk prediction, causal inference, fine mapping, and incorporation of external controls. However, collapsing individual-level data into groups masks intra- and inter-sample heterogeneity, leading to confounding, reduced power, and bias. Ultimately, unaccounted substructure limits summary data usability, especially for understudied or admixed populations. Here, we present Summix2, a comprehensive set of methods and software based on a computationally efficient mixture model to estimate and adjust for substructure in genetic summary data. In extensive simulations and application to public data, Summix2 characterizes finer-scale population structure, identifies ascertainment bias, and identifies potential regions of selection due to local substructure deviation. Summix2 increases the robust use of diverse publicly available summary data resulting in improved and more equitable research.
Collapse
Affiliation(s)
- Hayley R Stoneman
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adelle Price
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Nikole Scribner Trout
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Riley Lamont
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Souha Tifour
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Nikita Pozdeyev
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristy Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Meng Lin
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher R Gignoux
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katie M Marker
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Audrey E Hendricks
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
6
|
Clifford RE, Maihofer AX, Chatzinakos C, Coleman JRI, Daskalakis NP, Gasperi M, Hogan K, Mikita EA, Stein MB, Tcheandjieu C, Telese F, Zuo Y, Ryan AF, Nievergelt CM. Genetic architecture distinguishes tinnitus from hearing loss. Nat Commun 2024; 15:614. [PMID: 38242899 PMCID: PMC10799010 DOI: 10.1038/s41467-024-44842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
Tinnitus is a heritable, highly prevalent auditory disorder treated by multiple medical specialties. Previous GWAS indicated high genetic correlations between tinnitus and hearing loss, with little indication of differentiating signals. We present a GWAS meta-analysis, triple previous sample sizes, and expand to non-European ancestries. GWAS in 596,905 Million Veteran Program subjects identified 39 tinnitus loci, and identified genes related to neuronal synapses and cochlear structural support. Applying state-of-the-art analytic tools, we confirm a large number of shared variants, but also a distinct genetic architecture of tinnitus, with higher polygenicity and large proportion of variants not shared with hearing difficulty. Tissue-expression analysis for tinnitus infers broad enrichment across most brain tissues, in contrast to hearing difficulty. Finally, tinnitus is not only correlated with hearing loss, but also with a spectrum of psychiatric disorders, providing potential new avenues for treatment. This study establishes tinnitus as a distinct disorder separate from hearing difficulties.
Collapse
Affiliation(s)
- Royce E Clifford
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
- University of California San Diego, Division of Otolaryngology - Head and Neck Surgery, La Jolla, CA, USA.
| | - Adam X Maihofer
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Chris Chatzinakos
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Jonathan R I Coleman
- King's College London, NIHR Maudsley BRC, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Nikolaos P Daskalakis
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Marianna Gasperi
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Kelleigh Hogan
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Elizabeth A Mikita
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | | | - Francesca Telese
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Yanning Zuo
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Allen F Ryan
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- University of California San Diego, Division of Otolaryngology - Head and Neck Surgery, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA.
| |
Collapse
|
7
|
He Y, Chu Y, Guo S, Hu J, Li R, Zheng Y, Ma X, Du Z, Zhao L, Yu W, Xue J, Bian W, Yang F, Chen X, Zhang P, Wu R, Ma Y, Shao C, Chen J, Wang J, Li J, Wu J, Hu X, Long Q, Jiang M, Ye H, Song S, Li G, Wei Y, Xu Y, Ma Y, Chen Y, Wang K, Bao J, Xi W, Wang F, Ni W, Zhang M, Yu Y, Li S, Kang Y, Gao Z. T2T-YAO: A Telomere-to-telomere Assembled Diploid Reference Genome for Han Chinese. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1085-1100. [PMID: 37595788 PMCID: PMC11082261 DOI: 10.1016/j.gpb.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Since its initial release in 2001, the human reference genome has undergone continuous improvement in quality, and the recently released telomere-to-telomere (T2T) version - T2T-CHM13 - reaches its highest level of continuity and accuracy after 20 years of effort by working on a simplified, nearly homozygous genome of a hydatidiform mole cell line. Here, to provide an authentic complete diploid human genome reference for the Han Chinese, the largest population in the world, we assembled the genome of a male Han Chinese individual, T2T-YAO, which includes T2T assemblies of all the 22 + X + M and 22 + Y chromosomes in both haploids. The quality of T2T-YAO is much better than those of all currently available diploid assemblies, and its haploid version, T2T-YAO-hp, generated by selecting the better assembly for each autosome, reaches the top quality of fewer than one error per 29.5 Mb, even higher than that of T2T-CHM13. Derived from an individual living in the aboriginal region of the Han population, T2T-YAO shows clear ancestry and potential genetic continuity from the ancient ancestors. Each haplotype of T2T-YAO possesses ∼ 330-Mb exclusive sequences, ∼ 3100 unique genes, and tens of thousands of nucleotide and structural variations as compared with CHM13, highlighting the necessity of a population-stratified reference genome. The construction of T2T-YAO, an accurate and authentic representative of the Chinese population, would enable precise delineation of genomic variations and advance our understandings in the hereditability of diseases and phenotypes, especially within the context of the unique variations of the Chinese population.
Collapse
Affiliation(s)
- Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shuming Guo
- Linfen Clinical Medicine Research Center, Linfen 041000, China; Institute of Chest and Lung Diseases, Shanxi Medical University, Taiyuan 030001, China
| | - Jiang Hu
- GrandOmics Biosciences Co., Ltd, Wuhan 430076, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Zhenglin Du
- Institute of PSI Genomics, Wenzhou 325024, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Jianbo Xue
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Wenjie Bian
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Feifei Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Xi Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Pingan Zhang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Rihan Wu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yifan Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Xiaoyi Hu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Mingzheng Jiang
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Guangyao Li
- Linfen Clinical Medicine Research Center, Linfen 041000, China
| | - Yue Wei
- Linfen Clinical Medicine Research Center, Linfen 041000, China
| | - Yu Xu
- Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yanliang Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yanwen Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Keqiang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Jing Bao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Wen Xi
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Fang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Wentao Ni
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Moqin Zhang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yan Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Shengnan Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100490, China.
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Institute of Chest and Lung Diseases, Shanxi Medical University, Taiyuan 030001, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China.
| |
Collapse
|
8
|
Wang H, Makowski C, Zhang Y, Qi A, Kaufmann T, Smeland OB, Fiecas M, Yang J, Visscher PM, Chen CH. Chromosomal inversion polymorphisms shape human brain morphology. Cell Rep 2023; 42:112896. [PMID: 37505983 PMCID: PMC10508191 DOI: 10.1016/j.celrep.2023.112896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The impact of chromosomal inversions on human brain morphology remains underexplored. We studied 35 common inversions classified from genotypes of 33,018 adults with European ancestry. The inversions at 2p22.3, 16p11.2, and 17q21.31 reach genome-wide significance, followed by 8p23.1 and 6p21.33, in their association with cortical and subcortical morphology. The 17q21.31, 8p23.1, and 16p11.2 regions comprise the LRRC37, OR7E, and NPIP duplicated gene families. We find the 17q21.31 MAPT inversion region, known for harboring neurological risk, to be the most salient locus among common variants for shaping and patterning the cortex. Overall, we observe the inverted orientations decreasing brain size, with the exception that the 2p22.3 inversion is associated with increased subcortical volume and the 8p23.1 inversion is associated with increased motor cortex. These significant inversions are in the genomic hotspots of neuropsychiatric loci. Our findings are generalizable to 3,472 children and demonstrate inversions as essential genetic variation to understand human brain phenotypes.
Collapse
Affiliation(s)
- Hao Wang
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Anna Qi
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Tobias Kaufmann
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Zhou Y, Yu Z, Chebotarov D, Chougule K, Lu Z, Rivera LF, Kathiresan N, Al-Bader N, Mohammed N, Alsantely A, Mussurova S, Santos J, Thimma M, Troukhan M, Fornasiero A, Green CD, Copetti D, Kudrna D, Llaca V, Lorieux M, Zuccolo A, Ware D, McNally K, Zhang J, Wing RA. Pan-genome inversion index reveals evolutionary insights into the subpopulation structure of Asian rice. Nat Commun 2023; 14:1567. [PMID: 36944612 PMCID: PMC10030860 DOI: 10.1038/s41467-023-37004-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Understanding and exploiting genetic diversity is a key factor for the productive and stable production of rice. Here, we utilize 73 high-quality genomes that encompass the subpopulation structure of Asian rice (Oryza sativa), plus the genomes of two wild relatives (O. rufipogon and O. punctata), to build a pan-genome inversion index of 1769 non-redundant inversions that span an average of ~29% of the O. sativa cv. Nipponbare reference genome sequence. Using this index, we estimate an inversion rate of ~700 inversions per million years in Asian rice, which is 16 to 50 times higher than previously estimated for plants. Detailed analyses of these inversions show evidence of their effects on gene expression, recombination rate, and linkage disequilibrium. Our study uncovers the prevalence and scale of large inversions (≥100 bp) across the pan-genome of Asian rice and hints at their largely unexplored role in functional biology and crop performance.
Collapse
Affiliation(s)
- Yong Zhou
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Zhichao Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dmytro Chebotarov
- International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Luis F Rivera
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nagarajan Kathiresan
- Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Noor Al-Bader
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nahed Mohammed
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aseel Alsantely
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Saule Mussurova
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - João Santos
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Manjula Thimma
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Alice Fornasiero
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Carl D Green
- Information Technology Department, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dario Copetti
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - David Kudrna
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA, 50131, USA
| | - Mathias Lorieux
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Andrea Zuccolo
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, Pisa, 56127, Italy.
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- USDA ARS NEA Plant, Soil & Nutrition Laboratory Research Unit, Ithaca, NY, 14853, USA.
| | - Kenneth McNally
- International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines.
| | - Jianwei Zhang
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Rod A Wing
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines.
| |
Collapse
|
10
|
Kosuthova K, Solc R. Inversions on human chromosomes. Am J Med Genet A 2023; 191:672-683. [PMID: 36495134 DOI: 10.1002/ajmg.a.63063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Human chromosome inversions are types of balanced structural variations, making them difficult to analyze. Thanks to PEM (paired-end sequencing and mapping), there has been tremendous progress in studying inversions. Inversions play an important role as an evolutionary factor, contributing to the formation of gonosomes, speciation of chimpanzees and humans, and inv17q21.3 or inv8p23.1 exhibit the features of natural selection. Both inversions have been related to pathogenic phenotype by directly affecting a gene structure (e.g., inv5p15.1q14.1), regulating gene expression (e.g., inv7q21.3q35) and by predisposing to other secondary arrangements (e.g., inv7q11.23). A polymorphism of human inversions is documented by the InvFEST database (a database that stores information about clinical predictions, validations, frequency of inversions, etc.), but only a small fraction of these inversions is validated, and a detailed analysis is complicated by the frequent location of breakpoints within regions of repetitive sequences.
Collapse
Affiliation(s)
- Klara Kosuthova
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Roman Solc
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Chan MMY, Sadeghi-Alavijeh O, Lopes FM, Hilger AC, Stanescu HC, Voinescu CD, Beaman GM, Newman WG, Zaniew M, Weber S, Ho YM, Connolly JO, Wood D, Maj C, Stuckey A, Kousathanas A, Kleta R, Woolf AS, Bockenhauer D, Levine AP, Gale DP. Diverse ancestry whole-genome sequencing association study identifies TBX5 and PTK7 as susceptibility genes for posterior urethral valves. eLife 2022; 11:e74777. [PMID: 36124557 PMCID: PMC9512401 DOI: 10.7554/elife.74777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Posterior urethral valves (PUV) are the commonest cause of end-stage renal disease in children, but the genetic architecture of this rare disorder remains unknown. We performed a sequencing-based genome-wide association study (seqGWAS) in 132 unrelated male PUV cases and 23,727 controls of diverse ancestry, identifying statistically significant associations with common variants at 12q24.21 (p=7.8 × 10-12; OR 0.4) and rare variants at 6p21.1 (p=2.0 × 10-8; OR 7.2), that were replicated in an independent European cohort of 395 cases and 4151 controls. Fine mapping and functional genomic data mapped these loci to the transcription factor TBX5 and planar cell polarity gene PTK7, respectively, the encoded proteins of which were detected in the developing urinary tract of human embryos. We also observed enrichment of rare structural variation intersecting with candidate cis-regulatory elements, particularly inversions predicted to affect chromatin looping (p=3.1 × 10-5). These findings represent the first robust genetic associations of PUV, providing novel insights into the underlying biology of this poorly understood disorder and demonstrate how a diverse ancestry seqGWAS can be used for disease locus discovery in a rare disease.
Collapse
Affiliation(s)
- Melanie MY Chan
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
| | | | - Filipa M Lopes
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Alina C Hilger
- Children's Hospital, University of BonnBonnGermany
- Institute of Human Genetics, University of BonnBonnGermany
| | - Horia C Stanescu
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
| | - Catalin D Voinescu
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
| | - Glenda M Beaman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation TrustManchesterUnited Kingdom
- Evolution and Genomic Sciences, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation TrustManchesterUnited Kingdom
- Evolution and Genomic Sciences, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona GóraZielona GoraPoland
| | - Stefanie Weber
- Department of Pediatric Nephrology, University of MarburgMarburgGermany
| | - Yee Mang Ho
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - John O Connolly
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
- Department of Adolescent Urology, University College London Hospitals NHS Foundation TrustLondonUnited Kingdom
| | - Dan Wood
- Department of Adolescent Urology, University College London Hospitals NHS Foundation TrustLondonUnited Kingdom
| | - Carlo Maj
- Center for Human Genetics, University of MarburgMarburgGermany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of BonnBonnGermany
| | - Alexander Stuckey
- Genomics England, Queen Mary University of LondonLondonUnited Kingdom
| | | | - Robert Kleta
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
- Nephrology Department, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| | - Adrian S Woolf
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
- Nephrology Department, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| | - Adam P Levine
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
- Research Department of Pathology, University College LondonLondonUnited Kingdom
| | - Daniel P Gale
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Saint Just Ribeiro M, Tripathi P, Namjou B, Harley JB, Chepelev I. Haplotype-specific chromatin looping reveals genetic interactions of regulatory regions modulating gene expression in 8p23.1. Front Genet 2022; 13:1008582. [PMID: 36160011 PMCID: PMC9490475 DOI: 10.3389/fgene.2022.1008582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
A major goal of genetics research is to elucidate mechanisms explaining how genetic variation contributes to phenotypic variation. The genetic variants identified in genome-wide association studies (GWASs) generally explain only a small proportion of heritability of phenotypic traits, the so-called missing heritability problem. Recent evidence suggests that additional common variants beyond lead GWAS variants contribute to phenotypic variation; however, their mechanistic underpinnings generally remain unexplored. Herein, we undertake a study of haplotype-specific mechanisms of gene regulation at 8p23.1 in the human genome, a region associated with a number of complex diseases. The FAM167A-BLK locus in this region has been consistently found in the genome-wide association studies (GWASs) of systemic lupus erythematosus (SLE) in all major ancestries. Our haplotype-specific chromatin interaction (Hi-C) experiments, allele-specific enhancer activity measurements, genetic analyses, and epigenome editing experiments revealed that: 1) haplotype-specific long-range chromatin interactions are prevalent in 8p23.1; 2) BLK promoter and cis-regulatory elements cooperatively interact with haplotype-specificity; 3) genetic variants at distal regulatory elements are allele-specific modifiers of the promoter variants at FAM167A-BLK; 4) the BLK promoter interacts with and, as an enhancer-like promoter, regulates FAM167A expression and 5) local allele-specific enhancer activities are influenced by global haplotype structure due to chromatin looping. Although systemic lupus erythematosus causal variants at the FAM167A-BLK locus are thought to reside in the BLK promoter region, our results reveal that genetic variants at distal regulatory elements modulate promoter activity, changing BLK and FAM167A gene expression and disease risk. Our results suggest that global haplotype-specific 3-dimensional chromatin looping architecture has a strong influence on local allelic BLK and FAM167A gene expression, providing mechanistic details for how regional variants controlling the BLK promoter may influence disease risk.
Collapse
Affiliation(s)
- Mariana Saint Just Ribeiro
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pulak Tripathi
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - John B. Harley
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, United States
- *Correspondence: Iouri Chepelev, ; John B. Harley,
| | - Iouri Chepelev
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, United States
- *Correspondence: Iouri Chepelev, ; John B. Harley,
| |
Collapse
|
13
|
Hanlon VCT, Lansdorp PM, Guryev V. A survey of current methods to detect and genotype inversions. Hum Mutat 2022; 43:1576-1589. [PMID: 36047337 DOI: 10.1002/humu.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Polymorphic inversions are ubiquitous in humans, and they have been linked to both adaptation and disease. Following their discovery in Drosophila more than a century ago, inversions have proved to be more elusive than other structural variants. A wide variety of methods for the detection and genotyping of inversions have recently been developed: multiple techniques based on selective amplification by PCR, short- and long-read sequencing approaches, principal component analysis of small variant haplotypes, template strand sequencing, optical mapping, and various genome assembly methods. Many methods apply complex wet lab protocols or increasingly refined bioinformatic analyses. This review is an attempt to provide a practical summary and comparison of the methods that are in current use, with a focus on metrics such as the maximum size of segmental duplications at inversion breakpoints that each method can tolerate, the size range of inversions that they recover, their throughput, and whether the locations of putative inversions must be known beforehand. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
14
|
Campoy E, Puig M, Yakymenko I, Lerga-Jaso J, Cáceres M. Genomic architecture and functional effects of potential human inversion supergenes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210209. [PMID: 35694745 PMCID: PMC9189494 DOI: 10.1098/rstb.2021.0209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Supergenes are involved in adaptation in multiple organisms, but they are little known in humans. Genomic inversions are the most common mechanism of supergene generation and maintenance. Here, we review the information about two large inversions that are the best examples of potential human supergenes. In addition, we do an integrative analysis of the newest data to understand better their functional effects and underlying genetic changes. We have found that the highly divergent haplotypes of the 17q21.31 inversion of approximately 1.5 Mb have multiple phenotypic associations, with consistent effects in brain-related traits, red and white blood cells, lung function, male and female characteristics and disease risk. By combining gene expression and nucleotide variation data, we also analysed the molecular differences between haplotypes, including gene duplications, amino acid substitutions and regulatory changes, and identify CRHR1, KANLS1 and MAPT as good candidates to be responsible for these phenotypes. The situation is more complex for the 8p23.1 inversion, where there is no clear genetic differentiation. However, the inversion is associated with several related phenotypes and gene expression differences that could be linked to haplotypes specific of one orientation. Our work, therefore, contributes to the characterization of both exceptional variants and illustrates the important role of inversions. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Elena Campoy
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Illya Yakymenko
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Jon Lerga-Jaso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
15
|
Porubsky D, Höps W, Ashraf H, Hsieh P, Rodriguez-Martin B, Yilmaz F, Ebler J, Hallast P, Maria Maggiolini FA, Harvey WT, Henning B, Audano PA, Gordon DS, Ebert P, Hasenfeld P, Benito E, Zhu Q, Lee C, Antonacci F, Steinrücken M, Beck CR, Sanders AD, Marschall T, Eichler EE, Korbel JO. Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders. Cell 2022; 185:1986-2005.e26. [PMID: 35525246 PMCID: PMC9563103 DOI: 10.1016/j.cell.2022.04.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10-4 per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Wolfram Höps
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Hufsah Ashraf
- Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and Bioinformatics, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Bernardo Rodriguez-Martin
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Jana Ebler
- Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and Bioinformatics, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Flavia Angela Maria Maggiolini
- Department of Biology, University of Bari "Aldo Moro", 70125 Bari, Italy; Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via Casamassima 148, 70010 Turi, Italy
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Barbara Henning
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter A Audano
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - David S Gordon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Peter Ebert
- Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and Bioinformatics, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Eva Benito
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Qihui Zhu
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | | | - Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA; Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA; The University of Connecticut Health Center, 400 Farmington Rd., Farmington, CT 06032, USA
| | - Ashley D Sanders
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Charité-Universitätsmedizin, Berlin, Berlin, Germany
| | - Tobias Marschall
- Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and Bioinformatics, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
16
|
Carreras-Gallo N, Cáceres A, Balagué-Dobón L, Ruiz-Arenas C, Andrusaityte S, Carracedo Á, Casas M, Chatzi L, Grazuleviciene R, Gutzkow KB, Lepeule J, Maitre L, Nieuwenhuijsen M, Slama R, Stratakis N, Thomsen C, Urquiza J, Wright J, Yang T, Escaramís G, Bustamante M, Vrijheid M, Pérez-Jurado LA, González JR. The early-life exposome modulates the effect of polymorphic inversions on DNA methylation. Commun Biol 2022; 5:455. [PMID: 35550596 PMCID: PMC9098634 DOI: 10.1038/s42003-022-03380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Polymorphic genomic inversions are chromosomal variants with intrinsic variability that play important roles in evolution, environmental adaptation, and complex traits. We investigated the DNA methylation patterns of three common human inversions, at 8p23.1, 16p11.2, and 17q21.31 in 1,009 blood samples from children from the Human Early Life Exposome (HELIX) project and in 39 prenatal heart tissue samples. We found inversion-state specific methylation patterns within and nearby flanking each inversion region in both datasets. Additionally, numerous inversion-exposure interactions on methylation levels were identified from early-life exposome data comprising 64 exposures. For instance, children homozygous at inv-8p23.1 and higher meat intake were more susceptible to TDH hypermethylation (P = 3.8 × 10−22); being the inversion, exposure, and gene known risk factors for adult obesity. Inv-8p23.1 associated hypermethylation of GATA4 was also detected across numerous exposures. Our data suggests that the pleiotropic influence of inversions during development and lifetime could be substantially mediated by allele-specific methylation patterns which can be modulated by the exposome. Analysis of the relationship between presence of common DNA sequence inversions and DNA methylation patterns suggests a role for environmental exposures (such as food intake) in mediating inversion state-specific methylation patterns.
Collapse
Affiliation(s)
| | - Alejandro Cáceres
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, 08019, Spain
| | | | - Carlos Ruiz-Arenas
- Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain.,Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Kristine Bjerve Gutzkow
- Department of Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Johanna Lepeule
- Institut national de la santé et de la recherche médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Remy Slama
- Institut national de la santé et de la recherche médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Nikos Stratakis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Geòrgia Escaramís
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain.,Research Group on Statistics, Econometrics and Health (GRECS), UdG, Girona, Spain
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Pérez-Jurado
- Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Genetics Service, Hospital del Mar, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
17
|
Redaelli S, Conconi D, Sala E, Villa N, Crosti F, Roversi G, Catusi I, Valtorta C, Recalcati MP, Dalprà L, Lavitrano M, Bentivegna A. Characterization of Chromosomal Breakpoints in 12 Cases with 8p Rearrangements Defines a Continuum of Fragility of the Region. Int J Mol Sci 2022; 23:ijms23063347. [PMID: 35328767 PMCID: PMC8954119 DOI: 10.3390/ijms23063347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Improvements in microarray-based comparative genomic hybridization technology have allowed for high-resolution detection of genome wide copy number alterations, leading to a better definition of rearrangements and supporting the study of pathogenesis mechanisms. In this study, we focused our attention on chromosome 8p. We report 12 cases of 8p rearrangements, analyzed by molecular karyotype, evidencing a continuum of fragility that involves the entire short arm. The breakpoints seem more concentrated in three intervals: one at the telomeric end, the others at 8p23.1, close to the beta-defensin gene cluster and olfactory receptor low-copy repeats. Hypothetical mechanisms for all cases are described. Our data extend the cohort of published patients with 8p aberrations and highlight the need to pay special attention to these sequences due to the risk of formation of new chromosomal aberrations with pathological effects.
Collapse
Affiliation(s)
- Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
- Correspondence: (D.C.); (A.B.)
| | - Elena Sala
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Nicoletta Villa
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Francesca Crosti
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Gaia Roversi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Ilaria Catusi
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (I.C.); (C.V.); (M.P.R.)
| | - Chiara Valtorta
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (I.C.); (C.V.); (M.P.R.)
| | - Maria Paola Recalcati
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (I.C.); (C.V.); (M.P.R.)
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
- Correspondence: (D.C.); (A.B.)
| |
Collapse
|
18
|
Balagué-Dobón L, Cáceres A, González JR. Fully exploiting SNP arrays: a systematic review on the tools to extract underlying genomic structure. Brief Bioinform 2022; 23:bbac043. [PMID: 35211719 PMCID: PMC8921734 DOI: 10.1093/bib/bbac043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are the most abundant type of genomic variation and the most accessible to genotype in large cohorts. However, they individually explain a small proportion of phenotypic differences between individuals. Ancestry, collective SNP effects, structural variants, somatic mutations or even differences in historic recombination can potentially explain a high percentage of genomic divergence. These genetic differences can be infrequent or laborious to characterize; however, many of them leave distinctive marks on the SNPs across the genome allowing their study in large population samples. Consequently, several methods have been developed over the last decade to detect and analyze different genomic structures using SNP arrays, to complement genome-wide association studies and determine the contribution of these structures to explain the phenotypic differences between individuals. We present an up-to-date collection of available bioinformatics tools that can be used to extract relevant genomic information from SNP array data including population structure and ancestry; polygenic risk scores; identity-by-descent fragments; linkage disequilibrium; heritability and structural variants such as inversions, copy number variants, genetic mosaicisms and recombination histories. From a systematic review of recently published applications of the methods, we describe the main characteristics of R packages, command-line tools and desktop applications, both free and commercial, to help make the most of a large amount of publicly available SNP data.
Collapse
|
19
|
Makowski C, van der Meer D, Dong W, Wang H, Wu Y, Zou J, Liu C, Rosenthal SB, Hagler DJ, Fan CC, Kremen WS, Andreassen OA, Jernigan TL, Dale AM, Zhang K, Visscher PM, Yang J, Chen CH. Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases. Science 2022; 375:522-528. [PMID: 35113692 DOI: 10.1126/science.abe8457] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To determine the impact of genetic variants on the brain, we used genetically informed brain atlases in genome-wide association studies of regional cortical surface area and thickness in 39,898 adults and 9136 children. We uncovered 440 genome-wide significant loci in the discovery cohort and 800 from a post hoc combined meta-analysis. Loci in adulthood were largely captured in childhood, showing signatures of negative selection, and were linked to early neurodevelopment and pathways associated with neuropsychiatric risk. Opposing gradations of decreased surface area and increased thickness were associated with common inversion polymorphisms. Inferior frontal regions, encompassing Broca's area, which is important for speech, were enriched for human-specific genomic elements. Thus, a mixed genetic landscape of conserved and human-specific features is concordant with brain hierarchy and morphogenetic gradients.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Weixiu Dong
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Hao Wang
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Yan Wu
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Jingjing Zou
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Cin Liu
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, CA, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, CA, USA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terry L Jernigan
- Center for Human Development, University of California, San Diego, CA, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA.,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| |
Collapse
|
20
|
Dremsek P, Schwarz T, Weil B, Malashka A, Laccone F, Neesen J. Optical Genome Mapping in Routine Human Genetic Diagnostics-Its Advantages and Limitations. Genes (Basel) 2021; 12:1958. [PMID: 34946907 PMCID: PMC8701374 DOI: 10.3390/genes12121958] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022] Open
Abstract
In recent years, optical genome mapping (OGM) has developed into a highly promising method of detecting large-scale structural variants in human genomes. It is capable of detecting structural variants considered difficult to detect by other current methods. Hence, it promises to be feasible as a first-line diagnostic tool, permitting insight into a new realm of previously unknown variants. However, due to its novelty, little experience with OGM is available to infer best practices for its application or to clarify which features cannot be detected. In this study, we used the Saphyr system (Bionano Genomics, San Diego, CA, USA), to explore its capabilities in human genetic diagnostics. To this end, we tested 14 DNA samples to confirm a total of 14 different structural or numerical chromosomal variants originally detected by other means, namely, deletions, duplications, inversions, trisomies, and a translocation. Overall, 12 variants could be confirmed; one deletion and one inversion could not. The prerequisites for detection of similar variants were explored by reviewing the OGM data of 54 samples analyzed in our laboratory. Limitations, some owing to the novelty of the method and some inherent to it, were described. Finally, we tested the successful application of OGM in routine diagnostics and described some of the challenges that merit consideration when utilizing OGM as a diagnostic tool.
Collapse
Affiliation(s)
- Paul Dremsek
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria; (T.S.); (B.W.); (A.M.); (F.L.); (J.N.)
| | | | | | | | | | | |
Collapse
|
21
|
Ferrari G, Atmore LM, Jentoft S, Jakobsen KS, Makowiecki D, Barrett JH, Star B. An accurate assignment test for extremely low-coverage whole-genome sequence data. Mol Ecol Resour 2021; 22:1330-1344. [PMID: 34779123 DOI: 10.1111/1755-0998.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Genomic assignment tests can provide important diagnostic biological characteristics, such as population of origin or ecotype. Yet, assignment tests often rely on moderate- to high-coverage sequence data that can be difficult to obtain for fields such as molecular ecology and ancient DNA. We have developed a novel approach that efficiently assigns biologically relevant information (i.e., population identity or structural variants such as inversions) in extremely low-coverage sequence data. First, we generate databases from existing reference data using a subset of diagnostic single nucleotide polymorphisms (SNPs) associated with a biological characteristic. Low-coverage alignment files are subsequently compared to these databases to ascertain allelic state, yielding a joint probability for each association. To assess the efficacy of this approach, we assigned haplotypes and population identity in Heliconius butterflies, Atlantic herring, and Atlantic cod using chromosomal inversion sites and whole-genome data. We scored both modern and ancient specimens, including the first whole-genome sequence data recovered from ancient Atlantic herring bones. The method accurately assigns biological characteristics, including population membership, using extremely low-coverage data (as low as 0.0001x) based on genome-wide SNPs. This approach will therefore increase the number of samples in evolutionary, ecological and archaeological research for which relevant biological information can be obtained.
Collapse
Affiliation(s)
- Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel Makowiecki
- Department of Environmental Archaeology and Human Paleoecology, Institute of Archaeology, Nicolaus Copernicus University, Torun, Poland
| | - James H Barrett
- McDonald Institute for Archaeological Research, Department of Archaeology, University of Cambridge, Cambridge, UK.,Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Secolin R, Gonsales MC, Rocha CS, Naslavsky M, De Marco L, Bicalho MAC, Vazquez VL, Zatz M, Silva WA, Lopes-Cendes I. Exploring a Region on Chromosome 8p23.1 Displaying Positive Selection Signals in Brazilian Admixed Populations: Additional Insights Into Predisposition to Obesity and Related Disorders. Front Genet 2021; 12:636542. [PMID: 33841501 PMCID: PMC8027303 DOI: 10.3389/fgene.2021.636542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
We recently reported a deviation of local ancestry on the chromosome (ch) 8p23.1, which led to positive selection signals in a Brazilian population sample. The deviation suggested that the genetic variability of candidate genes located on ch 8p23.1 may have been evolutionarily advantageous in the early stages of the admixture process. In the present work, we aim to extend the previous work by studying additional Brazilian admixed individuals and examining DNA sequencing data from the ch 8p23.1 candidate region. Thus, we inferred the local ancestry of 125 exomes from individuals born in five towns within the Southeast region of Brazil (São Paulo, Campinas, Barretos, and Ribeirão Preto located in the state of São Paulo and Belo Horizonte, the capital of the state of Minas Gerais), and compared to data from two public Brazilian reference genomic databases, BIPMed and ABraOM, and with information from the 1000 Genomes Project phase 3 and gnomAD databases. Our results revealed that ancestry is similar among individuals born in the five Brazilian towns assessed; however, an increased proportion of sub-Saharan African ancestry was observed in individuals from Belo Horizonte. In addition, individuals from the five towns considered, as well as those from the ABRAOM dataset, had the same overrepresentation of Native-American ancestry on the ch 8p23.1 locus that was previously reported for the BIPMed reference sample. Sequencing analysis of ch 8p23.1 revealed the presence of 442 non-synonymous variants, including frameshift, inframe deletion, start loss, stop gain, stop loss, and splicing site variants, which occurred in 24 genes. Among these genes, 13 were associated with obesity, type II diabetes, lipid levels, and waist circumference (PRAG1, MFHAS1, PPP1R3B, TNKS, MSRA, PRSS55, RP1L1, PINX1, MTMR9, FAM167A, BLK, GATA4, and CTSB). These results strengthen the hypothesis that a set of variants located on ch 8p23.1 that result from positive selection during early admixture events may influence obesity-related disease predisposition in admixed individuals of the Brazilian population. Furthermore, we present evidence that the exploration of local ancestry deviation in admixed individuals may provide information with the potential to be translated into health care improvement.
Collapse
Affiliation(s)
- Rodrigo Secolin
- Department of Medical Genetics and Genomic Medicine, Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Brazil
| | - Marina C Gonsales
- Department of Medical Genetics and Genomic Medicine, Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Brazil
| | - Cristiane S Rocha
- Department of Medical Genetics and Genomic Medicine, Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Brazil
| | - Michel Naslavsky
- Departament of Genetics and Evolutive Biology, Human Genome and Stem Cell Research Center, Institute of Bioscience, University of São Paulo (USP), São Paulo, Brazil
| | - Luiz De Marco
- Department of Surgery, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maria A C Bicalho
- Department of Clinical Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinicius L Vazquez
- Molecular Oncology Research Center (CPOM) - Barretos Cancer Hospital, Barretos, Brazil
| | - Mayana Zatz
- Departament of Genetics and Evolutive Biology, Human Genome and Stem Cell Research Center, Institute of Bioscience, University of São Paulo (USP), São Paulo, Brazil
| | - Wilson A Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo at Ribeirão Preto (USP), Ribeirão Preto, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
23
|
Abstract
Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size, Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research in Drosophila and then focus on recent advances during the genomic era. After describing different types and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further provide a brief introduction to background selection, selection of noncoding DNA and codon usage and focus on the role of structural variants, such as transposable elements and chromosomal inversions, during the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolutionary mechanisms that shape genetic and phenotypic variation in natural populations along environmental gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and provides an introduction to the system and an overview to data sources, important population genetic concepts and recent advances in the field.
Collapse
|
24
|
Qu L, Wang L, He F, Han Y, Yang L, Wang MD, Zhu H. The Landscape of Micro-Inversions Provide Clues for Population Genetic Analysis of Humans. Interdiscip Sci 2020; 12:499-514. [PMID: 32929667 PMCID: PMC7658078 DOI: 10.1007/s12539-020-00392-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Variations in the human genome have been studied extensively. However, little is known about the role of micro-inversions (MIs), generally defined as small (< 100 bp) inversions, in human evolution, diversity, and health. Depicting the pattern of MIs among diverse populations is critical for interpreting human evolutionary history and obtaining insight into genetic diseases. RESULTS In this paper, we explored the distribution of MIs in genomes from 26 human populations and 7 nonhuman primate genomes and analyzed the phylogenetic structure of the 26 human populations based on the MIs. We further investigated the functions of the MIs located within genes associated with human health. With hg19 as the reference genome, we detected 6968 MIs among the 1937 human samples and 24,476 MIs among the 7 nonhuman primate genomes. The analyses of MIs in human genomes showed that the MIs were rarely located in exonic regions. Nonhuman primates and human populations shared only 82 inverted alleles, and Africans had the most inverted alleles in common with nonhuman primates, which was consistent with the "Out of Africa" hypothesis. The clustering of MIs among the human populations also coincided with human migration history and ancestral lineages. CONCLUSIONS We propose that MIs are potential evolutionary markers for investigating population dynamics. Our results revealed the diversity of MIs in human populations and showed that they are essential to construct human population relationships and have a potential effect on human health.
Collapse
Affiliation(s)
- Li Qu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332, USA
| | - Luotong Wang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Feifei He
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Yilun Han
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Longshu Yang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - May D Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332, USA
| | - Huaiqiu Zhu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332, USA.
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
25
|
Determining the impact of uncharacterized inversions in the human genome by droplet digital PCR. Genome Res 2020; 30:724-735. [PMID: 32424072 PMCID: PMC7263195 DOI: 10.1101/gr.255273.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
Abstract
Despite the interest in characterizing genomic variation, the presence of large repeats at the breakpoints hinders the analysis of many structural variants. This is especially problematic for inversions, since there is typically no gain or loss of DNA. Here, we tested novel linkage-based droplet digital PCR (ddPCR) assays to study 20 inversions ranging from 3.1 to 742 kb flanked by inverted repeats (IRs) up to 134 kb long. Of those, we validated 13 inversions predicted by different genome-wide techniques. In addition, we obtained new experimental human population information across 95 African, European, and East Asian individuals for 16 inversions, including four already validated variants without high-throughput genotyping methods. Through comparison with previous data, independent replicates and both inversion breakpoints, we demonstrate that the technique is highly accurate and reproducible. Most studied inversions are widespread across continents, and their frequency is negatively correlated with genetic length. Moreover, all except two show clear signs of being recurrent, and we could better define the factors affecting recurrence levels and estimate the inversion rate across the genome. Finally, the generated genotypes have allowed us to check inversion functional effects, validating gene expression differences reported before for two inversions and finding new candidate associations. Therefore, the developed methodology makes it possible to screen these and other complex genomic variants quickly in a large number of samples for the first time, highlighting the importance of direct genotyping to assess their potential consequences and clinical implications.
Collapse
|
26
|
Sismani C, Rapti SM, Iliopoulou P, Spring A, Neroutsou R, Lagou M, Robola M, Tsitsopoulos E, Kousoulidou L, Alexandrou A, Papaevripidou I, Theodosiou A, Syrrou M, Fuchs S, Hempel M, Huhle D, Liehr T, Ziegler M, Duesberg M, Velissariou V. Novel pericentric inversion inv(9)(p23q22.3) in unrelated individuals with fertility problems in the Southeast European population. J Hum Genet 2020; 65:783-795. [PMID: 32398760 DOI: 10.1038/s10038-020-0769-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022]
Abstract
Pericentric inversions are among the known polymorphisms detected in the general population at a frequency of 1-2%. Despite their generally benign nature, pericentric inversions affect the reproductive potential of carriers by increasing the risk for unbalanced live-born offspring, miscarriages, or other fertility problems. Here we present a novel large pericentric inversion of chromosome 9, inv(9)(p23q22.3), detected in 30 heterozygote carriers, 24 from seven apparently unrelated families and 6 isolated patients, where the probands were mainly referred for fertility and prenatal problems. The inversion carries a significant risk for recombinant abnormal chromosomes, as in two families one supernumerary rec(9)dup(9p) and one rec(9)dup(9q) were identified, leading to neonatal death and miscarriage, respectively. The inversion carriers were identified by three different laboratories in Greece, Cyprus and Germany respectively, however all carriers have Southeast European origin. The inversion appears to be more frequent in the Greek population, as the majority of the carriers were identified in Greece. We were able to determine that the inversion is identical in all individuals included in the study by applying a combination of several methodologies, such as karyotype, fluorescence in situ hybridization (FISH), chromosomal microarrays (CMA) and haplotype analysis. In addition, haplotype analysis supports that the present inversion is identical by descent (IBD) inherited from a single common ancestor. Our results are, therefore, highly indicative of a founder effect of this inversion, presumably reflecting an event that was present in a small number of individuals that migrated to the current Southeast Europe/Northern Greece from a larger population.
Collapse
Affiliation(s)
- Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stamatia-Maria Rapti
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Pavlina Iliopoulou
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Anastasia Spring
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Rozalia Neroutsou
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Magdalini Lagou
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Marianna Robola
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | | | - Ludmila Kousoulidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Athina Theodosiou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Syrrou
- Department of Biology, Medical School, University of Ioannina, Ioannina, Greece
| | - Sigrid Fuchs
- Institute of Human Genetics, University Hospital, Hamburg- Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Hospital, Hamburg- Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Dagmar Huhle
- Medizinisches Versorgungszentrum, Karl- Liebknecht- Str. 14, 04107, Leipzig, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747, Jena, Germany
| | - Monika Ziegler
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747, Jena, Germany
| | - Max Duesberg
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747, Jena, Germany
| | - Voula Velissariou
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece. .,NIPD Genetics Public Company Ltd, 31 Neas Engomis Street, 2409, Engomi, Nicosia, Cyprus.
| |
Collapse
|
27
|
A Genome-Wide Association Study Identifies Quantitative Trait Loci Affecting Hematological Traits in Camelus bactrianus. Animals (Basel) 2020; 10:ani10010096. [PMID: 31936121 PMCID: PMC7023321 DOI: 10.3390/ani10010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bactrian camels can adapt to harsh natural environments. This unique tolerance of camels is tightly linked to their hematological traits, which are related to their immune, metabolic, and disease status. Therefore, mapping genomic regions that affect blood cell traits can help identify genomic characteristics that can be used as biomarkers of immune, metabolic, and disease states. This knowledge will further our understanding of the camel’s tolerance mechanisms. Abstract Bactrian camels (Camelus bactrianus) are one of the few large livestock species that can survive in the Gobi Desert. Animal immunity and disease resistance are related to hematological traits, which are also associated with tolerance observed in Bactrian camels. However, no genome-wide association studies have examined the genetic mechanism of the immune capability of Bactrian camels. In the present study, we used genotyping-by-sequencing data generated from 366 Bactrian camel accessions to perform a genome-wide association study for 17 hematological traits. Of the 256,616 single-nucleotide polymorphisms (SNPs) obtained, 1,635 trait–SNP associations were among the top quantitative trait locus candidates. Lastly, 664 candidate genes associated with 13 blood traits were identified. The most significant were ZNF772, MTX2, ESRRG, MEI4, IL11, FRMPD4, GABPA, NTF4, CRYBG3, ENPP5, COL16A1, and CD207. The results of our genome-wide association study provide a list of significant SNPs and candidate genes, which offer valuable information for further dissection of the molecular mechanisms that regulate the camel’s hematological traits to ultimately reveal their tolerance mechanisms.
Collapse
|
28
|
Ruiz-Arenas C, Cáceres A, Moreno V, González JR. Common polymorphic inversions at 17q21.31 and 8p23.1 associate with cancer prognosis. Hum Genomics 2019; 13:57. [PMID: 31753042 PMCID: PMC6873427 DOI: 10.1186/s40246-019-0242-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chromosomal inversions are structural genetic variants where a chromosome segment changes its orientation. While sporadic de novo inversions are known genetic risk factors for cancer susceptibility, it is unknown if common polymorphic inversions are also associated with the prognosis of common tumors, as they have been linked to other complex diseases. We studied the association of two well-characterized human inversions at 17q21.31 and 8p23.1 with the prognosis of lung, liver, breast, colorectal, and stomach cancers. RESULTS Using data from The Cancer Genome Atlas (TCGA), we observed that inv8p23.1 was associated with overall survival in breast cancer and that inv17q21.31 was associated with overall survival in stomach cancer. In the meta-analysis of two independent studies, inv17q21.31 heterozygosity was significantly associated with colorectal disease-free survival. We found that the association was mediated by the de-methylation of cg08283464 and cg03999934, also linked to lower disease-free survival. CONCLUSIONS Our results suggest that chromosomal inversions are important genetic factors of tumor prognosis, likely affecting changes in methylation patterns.
Collapse
Affiliation(s)
- Carlos Ruiz-Arenas
- Barcelona Institute for Global Health, ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alejandro Cáceres
- Barcelona Institute for Global Health, ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Victor Moreno
- Programa de Prevención y Control del Cáncer, Instituto Catalán de Oncología, L'Hospitalet, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health, ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| |
Collapse
|
29
|
Orengo DJ, Puerma E, Cereijo U, Aguadé M. The molecular genealogy of sequential overlapping inversions implies both homologous chromosomes of a heterokaryotype in an inversion origin. Sci Rep 2019; 9:17009. [PMID: 31740730 PMCID: PMC6861252 DOI: 10.1038/s41598-019-53582-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 11/25/2022] Open
Abstract
Cytological and molecular studies have revealed that inversion chromosomal polymorphism is widespread across taxa and that inversions are among the most common structural changes fixed between species. Two major mechanisms have been proposed for the origin of inversions considering that breaks occur at either repetitive or non-homologous sequences. While inversions originating through the first mechanism might have a multiple origin, those originating through the latter mechanism would have a unique origin. Variation at regions flanking inversion breakpoints can be informative on the origin and history of inversions given the reduced recombination in heterokaryotypes. Here, we have analyzed nucleotide variation at a fragment flanking the most centromere-proximal shared breakpoint of several sequential overlapping inversions of the E chromosome of Drosophila subobscura —inversions E1, E2, E9 and E3. The molecular genealogy inferred from variation at this shared fragment does not exhibit the branching pattern expected according to the sequential origin of inversions. The detected discordance between the molecular and cytological genealogies has led us to consider a novel possibility for the origin of an inversion, and more specifically that one of these inversions originated on a heterokaryotype for chromosomal arrangements. Based on this premise, we propose three new models for inversions origin.
Collapse
Affiliation(s)
- Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Eva Puerma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Unai Cereijo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.,Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Montserrat Aguadé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
30
|
Secolin R, Mas-Sandoval A, Arauna LR, Torres FR, de Araujo TK, Santos ML, Rocha CS, Carvalho BS, Cendes F, Lopes-Cendes I, Comas D. Distribution of local ancestry and evidence of adaptation in admixed populations. Sci Rep 2019; 9:13900. [PMID: 31554886 PMCID: PMC6761108 DOI: 10.1038/s41598-019-50362-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Admixed American populations have different global proportions of European, Sub-Saharan African, and Native-American ancestry. However, individuals who display the same global ancestry could exhibit remarkable differences in the distribution of local ancestry blocks. We studied for the first time the distribution of local ancestry across the genome of 264 Brazilian admixed individuals, ascertained within the scope of the Brazilian Initiative on Precision Medicine. We found a decreased proportion of European ancestry together with an excess of Native-American ancestry on chromosome 8p23.1 and showed that this is due to haplotypes created by chromosomal inversion events. Furthermore, Brazilian non-inverted haplotypes were more similar to Native-American haplotypes than to European haplotypes, in contrast to what was found in other American admixed populations. We also identified signals of recent positive selection on chromosome 8p23.1, and one gene within this locus, PPP1R3B, is related to glycogenesis and has been associated with an increased risk of type 2 diabetes and obesity. These findings point to a selection event after admixture, which is still not entirely understood in recent admixture events.
Collapse
Affiliation(s)
- Rodrigo Secolin
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Alex Mas-Sandoval
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lara R Arauna
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Fábio R Torres
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Tânia K de Araujo
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Marilza L Santos
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Cristiane S Rocha
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Benilton S Carvalho
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil.
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
31
|
Giner-Delgado C, Villatoro S, Lerga-Jaso J, Gayà-Vidal M, Oliva M, Castellano D, Pantano L, Bitarello BD, Izquierdo D, Noguera I, Olalde I, Delprat A, Blancher A, Lalueza-Fox C, Esko T, O'Reilly PF, Andrés AM, Ferretti L, Puig M, Cáceres M. Evolutionary and functional impact of common polymorphic inversions in the human genome. Nat Commun 2019; 10:4222. [PMID: 31530810 PMCID: PMC6748972 DOI: 10.1038/s41467-019-12173-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Inversions are one type of structural variants linked to phenotypic differences and adaptation in multiple organisms. However, there is still very little information about polymorphic inversions in the human genome due to the difficulty of their detection. Here, we develop a new high-throughput genotyping method based on probe hybridization and amplification, and we perform a complete study of 45 common human inversions of 0.1–415 kb. Most inversions promoted by homologous recombination occur recurrently in humans and great apes and they are not tagged by SNPs. Furthermore, there is an enrichment of inversions showing signatures of positive or balancing selection, diverse functional effects, such as gene disruption and gene-expression changes, or association with phenotypic traits. Therefore, our results indicate that the genome is more dynamic than previously thought and that human inversions have important functional and evolutionary consequences, making possible to determine for the first time their contribution to complex traits. Inversions are a little-studied type of genomic variation that could contribute to phenotypic traits. Here the authors characterize 45 common polymorphic inversions in human populations and investigate their evolutionary and functional impact.
Collapse
Affiliation(s)
- Carla Giner-Delgado
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Sergi Villatoro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Jon Lerga-Jaso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Magdalena Gayà-Vidal
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.,CIBIO/InBIO Research Center in Biodiversity and Genetic Resources, Universidade do Porto, Vairão, Distrito do Porto, 4485-661, Portugal
| | - Meritxell Oliva
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - David Castellano
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Lorena Pantano
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Bárbara D Bitarello
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, 04103, Germany
| | - David Izquierdo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Isaac Noguera
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Iñigo Olalde
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Alejandra Delprat
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Antoine Blancher
- Laboratoire d'immunologie, CHU de Toulouse, IFB Hôpital Purpan, Toulouse, 31059, France.,Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, 31024, France
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Paul F O'Reilly
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, 04103, Germany.,UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Luca Ferretti
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain. .,ICREA, Barcelona, 08010, Spain.
| |
Collapse
|
32
|
Jung S, Sindermann C, Lachmann B, Montag C. rs2572431 Polymorphism on Chromosome 8 Is Associated With Individual Differences in Anxiety Related Coping Modes. Front Psychol 2019; 10:1451. [PMID: 31354558 PMCID: PMC6629965 DOI: 10.3389/fpsyg.2019.01451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The role of genetic factors in the interplay between anxiety-related coping and personality has been the subject of interest in numerous previous studies. The current study focused on anxiety-related coping modes, namely repression versus sensitization (i.e., cognitive avoidance versus vigilance), and the single nucleotide polymorphism (SNP) rs2572431. An association between this SNP and anxiety-related personality traits has previously been shown in a genome wide association study, thus further investigation of the relationship between this SNP and anxiety-related coping seems warranted. METHODS In the present study, N = 880 mostly Caucasian participants (n = 269 males and n = 611 females; mean-age: 23.88, SD = 7.19) filled in a personality questionnaire assessing individual differences in cognitive avoidance and vigilance, and all participants were genotyped for rs2572431. RESULTS Participants homozygous for the T-allele in rs2572431 showed the highest vigilance scores in all scenarios tested. This is in line with findings from an earlier genome wide association study demonstrating that the T-allele is also associated with higher neuroticism scores. CONCLUSION The current study yields evidence for the role of rs2572431 in the molecular genetic underpinnings of coping modes and, more broadly, for its connection with personality.
Collapse
Affiliation(s)
- Sonja Jung
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | | | | | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
33
|
Ruiz-Arenas C, Cáceres A, López-Sánchez M, Tolosana I, Pérez-Jurado L, González JR. scoreInvHap: Inversion genotyping for genome-wide association studies. PLoS Genet 2019; 15:e1008203. [PMID: 31269027 PMCID: PMC6608898 DOI: 10.1371/journal.pgen.1008203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/17/2019] [Indexed: 02/02/2023] Open
Abstract
Polymorphic inversions contribute to adaptation and phenotypic variation. However, large multi-centric association studies of inversions remain challenging. We present scoreInvHap, a method to genotype inversions from SNP data for genome-wide association studies (GWASs), overcoming important limitations of current methods and outperforming them in accuracy and applicability. scoreInvHap calls individual inversion-genotypes from a similarity score to the SNPs of experimentally validated references. It can be used on different sources of SNP data, including those with low SNP coverage such as exome sequencing, and is easily adaptable to genotype new inversions, either in humans or in other species. We present 20 human inversions that can be reliably and easily genotyped with scoreInvHap to discover their role in complex human traits, and illustrate a first genome-wide association study of experimentally-validated human inversions. scoreInvHap is implemented in R and it is freely available from Bioconductor. Chromosomal inversions are structural variants consisting on an orientation change of a chromosome segment. Inversions have been linked to some phenotypic differences between individuals and to genetic divergence. However, their overall contribution to complex diseases is largely underdetermined as there are no high-throughput methods to call inversion-genotypes in large cohort studies. Here, we propose a new method, scoreInvHap, to call individual inversion genotypes from their haplotype similarity. We show that scoreInvHap has a high performance when analyzing heterogeneous sources of SNP data. Our current implementation contains 20 human inversions that can be readily genotyped in existing GWAS datasets. We exemplify the utility of scoreInvHap by running the first-genome wide association of experimentally validated inversions and a multi-centric inversion association study. All in all, scoreInvHap can substantially contribute to increase our knowledge of the role of chromosomal inversions in complex diseases by re-analyzing data from existing genetic association studies.
Collapse
Affiliation(s)
- Carlos Ruiz-Arenas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alejandro Cáceres
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marcos López-Sánchez
- Genetics Unit, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Ignacio Tolosana
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Luis Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- SA Clinical Genetics, Women's and Children's Hospital & University of Adelaide, Adelaide, South Australia Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia Australia
| | - Juan R. González
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Kapun M, Flatt T. The adaptive significance of chromosomal inversion polymorphisms inDrosophila melanogaster. Mol Ecol 2018; 28:1263-1282. [DOI: 10.1111/mec.14871] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Martin Kapun
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| | - Thomas Flatt
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| |
Collapse
|
35
|
Mentlein L, Thorlacius GE, Meneghel L, Aqrawi LA, Ramírez Sepúlveda JI, Grunewald J, Espinosa A, Wahren-Herlenius M. The rheumatic disease-associated FAM167A-BLK locus encodes DIORA-1, a novel disordered protein expressed highly in bronchial epithelium and alveolar macrophages. Clin Exp Immunol 2018; 193:167-177. [PMID: 29663334 DOI: 10.1111/cei.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Triggering of autoimmunity that leads to rheumatic disease has been suggested to depend upon gene-environment interactions occurring in epithelial barriers and associated immune cells. Genetic studies have identified associations of the FAM167A-BLK locus with rheumatoid arthritis, systemic lupus erythematosus (SLE) and Sjögren's syndrome. While BLK (B lymphocyte kinase) has a well-established role in B cells, family with sequence similarity to 167 member A (FAM167A) and its gene family remain uncharacterized. To begin to understand the role of FAM167A in rheumatic disease pathogenesis, we explored this gene family and cloned and investigated the gene products. Expression of quantitative trait locus analysis was performed in immune cells. FAM167A and FAM167B were cloned from human peripheral blood mononuclear cells (PBMC). Gene conservation and protein properties were analysed by online tools, mRNA expression measured in mouse organs by quantitative polymerase chain reaction (qPCR) and protein expression investigated in human tissues by immunohistochemistry. We found that autoimmune risk genotypes within the FAM167A-BLK locus lead to increased expression of FAM167A. The FAM167 gene family includes two members, FAM167A and FAM167B, which are not homologous to any other annotated gene but are evolutionarily conserved. The encoded proteins, which we denote 'disordered autoimmunity' (DIORA)-1 and DIORA-2, respectively, are characterized by a high content of intrinsic disorder. Notably, DIORA-1 has its highest expression in the lung, detectable in both bronchial epithelium and alveolar macrophages with an endosomal localization pattern. In summary, the FAM167A gene is associated with several rheumatic diseases and encodes a novel disordered protein, DIORA-1, which is expressed highly in the lung, consistent with a potential role in disease pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - J Grunewald
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
36
|
Demaerel W, Hestand MS, Vergaelen E, Swillen A, López-Sánchez M, Pérez-Jurado LA, McDonald-McGinn DM, Zackai E, Emanuel BS, Morrow BE, Breckpot J, Devriendt K, Vermeesch JR. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements. Am J Hum Genet 2017; 101:616-622. [PMID: 28965848 DOI: 10.1016/j.ajhg.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022] Open
Abstract
Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A-D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A-B 22q11.2 deletion carry inversions of LCR22B-D or LCR22C-D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders.
Collapse
Affiliation(s)
- Wolfram Demaerel
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthew S Hestand
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elfi Vergaelen
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ann Swillen
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marcos López-Sánchez
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Luis A Pérez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeroen Breckpot
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Joris R Vermeesch
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
37
|
Vicente-Salvador D, Puig M, Gayà-Vidal M, Pacheco S, Giner-Delgado C, Noguera I, Izquierdo D, Martínez-Fundichely A, Ruiz-Herrera A, Estivill X, Aguado C, Lucas-Lledó JI, Cáceres M. Detailed analysis of inversions predicted between two human genomes: errors, real polymorphisms, and their origin and population distribution. Hum Mol Genet 2017; 26:567-581. [PMID: 28025331 DOI: 10.1093/hmg/ddw415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
The growing catalogue of structural variants in humans often overlooks inversions as one of the most difficult types of variation to study, even though they affect phenotypic traits in diverse organisms. Here, we have analysed in detail 90 inversions predicted from the comparison of two independently assembled human genomes: the reference genome (NCBI36/HG18) and HuRef. Surprisingly, we found that two thirds of these predictions (62) represent errors either in assembly comparison or in one of the assemblies, including 27 misassembled regions in HG18. Next, we validated 22 of the remaining 28 potential polymorphic inversions using different PCR techniques and characterized their breakpoints and ancestral state. In addition, we determined experimentally the derived allele frequency in Europeans for 17 inversions (DAF = 0.01-0.80), as well as the distribution in 14 worldwide populations for 12 of them based on the 1000 Genomes Project data. Among the validated inversions, nine have inverted repeats (IRs) at their breakpoints, and two show nucleotide variation patterns consistent with a recurrent origin. Conversely, inversions without IRs have a unique origin and almost all of them show deletions or insertions at the breakpoints in the derived allele mediated by microhomology sequences, which highlights the importance of mechanisms like FoSTeS/MMBIR in the generation of complex rearrangements in the human genome. Finally, we found several inversions located within genes and at least one candidate to be positively selected in Africa. Thus, our study emphasizes the importance of careful analysis and validation of large-scale genomic predictions to extract reliable biological conclusions.
Collapse
Affiliation(s)
- David Vicente-Salvador
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Magdalena Gayà-Vidal
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Sarai Pacheco
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Carla Giner-Delgado
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, (Barcelona), Spain
| | - Isaac Noguera
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - David Izquierdo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | - Aurora Ruiz-Herrera
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Departament de Biologia Celular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Xavier Estivill
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Aguado
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - José Ignacio Lucas-Lledó
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Paterna (València), Spain and
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
38
|
Abstract
The t-distributed stochastic neighbor embedding t-SNE is a new dimension reduction and visualization technique for high-dimensional data. t-SNE is rarely applied to human genetic data, even though it is commonly used in other data-intensive biological fields, such as single-cell genomics. We explore the applicability of t-SNE to human genetic data and make these observations: (i) similar to previously used dimension reduction techniques such as principal component analysis (PCA), t-SNE is able to separate samples from different continents; (ii) unlike PCA, t-SNE is more robust with respect to the presence of outliers; (iii) t-SNE is able to display both continental and sub-continental patterns in a single plot. We conclude that the ability for t-SNE to reveal population stratification at different scales could be useful for human genetic association studies.
Collapse
Affiliation(s)
- Wentian Li
- Robert S Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Jane E. Cerise
- Robert S Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Yaning Yang
- Department of Statistics and Finance, University of Science and Technology of China, Hefei, Anhui, China
| | - Henry Han
- Department of Computer and Information Sciences, Fordham University, Lincoln Center, New York, NY, USA
| |
Collapse
|
39
|
Demirci FY, Wang X, Morris DL, Feingold E, Bernatsky S, Pineau C, Clarke A, Ramsey-Goldman R, Manzi S, Vyse TJ, Kamboh MI. Multiple signals at the extended 8p23 locus are associated with susceptibility to systemic lupus erythematosus. J Med Genet 2017; 54:381-389. [PMID: 28289186 DOI: 10.1136/jmedgenet-2016-104247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND A major systemic lupus erythematosus (SLE) susceptibility locus lies within a common inversion polymorphism region (encompassing 3.8 - 4.5 Mb) located at 8p23. Initially implicated genes included FAM167A-BLK and XKR6, of which BLK received major attention due to its known role in B-cell biology. Recently, additional SLE risk carried in non-inverted background was also reported. OBJECTIVE AND METHODS In this case -control study, we further investigated the 'extended' 8p23 locus (~ 4 Mb) where we observed multiple SLE signals and assessed these signals for their relation to the inversion affecting this region. The study involved a North American discovery data set (~ 1200 subjects) and a replication data set (> 10 000 subjects) comprising European-descent individuals. RESULTS Meta-analysis of 8p23 SNPs, with p < 0.05 in both data sets, identified 51 genome-wide significant SNPs (p < 5.0 × 10-8). While most of these SNPs were related to previously implicated signals (XKR6-FAM167A-BLK subregion), our results also revealed two 'new' SLE signals, including SGK223-CLDN23-MFHAS1 (6.06 × 10-9 ≤ meta p ≤ 4.88 × 10-8) and CTSB (meta p = 4.87 × 10-8) subregions that are located > 2 Mb upstream and ~ 0.3 Mb downstream from previously reported signals. Functional assessment of relevant SNPs indicated putative cis-effects on the expression of various genes at 8p23. Additional analyses in discovery sample, where the inversion genotypes were inferred, replicated the association of non-inverted status with SLE risk and suggested that a number of SLE risk alleles are predominantly carried in non-inverted background. CONCLUSIONS Our results implicate multiple (known+novel) SLE signals/genes at the extended 8p23 locus, beyond previously reported signals/genes, and suggest that this broad locus contributes to SLE risk through the effects of multiple genes/pathways.
Collapse
Affiliation(s)
- F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - David L Morris
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Sasha Bernatsky
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, Canada
| | - Christian Pineau
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, Canada
| | - Ann Clarke
- Division of Rheumatology, Department of Medicine, University of Calgary, Calgary, Canada
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Susan Manzi
- Department of Medicine, Lupus Center of Excellence, Allegheny Health Network, Pittsburgh, USA
| | - Timothy J Vyse
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - M I Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
40
|
Mohajeri K, Cantsilieris S, Huddleston J, Nelson BJ, Coe BP, Campbell CD, Baker C, Harshman L, Munson KM, Kronenberg ZN, Kremitzki M, Raja A, Catacchio CR, Graves TA, Wilson RK, Ventura M, Eichler EE. Interchromosomal core duplicons drive both evolutionary instability and disease susceptibility of the Chromosome 8p23.1 region. Genome Res 2016; 26:1453-1467. [PMID: 27803192 PMCID: PMC5088589 DOI: 10.1101/gr.211284.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
Recurrent rearrangements of Chromosome 8p23.1 are associated with congenital heart defects and developmental delay. The complexity of this region has led to inconsistencies in the current reference assembly, confounding studies of genetic variation. Using comparative sequence-based approaches, we generated a high-quality 6.3-Mbp alternate reference assembly of an inverted Chromosome 8p23.1 haplotype. Comparison with nonhuman primates reveals a 746-kbp duplicative transposition and two separate inversion events that arose in the last million years of human evolution. The breakpoints associated with these rearrangements map to an ape-specific interchromosomal core duplicon that clusters at sites of evolutionary inversion (P = 7.8 × 10−5). Refinement of microdeletion breakpoints identifies a subgroup of patients that map to the same interchromosomal core involved in the evolutionary formation of the duplication blocks. Our results define a higher-order genomic instability element that has shaped the structure of specific chromosomes during primate evolution contributing to rearrangements associated with inversion and disease.
Collapse
Affiliation(s)
- Kiana Mohajeri
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Stuart Cantsilieris
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Catarina D Campbell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Lana Harshman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Zev N Kronenberg
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Milinn Kremitzki
- The McDonnell Genome Institute at Washington University, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Archana Raja
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | - Tina A Graves
- The McDonnell Genome Institute at Washington University, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Richard K Wilson
- The McDonnell Genome Institute at Washington University, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Mario Ventura
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, Bari 70125, Italy
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
41
|
Sanders AD, Hills M, Porubský D, Guryev V, Falconer E, Lansdorp PM. Characterizing polymorphic inversions in human genomes by single-cell sequencing. Genome Res 2016; 26:1575-1587. [PMID: 27472961 PMCID: PMC5088599 DOI: 10.1101/gr.201160.115] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery.
Collapse
Affiliation(s)
- Ashley D Sanders
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Mark Hills
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - David Porubský
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, NL-9713 AV Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, NL-9713 AV Groningen, The Netherlands
| | - Ester Falconer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Peter M Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, NL-9713 AV Groningen, The Netherlands.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
42
|
Cáceres A, Esko T, Pappa I, Gutiérrez A, Lopez-Espinosa MJ, Llop S, Bustamante M, Tiemeier H, Metspalu A, Joshi PK, Wilsonx JF, Reina-Castillón J, Shin J, Pausova Z, Paus T, Sunyer J, Pérez-Jurado LA, González JR. Ancient Haplotypes at the 15q24.2 Microdeletion Region Are Linked to Brain Expression of MAN2C1 and Children's Intelligence. PLoS One 2016; 11:e0157739. [PMID: 27355585 PMCID: PMC4927142 DOI: 10.1371/journal.pone.0157739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/05/2016] [Indexed: 11/26/2022] Open
Abstract
The chromosome bands 15q24.1-15q24.3 contain a complex region with numerous segmental duplications that predispose to regional microduplications and microdeletions, both of which have been linked to intellectual disability, speech delay and autistic features. The region may also harbour common inversion polymorphisms whose functional and phenotypic manifestations are unknown. Using single nucleotide polymorphism (SNP) data, we detected four large contiguous haplotype-genotypes at 15q24 with Mendelian inheritance in 2,562 trios, African origin, high population stratification and reduced recombination rates. Although the haplotype-genotypes have been most likely generated by decreased or absent recombination among them, we could not confirm that they were the product of inversion polymorphisms in the region. One of the blocks was composed of three haplotype-genotypes (N1a, N1b and N2), which significantly correlated with intelligence quotient (IQ) in 2,735 children of European ancestry from three independent population cohorts. Homozygosity for N2 was associated with lower verbal IQ (2.4-point loss, p-value = 0.01), while homozygosity for N1b was associated with 3.2-point loss in non-verbal IQ (p-value = 0.0006). The three alleles strongly correlated with expression levels of MAN2C1 and SNUPN in blood and brain. Homozygosity for N2 correlated with over-expression of MAN2C1 over many brain areas but the occipital cortex where N1b homozygous highly under-expressed. Our population-based analyses suggest that MAN2C1 may contribute to the verbal difficulties observed in microduplications and to the intellectual disability of microdeletion syndromes, whose characteristic dosage increment and removal may affect different brain areas.
Collapse
Affiliation(s)
- Alejandro Cáceres
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- * E-mail: (AC); (JRG)
| | - Tõnu Esko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Division of Endocrinology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Irene Pappa
- School of Pedagogical and Educational Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Armand Gutiérrez
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Maria-Jose Lopez-Espinosa
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Spain
| | - Sabrina Llop
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Spain
| | - Mariona Bustamante
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - James F. Wilsonx
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Judith Reina-Castillón
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Jean Shin
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Tomáš Paus
- Rotman Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jordi Sunyer
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Luis A. Pérez-Jurado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Juan R. González
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- * E-mail: (AC); (JRG)
| |
Collapse
|
43
|
Naseeb S, Carter Z, Minnis D, Donaldson I, Zeef L, Delneri D. Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering. Mol Biol Evol 2016; 33:1679-96. [PMID: 26929245 PMCID: PMC4915352 DOI: 10.1093/molbev/msw045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces “sensu stricto” species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth.
Collapse
Affiliation(s)
- Samina Naseeb
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Zorana Carter
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Minnis
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian Donaldson
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
44
|
Puig M, Castellano D, Pantano L, Giner-Delgado C, Izquierdo D, Gayà-Vidal M, Lucas-Lledó JI, Esko T, Terao C, Matsuda F, Cáceres M. Functional Impact and Evolution of a Novel Human Polymorphic Inversion That Disrupts a Gene and Creates a Fusion Transcript. PLoS Genet 2015; 11:e1005495. [PMID: 26427027 PMCID: PMC4591017 DOI: 10.1371/journal.pgen.1005495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Despite many years of study into inversions, very little is known about their functional consequences, especially in humans. A common hypothesis is that the selective value of inversions stems in part from their effects on nearby genes, although evidence of this in natural populations is almost nonexistent. Here we present a global analysis of a new 415-kb polymorphic inversion that is among the longest ones found in humans and is the first with clear position effects. This inversion is located in chromosome 19 and has been generated by non-homologous end joining between blocks of transposable elements with low identity. PCR genotyping in 541 individuals from eight different human populations allowed the detection of tag SNPs and inversion genotyping in multiple populations worldwide, showing that the inverted allele is mainly found in East Asia with an average frequency of 4.7%. Interestingly, one of the breakpoints disrupts the transcription factor gene ZNF257, causing a significant reduction in the total expression level of this gene in lymphoblastoid cell lines. RNA-Seq analysis of the effects of this expression change in standard homozygotes and inversion heterozygotes revealed distinct expression patterns that were validated by quantitative RT-PCR. Moreover, we have found a new fusion transcript that is generated exclusively from inverted chromosomes around one of the breakpoints. Finally, by the analysis of the associated nucleotide variation, we have estimated that the inversion was generated ~40,000–50,000 years ago and, while a neutral evolution cannot be ruled out, its current frequencies are more consistent with those expected for a deleterious variant, although no significant association with phenotypic traits has been found so far. Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology.
Collapse
Affiliation(s)
- Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - David Castellano
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Lorena Pantano
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Carla Giner-Delgado
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - David Izquierdo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Magdalena Gayà-Vidal
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - José Ignacio Lucas-Lledó
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Tõnu Esko
- Estonian Biobank, Estonian Genome Center, University of Tartu, Tartu, Estonia
- Boston Children's Hospital, Harvard Medical School, and Broad Institute of Harvard and MIT, Boston, Massachusetts, United States of America
| | - Chikashi Terao
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
45
|
Abstract
Polymorphic inversions are a type of structural variants that are difficult to analyze owing to their balanced nature and the location of breakpoints within complex repeated regions. So far, only a handful of inversions have been studied in detail in humans and current knowledge about their possible functional effects is still limited. However, inversions have been related to phenotypic changes and adaptation in multiple species. In this review, we summarize the evidences of the functional impact of inversions in the human genome. First, given that inversions have been shown to inhibit recombination in heterokaryotes, chromosomes displaying different orientation are expected to evolve independently and this may lead to distinct gene-expression patterns. Second, inversions have a role as disease-causing mutations both by directly affecting gene structure or regulation in different ways, and by predisposing to other secondary arrangements in the offspring of inversion carriers. Finally, several inversions show signals of being selected during human evolution. These findings illustrate the potential of inversions to have phenotypic consequences also in humans and emphasize the importance of their inclusion in genome-wide association studies.
Collapse
|
46
|
Dobigny G, Britton-Davidian J, Robinson TJ. Chromosomal polymorphism in mammals: an evolutionary perspective. Biol Rev Camb Philos Soc 2015; 92:1-21. [PMID: 26234165 DOI: 10.1111/brv.12213] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022]
Abstract
Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Institut de Recherche pour le Développement, Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-Cirad-Montpellier SupAgro), Campus International de Baillarguet, CS30016, 34988, Montferrier-sur-Lez, France
| | - Janice Britton-Davidian
- Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, Cc065, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7062, South Africa
| |
Collapse
|
47
|
Barber JCK, Rosenfeld JA, Graham JM, Kramer N, Lachlan KL, Bateman MS, Collinson MN, Stadheim BF, Turner CLS, Gauthier JN, Reimschisel TE, Qureshi AM, Dabir TA, Humphreys MW, Marble M, Huang T, Beal SJ, Massiah J, Taylor EJ, Wynn SL. Inside the 8p23.1 duplication syndrome; eight microduplications of likely or uncertain clinical significance. Am J Med Genet A 2015; 167A:2052-64. [PMID: 26097203 DOI: 10.1002/ajmg.a.37120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 04/03/2015] [Indexed: 12/28/2022]
Abstract
The 8p23.1 duplication syndrome (8p23.1 DS) is a recurrent genomic condition with an estimated prevalence of 1 in 58,000. The core 3.68 Mb duplication contains 32 genes of which five are currently candidates for the phenotypic features. Here we describe four patients and five families with eight microduplications of 8p23.1 ranging from 187 to 1082 kb in size and one atypical duplication of 4 Mb. These indicate that a minimal region of overlap (MRO) in medial 8p23.1 can give rise to features of 8p23.1 DS including developmental delay, dysmorphism, macrocephaly and otitis media, but not congenital heart disease (CHD). This MRO spans 776 kb (chr8:10,167,881-10,943,836 hg19) and contains SOX7 and seven of the other 32 core 8p23.1 DS genes. In centromeric 8p23.1, microduplications including GATA4 can give rise to non-syndromic CHD but the clinical significance of two smaller centromeric microduplications without GATA4 was uncertain due to severe neurological profiles not usually found in 8p23.1 DS. The clinical significance of three further 8p23.1 microduplications was uncertain due to additional genetic factors without which the probands might not have come to medical attention. Variable expressivity was indicated by the almost entirely unaffected parents in all five families and the mildly affected sibling in one. Intronic interruptions of six genes by microduplication breakpoint intervals had no apparent additional clinical consequences. Our results suggest that 8p23.1 DS is an oligogenetic condition largely caused by the duplication and interactions of the SOX7 and GATA4 transcription factors.
Collapse
Affiliation(s)
- John C K Barber
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Jill A Rosenfeld
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, Washington
| | - John M Graham
- Medical Genetics Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Nancy Kramer
- Medical Genetics Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Katherine L Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mark S Bateman
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Morag N Collinson
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | | | - Claire L S Turner
- Department of Clinical Genetics, Royal Devon and Exeter Hospital (Heavitree), Exeter, UK
| | - Jacqueline N Gauthier
- Division of Developmental Medicine and the Centre for Child Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tyler E Reimschisel
- Division of Developmental Medicine and the Centre for Child Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Athar M Qureshi
- Center for Pediatric and Congenital Heart Disease, The Cleveland Clinic, Cleveland, Ohio
| | - Tabib A Dabir
- Medical Genetics Department, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, Northern Ireland
| | - Mervyn W Humphreys
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, Northern Ireland
| | - Michael Marble
- Children's Hospital of New Orleans, New Orleans, Louisiana
| | - Taosheng Huang
- School of Medicine, University of California, Irvine, California
| | - Sarah J Beal
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Joanne Massiah
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Emma-Jane Taylor
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | | |
Collapse
|
48
|
Amador C, Huffman J, Trochet H, Campbell A, Porteous D, Wilson JF, Hastie N, Vitart V, Hayward C, Navarro P, Haley CS. Recent genomic heritage in Scotland. BMC Genomics 2015; 16:437. [PMID: 26048416 PMCID: PMC4458001 DOI: 10.1186/s12864-015-1605-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Generation Scotland Scottish Family Health Study (GS:SFHS) includes 23,960 participants from across Scotland with records for many health-related traits and environmental covariates. Genotypes at ~700 K SNPs are currently available for 10,000 participants. The cohort was designed as a resource for genetic and health related research and the study of complex traits. In this study we developed a suite of analyses to disentangle the genomic differentiation within GS:SFHS individuals to describe and optimise the sample and methods for future analyses. RESULTS We combined the genotypic information of GS:SFHS with 1092 individuals from the 1000 Genomes project and estimated their genomic relationships. Then, we performed Principal Component Analyses of the resulting relationships to investigate the genomic origin of different groups. We characterised two groups of individuals: those with a few sparse rare markers in the genome, and those with several large rare haplotypes which might represent relatively recent exogenous ancestors. We identified some individuals with likely Italian ancestry and a group with some potential African/Asian ancestry. An analysis of homozygosity in the GS:SFHS sample revealed a very similar pattern to other European populations. We also identified an individual carrying a chromosome 1 uniparental disomy. We found evidence of local geographic stratification within the population having impact on the genomic structure. CONCLUSIONS These findings illuminate the history of the Scottish population and have implications for further analyses such as the study of the contributions of common and rare variants to trait heritabilities and the evaluation of genomic and phenotypic prediction of disease.
Collapse
Affiliation(s)
- Carmen Amador
- MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | | | - Holly Trochet
- MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | | | - David Porteous
- MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | | | - James F Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, EH8 9AG, UK.
| | - Nick Hastie
- MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | | | | | - Pau Navarro
- MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Chris S Haley
- MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK. .,Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
49
|
Hernandez-Ferrer C, Quintela Garcia I, Danielski K, Carracedo Á, Pérez-Jurado LA, González JR. affy2sv: an R package to pre-process Affymetrix CytoScan HD and 750K arrays for SNP, CNV, inversion and mosaicism calling. BMC Bioinformatics 2015; 16:167. [PMID: 25991004 PMCID: PMC4438530 DOI: 10.1186/s12859-015-0608-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/30/2015] [Indexed: 12/02/2022] Open
Abstract
Background The well-known Genome-Wide Association Studies (GWAS) had led to many scientific discoveries using SNP data. Even so, they were not able to explain the full heritability of complex diseases. Now, other structural variants like copy number variants or DNA inversions, either germ-line or in mosaicism events, are being studies. We present the R package affy2sv to pre-process Affymetrix CytoScan HD/750k array (also for Genome-Wide SNP 5.0/6.0 and Axiom) in structural variant studies. Results We illustrate the capabilities of affy2sv using two different complete pipelines on real data. The first one performing a GWAS and a mosaic alterations detection study, and the other detecting CNVs and performing an inversion calling. Conclusion Both examples presented in the article show up how affy2sv can be used as part of more complex pipelines aimed to analyze Affymetrix SNP arrays data in genetic association studies, where different types of structural variants are considered. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0608-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carles Hernandez-Ferrer
- Center for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Ines Quintela Garcia
- Grupo de Medicina Xenómica - Universidade de Santiago de Compostela, Santiago de Compostela, Spain. .,Centro Nacional de Genotipado - Instituto Carlos III, Santiago de Compostela, Spain.
| | | | - Ángel Carracedo
- Grupo de Medicina Xenómica - Universidade de Santiago de Compostela, Santiago de Compostela, Spain. .,CIBER Enfermedades Raras (CIBERER), Madrid, Spain. .,Fundación Pública Galega de Medicina Xenómica (SERGAS), Santiago de Compostela, Spain. .,King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah, Saudi Arabia.
| | - Luis A Pérez-Jurado
- CIBER Enfermedades Raras (CIBERER), Madrid, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| | - Juan R González
- Center for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
50
|
Alves JM, Chikhi L, Amorim A, Lopes AM. The 8p23 inversion polymorphism determines local recombination heterogeneity across human populations. Genome Biol Evol 2015; 6:921-30. [PMID: 24682157 PMCID: PMC4007553 DOI: 10.1093/gbe/evu064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For decades, chromosomal inversions have been regarded as fascinating evolutionary elements as they are expected to suppress recombination between chromosomes with opposite orientations, leading to the accumulation of genetic differences between the two configurations over time. Here, making use of publicly available population genotype data for the largest polymorphic inversion in the human genome (8p23-inv), we assessed whether this inhibitory effect of inversion rearrangements led to significant differences in the recombination landscape of two homologous DNA segments, with opposite orientation. Our analysis revealed that the accumulation of genetic differentiation is positively correlated with the variation in recombination profiles. The observed recombination dissimilarity between inversion types is consistent across all populations analyzed and surpasses the effects of geographic structure, suggesting that both structures (orientations) have been evolving independently over an extended period of time, despite being subjected to the very same demographic history. Aside this mainly independent evolution, we also identified a short segment (350 kb, <10% of the whole inversion) in the central region of the inversion where the genetic divergence between the two structural haplotypes is diminished. Although it is difficult to demonstrate it, this could be due to gene flow (possibly via double-crossing over events), which is consistent with the higher recombination rates surrounding this segment. This study demonstrates for the first time that chromosomal inversions influence the recombination landscape at a fine-scale and highlights the role of these rearrangements as drivers of genome evolution.
Collapse
Affiliation(s)
- Joao M Alves
- Doctoral Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Portugal
| | | | | | | |
Collapse
|