1
|
Forouzanfar F, Moreno DF, Plassard D, Furst A, Oliveira KA, Reina-San-Martin B, Tora L, Molina N, Mendoza M. Gene-specific transcript buffering revealed by perturbation of coactivator complexes. SCIENCE ADVANCES 2025; 11:eadr1492. [PMID: 40106549 PMCID: PMC11922027 DOI: 10.1126/sciadv.adr1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Abstract
Transcript buffering entails reciprocal modulation of mRNA synthesis and degradation to maintain stable RNA levels under varying cellular conditions. Current models depict a global connection between mRNA synthesis and degradation, but underlying mechanisms remain unclear. Here, we show that changes in RNA metabolism following depletion of TIP60/KAT5, the acetyltransferase subunit of the NuA4 transcriptional coactivator complex, reveal that transcript buffering occurs at a gene-specific level. By combining RNA sequencing of nuclear, cytoplasmic, and newly synthesized transcript fractions with biophysical modeling in mouse embryonic stem cells, we demonstrate that transcriptional changes caused by TIP60 depletion are offset by corresponding changes in RNA nuclear export and cytoplasmic stability, indicating gene-specific buffering. Disruption of the unrelated ATAC coactivator complex also causes gene-specific transcript buffering. We propose that cells dynamically adjust RNA splicing, export, and degradation in response to individual RNA synthesis alterations, thereby sustaining cellular homeostasis.
Collapse
Affiliation(s)
- Faezeh Forouzanfar
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - David F. Moreno
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Audrey Furst
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Karen A. Oliveira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Manuel Mendoza
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Ge T, Brickner DG, Zehr K, VanBelzen DJ, Zhang W, Caffalette C, Moeller GC, Ungerleider S, Marcou N, Jacob A, Nguyen VQ, Chait B, Rout MP, Brickner JH. Exportin-1 functions as an adaptor for transcription factor-mediated docking of chromatin at the nuclear pore complex. Mol Cell 2025; 85:1101-1116.e8. [PMID: 40068679 PMCID: PMC11928253 DOI: 10.1016/j.molcel.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Nuclear pore proteins (nucleoporins [Nups]) physically interact with hundreds of chromosomal sites, impacting transcription. In yeast, transcription factors mediate interactions between Nups and enhancers and promoters. To define the molecular basis of this mechanism, we exploited a separation-of-function mutation in the Gcn4 transcription factor that blocks its interaction with the nuclear pore complex (NPC). This mutation reduces the interaction of Gcn4 with the highly conserved nuclear export factor Crm1/Xpo1. Crm1 and Nups co-occupy enhancers, and Crm1 inhibition blocks interaction of the nuclear pore protein Nup2 with the genome. In vivo, Crm1 interacts stably with the NPC and in vitro, Crm1 binds directly to both Gcn4 and Nup2. Importantly, the interaction between Crm1 and Gcn4 requires neither Ran-guanosine triphosphate (GTP) nor the nuclear export sequence binding site. Finally, Crm1 and Ran-GTP stimulate DNA binding by Gcn4, suggesting that allosteric coupling between Crm1-Ran-GTP binding and DNA binding facilitates the docking of transcription-factor-bound enhancers at the NPC.
Collapse
Affiliation(s)
- Tiffany Ge
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Donna Garvey Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Kara Zehr
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - D Jake VanBelzen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Caffalette
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Gavin C Moeller
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Sara Ungerleider
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Alexis Jacob
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Vu Q Nguyen
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Brian Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
3
|
Müller JM, Altendorfer E, Freier S, Moos K, Mayer A, Tresch A. Halfpipe: a tool for analyzing metabolic labeling RNA-seq data to quantify RNA half-lives. NAR Genom Bioinform 2025; 7:lqaf006. [PMID: 39967604 PMCID: PMC11833738 DOI: 10.1093/nargab/lqaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 02/16/2025] [Indexed: 02/20/2025] Open
Abstract
We introduce Halfpipe, a tool for analyzing RNA-seq data from metabolic RNA labeling experiments. Its main features are the absolute quantification of 4-thiouridine-labeling-induced T>C conversions in the data as generated by SLAM-seq, calculating the proportion of newly synthesized transcripts, and estimating subcellular RNA half-lives. Halfpipe excels at correcting critical biases caused by typically low labeling efficiency. We measure and compare the RNA metabolism in the G1 phase and during the mitosis of synchronized human cells. We find that RNA half-lives of constantly expressed RNAs are similar in mitosis and G1 phase, suggesting that RNA stability of those genes is constant throughout the cell cycle. Our estimates correlate well with literature values and with known RNA sequence features. Halfpipe is freely available at https://github.com/IMSBCompBio/Halfpipe.
Collapse
Affiliation(s)
- Jason M Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, 50924 Cologne, Germany
| | - Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Susanne Freier
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Katharina Moos
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, 50924 Cologne, Germany
- Center for Data and Simulation Science, University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
4
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
5
|
Martin S, Kim CY, Coller J. Assessment of mRNA Decay and Calculation of Codon Occurrence to mRNA Stability Correlation Coefficients after 5-EU Metabolic Labeling. Methods Mol Biol 2025; 2863:151-182. [PMID: 39535710 DOI: 10.1007/978-1-0716-4176-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
mRNA translation and decay are tightly connected. This chapter describes a method to assess the influence of each codon identity on mRNA stability in cultured cells. The technique involves metabolic labeling of the nascent mRNAs by addition of the nucleoside analog 5-ethynyluridine (5-EU), purification of the RNA at different time-points after chase of the 5-EU, then biotinylation with Click chemistry, pull-down, and sequencing. The transcripts' half-lives are calculated from the expression level of each mRNA at the different time-points. Finally, the method describes the calculation of the Codon occurrence to mRNA Stability correlation Coefficient, or CSC, as a correlation between the codon occurrence in a transcript and the transcript half-life, for each codon.
Collapse
Affiliation(s)
- Sophie Martin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Christopher Y Kim
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- RNA Innovation Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
6
|
Czarnocka-Cieciura A, Poznański J, Turtola M, Tomecki R, Krawczyk PS, Mroczek S, Orzeł W, Saha U, Jensen TH, Dziembowski A, Tudek A. Modeling of mRNA deadenylation rates reveal a complex relationship between mRNA deadenylation and decay. EMBO J 2024; 43:6525-6554. [PMID: 39394354 PMCID: PMC11649921 DOI: 10.1038/s44318-024-00258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
Complete cytoplasmic polyadenosine tail (polyA-tail) deadenylation is thought to be essential for initiating mRNA decapping and subsequent degradation. To investigate this prevalent model, we conducted direct RNA sequencing of S. cerevisiae mRNAs derived from chase experiments under steady-state and stress condition. Subsequently, we developed a numerical model based on a modified gamma distribution function, which estimated the transcriptomic deadenylation rate at 10 A/min. A simplified independent method, based on the delineation of quantile polyA-tail values, showed a correlation between the decay and deadenylation rates of individual mRNAs, which appeared consistent within functional transcript groups and associated with codon optimality. Notably, these rates varied during the stress response. Detailed analysis of ribosomal protein-coding mRNAs (RPG mRNAs), constituting 40% of the transcriptome, singled out this transcript group. While deadenylation and decay of RPG mRNAs accelerated under heat stress, their degradation could proceed even when deadenylation was blocked, depending entirely on ongoing nuclear export. Our findings support the general primary function of deadenylation in dictating the onset of decapping, while also demonstrating complex relations between these processes.
Collapse
Affiliation(s)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Matti Turtola
- Department of Life Technologies, University of Turku, Biocity, Tykistökatu 6, 205240, Turku, Finland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Seweryn Mroczek
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Wiktoria Orzeł
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Upasana Saha
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Torben Heick Jensen
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland.
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland.
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
7
|
Yin K, Xu Y, Guo Y, Zheng Z, Lin X, Zhao M, Dong H, Liang D, Zhu Z, Zheng J, Lin S, Song J, Yang C. Dyna-vivo-seq unveils cellular RNA dynamics during acute kidney injury via in vivo metabolic RNA labeling-based scRNA-seq. Nat Commun 2024; 15:9866. [PMID: 39543112 PMCID: PMC11564529 DOI: 10.1038/s41467-024-54202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
A fundamental objective of genomics is to track variations in gene expression program. While metabolic RNA labeling-based single-cell RNA sequencing offers insights into temporal biological processes, its limited applicability only to in vitro models challenges the study of in vivo gene expression dynamics. Herein, we introduce Dyna-vivo-seq, a strategy that enables time-resolved dynamic transcription profiling in vivo at the single-cell level by examining new and old RNAs. The new RNAs can offer an additional dimension to reveal cellular heterogeneity. Leveraging new RNAs, we discern two distinct high and low metabolic labeling populations among proximal tubular (PT) cells. Furthermore, we identify 90 rapidly responding transcription factors during the acute kidney injury in female mice, highlighting that high metabolic labeling PT cells exhibit heightened susceptibility to injury. Dyna-vivo-seq provides a powerful tool for the characterization of dynamic transcriptome at the single-cell level in living organism and holds great promise for biomedical applications.
Collapse
Affiliation(s)
- Kun Yin
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Yiling Xu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Ye Guo
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Zhong Zheng
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China
| | - Xinrui Lin
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China
| | - Meijuan Zhao
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - He Dong
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Dianyi Liang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Zhi Zhu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Junhua Zheng
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China.
| | - Shichao Lin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, PR China.
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Chaoyong Yang
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China.
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, PR China.
| |
Collapse
|
8
|
Fonseca A, Riveras E, Moyano TC, Alvarez JM, Rosa S, Gutiérrez RA. Dynamic changes in mRNA nucleocytoplasmic localization in the nitrate response of Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:4227-4245. [PMID: 38950037 DOI: 10.1111/pce.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Alejandro Fonseca
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José M Alvarez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Vukovic I, Barnada SM, Ruffin JW, Karlin J, Lokareddy RK, Cingolani G, McMahon SB. Non-redundant roles for the human mRNA decapping cofactor paralogs DCP1a and DCP1b. Life Sci Alliance 2024; 7:e202402938. [PMID: 39256052 PMCID: PMC11387620 DOI: 10.26508/lsa.202402938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Eukaryotic gene expression is regulated at the transcriptional and post-transcriptional levels, with disruption of regulation contributing significantly to human diseases. The 5' m7G mRNA cap is a central node in post-transcriptional regulation, participating in both mRNA stabilization and translation efficiency. In mammals, DCP1a and DCP1b are paralogous cofactor proteins of the mRNA cap hydrolase DCP2. As lower eukaryotes have a single DCP1 cofactor, the functional advantages gained by this evolutionary divergence remain unclear. We report the first functional dissection of DCP1a and DCP1b, demonstrating that they are non-redundant cofactors of DCP2 with unique roles in decapping complex integrity and specificity. DCP1a is essential for decapping complex assembly and interactions between the decapping complex and mRNA cap-binding proteins. DCP1b is essential for decapping complex interactions with protein degradation and translational machinery. DCP1a and DCP1b impact the turnover of distinct mRNAs. The observation that different ontological groups of mRNA molecules are regulated by DCP1a and DCP1b, along with their non-redundant roles in decapping complex integrity, provides the first evidence that these paralogs have qualitatively distinct functions.
Collapse
Affiliation(s)
- Ivana Vukovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Samantha M Barnada
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jon Karlin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ravi Kumar Lokareddy
- Academic Joint Departments - Biochemistry & Molecular Genetic, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gino Cingolani
- Academic Joint Departments - Biochemistry & Molecular Genetic, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven B McMahon
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Hisler V, Bardot P, Detilleux D, Bernardini A, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Le Gras S, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription initiation in holo-TFIID-depleted mouse embryonic stem cells. Cell Rep 2024; 43:114791. [PMID: 39352809 PMCID: PMC11551524 DOI: 10.1016/j.celrep.2024.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The recognition of core promoter sequences by TFIID is the first step in RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is a trilobular complex, composed of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs). Why and how TAFs are necessary for the formation of TFIID domains and how they contribute to transcription initiation remain unclear. Inducible TAF7 or TAF10 depletion, followed by comprehensive analysis of TFIID subcomplex formation, chromatin binding, and nascent transcription in mouse embryonic stem cells, result in the formation of a TAF7-lacking TFIID or a minimal core-TFIID complex, respectively. These partial complexes support TBP recruitment at promoters and nascent Pol II transcription at most genes early after depletion, but importantly, TAF10 is necessary for efficient Pol II pausing. We show that partially assembled TFIID complexes can sustain Pol II transcription initiation but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Paul Bardot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Dylane Detilleux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Claire Richard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Lynda Hadj Arab
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Cynthia Ehrhard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Luc Négroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
11
|
Kelbert M, Jordán-Pla A, de Miguel-Jiménez L, García-Martínez J, Selitrennik M, Guterman A, Henig N, Granneman S, Pérez-Ortín JE, Chávez S, Choder M. The zinc-finger transcription factor Sfp1 imprints specific classes of mRNAs and links their synthesis to cytoplasmic decay. eLife 2024; 12:RP90766. [PMID: 39356734 PMCID: PMC11446548 DOI: 10.7554/elife.90766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
To function effectively as an integrated system, the transcriptional and post-transcriptional machineries must communicate through mechanisms that are still poorly understood. Here, we focus on the zinc-finger Sfp1, known to regulate transcription of proliferation-related genes. We show that Sfp1 can regulate transcription either by binding to promoters, like most known transcription activators, or by binding to the transcribed regions (gene bodies), probably via RNA polymerase II (Pol II). We further studied the first mode of Sfp1 activity and found that, following promoter binding, Sfp1 binds to gene bodies and affects Pol II configuration, manifested by dissociation or conformational change of its Rpb4 subunit and increased backtracking. Surprisingly, Sfp1 binds to a subset of mRNAs co-transcriptionally and stabilizes them. The interaction between Sfp1 and its client mRNAs is controlled by their respective promoters and coincides with Sfp1's dissociation from chromatin. Intriguingly, Sfp1 dissociation from the chromatin correlates with the extent of the backtracked Pol II. We propose that, following promoter recruitment, Sfp1 accompanies Pol II and regulates backtracking. The backtracked Pol II is more compatible with Sfp1's relocation to the nascent transcripts, whereupon Sfp1 accompanies these mRNAs to the cytoplasm and regulates their stability. Thus, Sfp1's co-transcriptional binding imprints the mRNA fate, serving as a paradigm for the cross-talk between the synthesis and decay of specific mRNAs, and a paradigm for the dual-role of some zinc-finger proteins. The interplay between Sfp1's two modes of transcription regulation remains to be examined.
Collapse
Affiliation(s)
- Moran Kelbert
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Antonio Jordán-Pla
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Lola de Miguel-Jiménez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario Virgen del Rocío, and Departamento de Genética, Facultad de Biología, Universidad de SevillaSevilleSpain
| | - José García-Martínez
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Michael Selitrennik
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Adi Guterman
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Noa Henig
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Sander Granneman
- Centre for Engineering Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - José E Pérez-Ortín
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario Virgen del Rocío, and Departamento de Genética, Facultad de Biología, Universidad de SevillaSevilleSpain
| | - Mordechai Choder
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
12
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
13
|
Francette AM, Arndt KM. Multiple direct and indirect roles of the Paf1 complex in transcription elongation, splicing, and histone modifications. Cell Rep 2024; 43:114730. [PMID: 39244754 PMCID: PMC11498942 DOI: 10.1016/j.celrep.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The polymerase-associated factor 1 (Paf1) complex (Paf1C) is a conserved protein complex with critical functions during eukaryotic transcription. Previous studies showed that Paf1C is multi-functional, controlling specific aspects of transcription ranging from RNA polymerase II (RNAPII) processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and the extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
14
|
Akinniyi OT, Kulkarni S, Hribal MM, Keller CA, Giardine B, Reese JC. The DNA damage response and RNA Polymerase II regulator Def1 has posttranscriptional functions in the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613278. [PMID: 39463967 PMCID: PMC11507818 DOI: 10.1101/2024.09.16.613278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Yeast Def1 mediates RNA polymerase II degradation and transcription elongation during stress. Def1 is predominantly cytoplasmic, and DNA damage signals cause its proteolytic processing, liberating its N-terminus to enter the nucleus. Cytoplasmic functions for this abundant protein have not been identified. Proximity-labeling (BioID) experiments indicate that Def1 binds to an array of proteins involved in posttranscriptional control and translation of mRNAs. Deleting DEF1 reduces both mRNA synthesis and decay rates, indicating transcript buffering in the mutant. Directly tethering Def1 to a reporter mRNA suppressed expression, suggesting that Def1 directly regulates mRNAs. Surprisingly, we found that Def1 interacts with polyribosomes, which requires its ubiquitin-binding domain located in its N-terminus. The binding of Def1 to ribosomes requires the ubiquitylation of eS7a (Rsp7A) in the small subunit by the Not4 protein in the Ccr4-Not complex. Not4 ubiquitylation of the ribosome regulates translation quality control and co-translational mRNA decay. The polyglutamine-rich unstructured C-terminus of Def1 is required for its interaction with decay and translation factors, suggesting that Def1 acts as a ubiquitin-dependent scaffold to link translation status to mRNA decay. Thus, we have identified a novel function for this transcription and DNA damage response factor in posttranscriptional regulation in the cytoplasm and establish Def1 as a master regulator of gene expression, functioning during transcription, mRNA decay, and translation.
Collapse
|
15
|
Wang Q, Lin J. Homeostasis of mRNA concentrations through coupling transcription, export, and degradation. iScience 2024; 27:110531. [PMID: 39175768 PMCID: PMC11338957 DOI: 10.1016/j.isci.2024.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Many experiments showed that eukaryotic cells maintain a constant mRNA concentration upon various perturbations by actively regulating mRNA production and degradation rates, known as mRNA buffering. However, the underlying mechanism is still unknown. In this work, we unveil a mechanistic model of mRNA buffering: the releasing-shuttling (RS) model. The model incorporates two crucial proteins, X and Y, which play several roles, including transcription, decay, and export factors, in the different stages of mRNA metabolism. The RS model predicts the constant mRNA concentration under genome-wide genetic perturbations and cell volume changes, the slowed-down mRNA degradation after Pol II depletion, and the temporal transcription dynamics after exonuclease depletion, in agreement with multiple experiments. Finally, we present a list of X and Y candidates and propose an experimental method to identify X. Our work uncovers potentially universal pathways coupling transcription, export, and degradation that help cells maintain mRNA homeostasis.
Collapse
Affiliation(s)
- Qirun Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Carpentier MC, Receveur AE, Boubegtitene A, Cadoudal A, Bousquet-Antonelli C, Merret R. Genome-wide analysis of mRNA decay in Arabidopsis shoot and root reveals the importance of co-translational mRNA decay in the general mRNA turnover. Nucleic Acids Res 2024; 52:7910-7924. [PMID: 38721772 PMCID: PMC11260455 DOI: 10.1093/nar/gkae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 07/23/2024] Open
Abstract
Until recently, the general 5'-3' mRNA decay was placed in the cytosol after the mRNA was released from ribosomes. However, the discovery of an additional 5' to 3' pathway, the Co-Translational mRNA Decay (CTRD), changed this paradigm. Up to date, defining the real contribution of CTRD in the general mRNA turnover has been hardly possible as the enzyme involved in this pathway is also involved in cytosolic decay. Here we overcame this obstacle and created an Arabidopsis line specifically impaired for CTRD called XRN4ΔCTRD. Through a genome-wide analysis of mRNA decay rate in shoot and root, we tested the importance of CTRD in mRNA turnover. First, we observed that mRNAs tend to be more stable in root than in shoot. Next, using XRN4ΔCTRD line, we demonstrated that CTRD is a major determinant in mRNA turnover. In shoot, the absence of CTRD leads to the stabilization of thousands of transcripts while in root its absence is highly compensated resulting in faster decay rates. We demonstrated that this faster decay rate is partially due to the XRN4-dependent cytosolic decay. Finally, we correlated this organ-specific effect with XRN4ΔCTRD line phenotypes revealing a crucial role of CTRD in mRNA homeostasis and proper organ development.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Anne-Elodie Receveur
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Alexandre Boubegtitene
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Adrien Cadoudal
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Rémy Merret
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
17
|
Pulido V, Rodríguez-Peña JM, Alonso G, Sanz AB, Arroyo J, García R. mRNA Decapping Activator Pat1 Is Required for Efficient Yeast Adaptive Transcriptional Responses via the Cell Wall Integrity MAPK Pathway. J Mol Biol 2024; 436:168570. [PMID: 38604529 DOI: 10.1016/j.jmb.2024.168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Cellular mRNA levels, particularly under stress conditions, can be finely regulated by the coordinated action of transcription and degradation processes. Elements of the 5'-3' mRNA degradation pathway, functionally associated with the exonuclease Xrn1, can bind to nuclear chromatin and modulate gene transcription. Within this group are the so-called decapping activators, including Pat1, Dhh1, and Lsm1. In this work, we have investigated the role of Pat1 in the yeast adaptive transcriptional response to cell wall stress. Thus, we demonstrated that in the absence of Pat1, the transcriptional induction of genes regulated by the Cell Wall Integrity MAPK pathway was significantly affected, with no effect on the stability of these transcripts. Furthermore, under cell wall stress conditions, Pat1 is recruited to Cell Wall Integrity-responsive genes in parallel with the RNA Pol II complex, participating both in pre-initiation complex assembly and transcriptional elongation. Indeed, strains lacking Pat1 showed lower recruitment of the transcription factor Rlm1, less histone H3 displacement at Cell Wall Integrity gene promoters, and impaired recruitment and progression of RNA Pol II. Moreover, Pat1 and the MAPK Slt2 occupied the coding regions interdependently. Our results support the idea that Pat1 and presumably other decay factors behave as transcriptional regulators of Cell Wall Integrity-responsive genes under cell wall stress conditions.
Collapse
Affiliation(s)
- Verónica Pulido
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Jose M Rodríguez-Peña
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Graciela Alonso
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| | - Raúl García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| |
Collapse
|
18
|
Ge T, Brickner DG, Zehr K, VanBelzen DJ, Zhang W, Caffalette C, Ungerleider S, Marcou N, Chait B, Rout MP, Brickner JH. Exportin-1 functions as an adaptor for transcription factor-mediated docking of chromatin at the nuclear pore complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593355. [PMID: 38798450 PMCID: PMC11118273 DOI: 10.1101/2024.05.09.593355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nuclear pore proteins (Nups) in yeast, flies and mammals physically interact with hundreds or thousands of chromosomal sites, which impacts transcriptional regulation. In budding yeast, transcription factors mediate interaction of Nups with enhancers of highly active genes. To define the molecular basis of this mechanism, we exploited a separation-of-function mutation in the Gcn4 transcription factor that blocks its interaction with the nuclear pore complex (NPC) without altering its DNA binding or activation domains. SILAC mass spectrometry revealed that this mutation reduces the interaction of Gcn4 with the highly conserved nuclear export factor Crm1/Xpo1. Crm1 both interacts with the same sites as Nups genome-wide and is required for Nup2 to interact with the yeast genome. In vivo, Crm1 undergoes extensive and stable interactions with the NPC. In vitro, Crm1 binds to Gcn4 and these proteins form a complex with the nuclear pore protein Nup2. Importantly, the interaction between Crm1 and Gcn4 does not require Ran-GTP, suggesting that it is not through the nuclear export sequence binding site. Finally, Crm1 stimulates DNA binding by Gcn4, supporting a model in which allosteric coupling between Crm1 binding and DNA binding permits docking of transcription factor-bound enhancers at the NPC.
Collapse
Affiliation(s)
- Tiffany Ge
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | | | - Kara Zehr
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - D Jake VanBelzen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | | | - Sara Ungerleider
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
- Current address: Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Brian Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
19
|
Forouzanfar F, Plassard D, Furst A, Moreno D, Oliveira KA, Reina-San-Martin B, Tora L, Molina N, Mendoza M. Gene-specific RNA homeostasis revealed by perturbation of coactivator complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577960. [PMID: 38352321 PMCID: PMC10862879 DOI: 10.1101/2024.01.30.577960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Transcript buffering entails the reciprocal modulation of mRNA synthesis and degradation rates to maintain stable RNA levels under varying cellular conditions. Current research supports a global, non-sequence-specific connection between mRNA synthesis and degradation, but the underlying mechanisms are still unclear. In this study, we investigated changes in RNA metabolism following acute depletion of TIP60/KAT5, the acetyltransferase subunit of the NuA4 transcriptional coactivator complex, in mouse embryonic stem cells. By combining RNA sequencing of nuclear, cytoplasmic, and newly synthesised transcript fractions with biophysical modelling, we demonstrate that TIP60 predominantly enhances transcription of numerous genes, while a smaller set of genes undergoes TIP60-dependent transcriptional repression. Surprisingly, transcription changes caused by TIP60 depletion were offset by corresponding changes in RNA nuclear export and cytoplasmic stability, indicating gene-specific buffering mechanisms. Similarly, disruption of the unrelated ATAC coactivator complex also resulted in gene-specific transcript buffering. These findings reveal that transcript buffering functions at a gene-specific level and suggest that cells dynamically adjust RNA splicing, export, and degradation in response to individual RNA synthesis alterations, thereby sustaining cellular homeostasis.
Collapse
|
20
|
Han X, Xing L, Hong Y, Zhang X, Hao B, Lu JY, Huang M, Wang Z, Ma S, Zhan G, Li T, Hao X, Tao Y, Li G, Zhou S, Zheng Z, Shao W, Zeng Y, Ma D, Zhang W, Xie Z, Deng H, Yan J, Deng W, Shen X. Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence. Cell Stem Cell 2024; 31:694-716.e11. [PMID: 38631356 DOI: 10.1016/j.stem.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linqing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechun Zhang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Hao
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - J Yuyang Lu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Mengyuan Huang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shaoqian Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Zhan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaowen Hao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yibing Tao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Guanwen Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuqin Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Zheng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yitian Zeng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Dacheng Ma
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangwei Yan
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaohua Shen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
21
|
Müller JM, Moos K, Baar T, Maier KC, Zumer K, Tresch A. Nuclear export is a limiting factor in eukaryotic mRNA metabolism. PLoS Comput Biol 2024; 20:e1012059. [PMID: 38753883 PMCID: PMC11135743 DOI: 10.1371/journal.pcbi.1012059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/29/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
The eukaryotic mRNA life cycle includes transcription, nuclear mRNA export and degradation. To quantify all these processes simultaneously, we perform thiol-linked alkylation after metabolic labeling of RNA with 4-thiouridine (4sU), followed by sequencing of RNA (SLAM-seq) in the nuclear and cytosolic compartments of human cancer cells. We develop a model that reliably quantifies mRNA-specific synthesis, nuclear export, and nuclear and cytosolic degradation rates on a genome-wide scale. We find that nuclear degradation of polyadenylated mRNA is negligible and nuclear mRNA export is slow, while cytosolic mRNA degradation is comparatively fast. Consequently, an mRNA molecule generally spends most of its life in the nucleus. We also observe large differences in the nuclear export rates of different 3'UTR transcript isoforms. Furthermore, we identify genes whose expression is abruptly induced upon metabolic labeling. These transcripts are exported substantially faster than average mRNAs, suggesting the existence of alternative export pathways. Our results highlight nuclear mRNA export as a limiting factor in mRNA metabolism and gene regulation.
Collapse
Affiliation(s)
- Jason M. Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Katharina Moos
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Till Baar
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kerstin C. Maier
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kristina Zumer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Tomaz da Silva P, Zhang Y, Theodorakis E, Martens LD, Yépez VA, Pelechano V, Gagneur J. Cellular energy regulates mRNA degradation in a codon-specific manner. Mol Syst Biol 2024; 20:506-520. [PMID: 38491213 PMCID: PMC11066088 DOI: 10.1038/s44320-024-00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood. Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Mathematical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly alter the effect of codon usage. This new mode of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.
Collapse
Affiliation(s)
- Pedro Tomaz da Silva
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Yujie Zhang
- Scilifelab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Evangelos Theodorakis
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Laura D Martens
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Vicent Pelechano
- Scilifelab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
23
|
Francette AM, Arndt KM. Multiple direct and indirect roles of Paf1C in elongation, splicing, and histone post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591159. [PMID: 38712269 PMCID: PMC11071476 DOI: 10.1101/2024.04.25.591159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Paf1C is a highly conserved protein complex with critical functions during eukaryotic transcription. Previous studies have shown that Paf1C is multi-functional, controlling specific aspects of transcription, ranging from RNAPII processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M. Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Lead contact
| |
Collapse
|
24
|
Unruh BA, Weidemann DE, Miao L, Kojima S. Coordination of rhythmic RNA synthesis and degradation orchestrates 24- and 12-h RNA expression patterns in mouse fibroblasts. Proc Natl Acad Sci U S A 2024; 121:e2314690121. [PMID: 38315868 PMCID: PMC10873638 DOI: 10.1073/pnas.2314690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Circadian RNA expression is essential to ultimately regulate a plethora of downstream rhythmic biochemical, physiological, and behavioral processes. Both transcriptional and posttranscriptional mechanisms are considered important to drive rhythmic RNA expression; however, the extent to which each regulatory process contributes to the rhythmic RNA expression remains controversial. To systematically address this, we monitored RNA dynamics using metabolic RNA labeling technology during a circadian cycle in mouse fibroblasts. We find that rhythmic RNA synthesis is the primary contributor of 24-h RNA rhythms, while rhythmic degradation is more important for 12-h RNA rhythms. These rhythms were predominantly regulated by Bmal1 and/or the core clock mechanism, and the interplay between rhythmic synthesis and degradation has a significant impact in shaping rhythmic RNA expression patterns. Interestingly, core clock RNAs are regulated by multiple rhythmic processes and have the highest amplitude of synthesis and degradation, presumably critical to sustain robust rhythmicity of cell-autonomous circadian rhythms. Our study yields invaluable insights into the temporal dynamics of both 24- and 12-h RNA rhythms in mouse fibroblasts.
Collapse
Affiliation(s)
- Benjamin A. Unruh
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Douglas E. Weidemann
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Lin Miao
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
25
|
Krawczyk PS, Tudek A, Mroczek S, Dziembowski A. Transcriptome-Wide Analysis of mRNA Adenylation Status in Yeast Using Nanopore Sequencing. Methods Mol Biol 2024; 2723:193-214. [PMID: 37824072 DOI: 10.1007/978-1-0716-3481-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
There are multiple methods for studying deadenylation, either in vitro or in vivo, which allow for observation of mRNA abundance or poly(A) tail dynamics. However, direct RNA sequencing using the Oxford Nanopore Technologies (ONT) platform makes it possible to conduct transcriptome-wide analyses at the single-molecule level without the PCR bias introduced by other methods. In this chapter, we provide a protocol to measure both RNA levels and poly(A)-tail lengths in the yeast Saccharomyces cerevisiae using ONT.
Collapse
Affiliation(s)
- Pawel S Krawczyk
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Seweryn Mroczek
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
- Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
26
|
Hisler V, Bardot P, Detilleux D, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Gras SL, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription with partially assembled TFIID complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.567046. [PMID: 38076793 PMCID: PMC10705246 DOI: 10.1101/2023.11.27.567046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The recognition of core promoter sequences by the general transcription factor TFIID is the first step in the process of RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is composed of the TATA binding protein (TBP) and of 13 TBP associated factors (TAFs). Inducible Taf7 knock out (KO) results in the formation of a Taf7-less TFIID complex, while Taf10 KO leads to serious defects within the TFIID assembly pathway. Either TAF7 or TAF10 depletions correlate with the detected TAF occupancy changes at promoters, and with the distinct phenotype severities observed in mouse embryonic stem cells or mouse embryos. Surprisingly however, under either Taf7 or Taf10 deletion conditions, TBP is still associated to the chromatin, and no major changes are observed in nascent Pol II transcription. Thus, partially assembled TFIID complexes can sustain Pol II transcription initiation, but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Paul Bardot
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Dylane Detilleux
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Matthieu Stierle
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Claire Richard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Lynda Hadj Arab
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Cynthia Ehrhard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Bastien Morlet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Matthieu Jung
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Stéphanie Le Gras
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Luc Négroni
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - László Tora
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Stéphane D. Vincent
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| |
Collapse
|
27
|
Swaffer MP, Marinov GK, Zheng H, Fuentes Valenzuela L, Tsui CY, Jones AW, Greenwood J, Kundaje A, Greenleaf WJ, Reyes-Lamothe R, Skotheim JM. RNA polymerase II dynamics and mRNA stability feedback scale mRNA amounts with cell size. Cell 2023; 186:5254-5268.e26. [PMID: 37944513 DOI: 10.1016/j.cell.2023.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
A fundamental feature of cellular growth is that total protein and RNA amounts increase with cell size to keep concentrations approximately constant. A key component of this is that global transcription rates increase in larger cells. Here, we identify RNA polymerase II (RNAPII) as the limiting factor scaling mRNA transcription with cell size in budding yeast, as transcription is highly sensitive to the dosage of RNAPII but not to other components of the transcriptional machinery. Our experiments support a dynamic equilibrium model where global RNAPII transcription at a given size is set by the mass action recruitment kinetics of unengaged nucleoplasmic RNAPII to the genome. However, this only drives a sub-linear increase in transcription with size, which is then partially compensated for by a decrease in mRNA decay rates as cells enlarge. Thus, limiting RNAPII and feedback on mRNA stability work in concert to scale mRNA amounts with cell size.
Collapse
Affiliation(s)
| | - Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Huan Zheng
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | | | - Crystal Yee Tsui
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | | | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Wille CK, Zhang X, Haws SA, Denu JM, Sridharan R. DOT1L is a barrier to histone acetylation during reprogramming to pluripotency. SCIENCE ADVANCES 2023; 9:eadf3980. [PMID: 37976354 PMCID: PMC10656071 DOI: 10.1126/sciadv.adf3980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Embryonic stem cells (ESCs) have transcriptionally permissive chromatin enriched for gene activation-associated histone modifications. A striking exception is DOT1L-mediated H3K79 dimethylation (H3K79me2) that is considered a positive regulator of transcription. We find that ESCs are depleted for H3K79me2 at shared locations of enrichment with somatic cells, which are highly and ubiquitously expressed housekeeping genes, and have lower RNA polymerase II (RNAPII) at the transcription start site (TSS) despite greater nascent transcription. Inhibiting DOT1L increases the efficiency of reprogramming of somatic to induced pluripotent stem cells, enables an ESC-like RNAPII pattern at the TSS, and functionally compensates for enforced RNAPII pausing. DOT1L inhibition increases H3K27 methylation and RNAPII elongation-enhancing histone acetylation without changing the expression of the causal histone-modifying enzymes. Only the maintenance of elevated histone acetylation is essential for enhanced reprogramming and occurs at loci that are depleted for H3K79me2. Thus, DOT1L inhibition promotes the hyperacetylation and hypertranscription pluripotent properties.
Collapse
Affiliation(s)
- Coral K. Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Xiaoya Zhang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Haws
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John M. Denu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
29
|
Bryll AR, Peterson CL. The circular logic of mRNA homeostasis. Transcription 2023; 14:18-26. [PMID: 36843061 PMCID: PMC10353332 DOI: 10.1080/21541264.2023.2183684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023] Open
Abstract
Eukaryotic cells rely upon dynamic, multifaceted regulation at each step of RNA biogenesis to maintain mRNA pools and ensure normal protein synthesis. Studies in budding yeast indicate a buffering phenomenon that preserves global mRNA levels through the reciprocal balancing of RNA synthesis rates and mRNA decay. In short, changes in transcription impact the efficiency of mRNA degradation and defects in either nuclear or cytoplasmic mRNA degradation are somehow sensed and relayed to control a compensatory change in mRNA transcription rates. Here, we review current views on molecular mechanisms that might explain this apparent bidirectional sensing process that ensures homeostasis of the stable mRNA pool.
Collapse
Affiliation(s)
- Alysia R. Bryll
- Program of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester
- Medical Scientist Training Program, University of Massachusetts Chan Medical School, Worcester
| | - Craig L. Peterson
- Program of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester
| |
Collapse
|
30
|
Rahaman S, Faravelli S, Voegeli S, Becskei A. Polysome propensity and tunable thresholds in coding sequence length enable differential mRNA stability. SCIENCE ADVANCES 2023; 9:eadh9545. [PMID: 37756413 PMCID: PMC10530222 DOI: 10.1126/sciadv.adh9545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The half-life of mRNAs, as well as their translation, increases in proportion to the optimal codons, indicating a tight coupling of codon-dependent differential translation and degradation. Little is known about the regulation of this coupling. We found that the mRNA stability gain in yeast depends on the mRNA coding sequence length. Below a critical length, codon optimality fails to affect the stability of mRNAs although they can be efficiently translated into short peptides and proteins. Above this threshold length, codon optimality-dependent differential mRNA stability emerges in a switch-like fashion, which coincides with a similar increase in the polysome propensity of the mRNAs. This threshold length can be tuned by the untranslated regions (UTR). Some of these UTRs can destabilize mRNAs without reducing translation, which plays a role in controlling the amplitude of the oscillatory expression of cell cycle genes. Our findings help understand the translation of short peptides from noncoding RNAs and the translation by localized monosomes in neurons.
Collapse
Affiliation(s)
- Sayanur Rahaman
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
31
|
Unruh BA, Weidemann DE, Kojima S. Coordination of rhythmic RNA synthesis and degradation orchestrates 24-hour and 12-hour RNA expression patterns in mouse fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550672. [PMID: 37546997 PMCID: PMC10402069 DOI: 10.1101/2023.07.26.550672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Circadian RNA expression is essential to ultimately regulate a plethora of downstream rhythmic biochemical, physiological, and behavioral processes. Both transcriptional and post-transcriptional mechanisms are considered important to drive rhythmic RNA expression, however, the extent to which each regulatory process contributes to the rhythmic RNA expression remains controversial. To systematically address this, we monitored RNA dynamics using metabolic RNA labeling technology during a circadian cycle in mouse fibroblasts. We find that rhythmic RNA synthesis is the primary contributor of 24 hr RNA rhythms, while rhythmic degradation is more important for 12 hr RNA rhythms. These rhythms were predominantly regulated by Bmal1 and/or the core clock mechanism, and interplay between rhythmic synthesis and degradation has a significant impact in shaping rhythmic RNA expression patterns. Interestingly, core clock RNAs are regulated by multiple rhythmic processes and have the highest amplitude of synthesis and degradation, presumably critical to sustain robust rhythmicity of cell-autonomous circadian rhythms. Our study yields invaluable insights into the temporal dynamics of both 24 hr and 12 hr RNA rhythms in mouse fibroblasts.
Collapse
Affiliation(s)
- Benjamin A Unruh
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Douglas E Weidemann
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
32
|
Hagkarim NC, Hajkarim MC, Suzuki T, Fujiwara T, Winkler GS, Stewart GS, Grand RJ. Disruption of the Mammalian Ccr4-Not Complex Contributes to Transcription-Mediated Genome Instability. Cells 2023; 12:1868. [PMID: 37508532 PMCID: PMC10378556 DOI: 10.3390/cells12141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian Ccr4-Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. It is involved in the control of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, and nuclear RNA surveillance; the Ccr4-Not complex also plays a central role in the regulation of mRNA decay. Growing evidence suggests that gene transcription has a vital role in shaping the landscape of genome replication and is also a potent source of replication stress and genome instability. Here, we have examined the effects of the inactivation of the Ccr4-Not complex, via the depletion of the scaffold subunit CNOT1, on DNA replication and genome integrity in mammalian cells. In CNOT1-depleted cells, the elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which, together with R-loop accumulation, results in replication fork slowing, DNA damage, and senescence. Furthermore, we have shown that the stability of TBP mRNA increases in the absence of CNOT1, which may explain its elevated protein expression in CNOT1-depleted cells. Finally, we have shown the activation of mitogen-activated protein kinase signalling as evidenced by ERK1/2 phosphorylation in the absence of CNOT1, which may be responsible for the observed cell cycle arrest at the border of G1/S.
Collapse
Affiliation(s)
- Nafiseh Chalabi Hagkarim
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Morteza Chalabi Hajkarim
- Department of Medicine Haematology & Oncology, Columbia University, New York City, NY 10032, USA
| | - Toru Suzuki
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka City 577-8502, Japan
| | | | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger J Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
33
|
Vock IW, Simon MD. bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with Bayesian hierarchical modeling. RNA (NEW YORK, N.Y.) 2023; 29:958-976. [PMID: 37028916 PMCID: PMC10275263 DOI: 10.1261/rna.079451.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Differential expression analysis of RNA sequencing (RNA-seq) data can identify changes in cellular RNA levels, but provides limited information about the kinetic mechanisms underlying such changes. Nucleotide recoding RNA-seq methods (NR-seq; e.g., TimeLapse-seq, SLAM-seq, etc.) address this shortcoming and are widely used approaches to identify changes in RNA synthesis and degradation kinetics. While advanced statistical models implemented in user-friendly software (e.g., DESeq2) have ensured the statistical rigor of differential expression analyses, no such tools that facilitate differential kinetic analysis with NR-seq exist. Here, we report the development of Bayesian analysis of the kinetics of RNA (bakR; https:// github.com/simonlabcode/bakR), an R package to address this need. bakR relies on Bayesian hierarchical modeling of NR-seq data to increase statistical power by sharing information across transcripts. Analyses of simulated data confirmed that bakR implementations of the hierarchical model outperform attempts to analyze differential kinetics with existing models. bakR also uncovers biological signals in real NR-seq data sets and provides improved analyses of existing data sets. This work establishes bakR as an important tool for identifying differential RNA synthesis and degradation kinetics.
Collapse
Affiliation(s)
- Isaac W Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| |
Collapse
|
34
|
García-Martínez J, Singh A, Medina D, Chávez S, Pérez-Ortín JE. Enhanced gene regulation by cooperation between mRNA decay and gene transcription. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194910. [PMID: 36731791 PMCID: PMC10663100 DOI: 10.1016/j.bbagrm.2023.194910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
It has become increasingly clear in the last few years that gene expression in eukaryotes is not a linear process from mRNA synthesis in the nucleus to translation and degradation in the cytoplasm, but works as a circular one where the mRNA level is controlled by crosstalk between nuclear transcription and cytoplasmic decay pathways. One of the consequences of this crosstalk is the approximately constant level of mRNA. This is called mRNA buffering and happens when transcription and mRNA degradation act at compensatory rates. However, if transcription and mRNA degradation act additively, enhanced gene expression regulation occurs. In this work, we analyzed new and previously published genomic datasets obtained for several yeast mutants related to either transcription or mRNA decay that are not known to play any role in the other process. We show that some, which were presumed only transcription factors (Sfp1) or only decay factors (Puf3, Upf2/3), may represent examples of RNA-binding proteins (RBPs) that make specific crosstalk to enhance the control of the mRNA levels of their target genes by combining additive effects on transcription and mRNA stability. These results were mathematically modeled to see the effects of RBPs when they have positive or negative effects on mRNA synthesis and decay rates. We found that RBPs can be an efficient way to buffer or enhance gene expression responses depending on their respective effects on transcription and mRNA stability.
Collapse
Affiliation(s)
- José García-Martínez
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Daniel Medina
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain; Dirección de Evaluación y Acreditación, Agencia Andaluza del Conocimiento, Doña Berenguela s/n, planta 3ª C.P. 14006, Córdoba, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain.
| |
Collapse
|
35
|
DeBerardine M, Booth GT, Versluis PP, Lis JT. The NELF pausing checkpoint mediates the functional divergence of Cdk9. Nat Commun 2023; 14:2762. [PMID: 37179384 PMCID: PMC10182999 DOI: 10.1038/s41467-023-38359-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Promoter-proximal pausing by RNA Pol II is a rate-determining step in gene transcription that is hypothesized to be a prominent point at which regulatory factors act. The pausing factor NELF is known to induce and stabilize pausing, but not all kinds of pausing are NELF-mediated. Here, we find that NELF-depleted Drosophila melanogaster cells functionally recapitulate the NELF-independent pausing we previously observed in fission yeast (which lack NELF). Critically, only NELF-mediated pausing establishes a strict requirement for Cdk9 kinase activity for the release of paused Pol II into productive elongation. Upon inhibition of Cdk9, cells with NELF efficiently shutdown gene transcription, while in NELF-depleted cells, defective, non-productive transcription continues unabated. By introducing a strict checkpoint for Cdk9, the evolution of NELF was likely critical to enable increased regulation of Cdk9 in higher eukaryotes, as Cdk9 availability can be restricted to limit gene transcription without inducing wasteful, non-productive transcription.
Collapse
Affiliation(s)
- Michael DeBerardine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Kanvas Biosciences, Monmouth Junction, NJ, USA
| | - Philip P Versluis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
36
|
Parab L, Pal S, Dhar R. Transcription factor binding process is the primary driver of noise in gene expression. PLoS Genet 2022; 18:e1010535. [PMID: 36508455 PMCID: PMC9779669 DOI: 10.1371/journal.pgen.1010535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Noise in expression of individual genes gives rise to variations in activity of cellular pathways and generates heterogeneity in cellular phenotypes. Phenotypic heterogeneity has important implications for antibiotic persistence, mutation penetrance, cancer growth and therapy resistance. Specific molecular features such as the presence of the TATA box sequence and the promoter nucleosome occupancy have been associated with noise. However, the relative importance of these features in noise regulation is unclear and how well these features can predict noise has not yet been assessed. Here through an integrated statistical model of gene expression noise in yeast we found that the number of regulating transcription factors (TFs) of a gene was a key predictor of noise, whereas presence of the TATA box and the promoter nucleosome occupancy had poor predictive power. With an increase in the number of regulatory TFs, there was a rise in the number of cooperatively binding TFs. In addition, an increased number of regulatory TFs meant more overlaps in TF binding sites, resulting in competition between TFs for binding to the same region of the promoter. Through modeling of TF binding to promoter and application of stochastic simulations, we demonstrated that competition and cooperation among TFs could increase noise. Thus, our work uncovers a process of noise regulation that arises out of the dynamics of gene regulation and is not dependent on any specific transcription factor or specific promoter sequence.
Collapse
Affiliation(s)
- Lavisha Parab
- Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, West Bengal, India
- Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - Sampriti Pal
- Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, West Bengal, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, West Bengal, India
- * E-mail:
| |
Collapse
|
37
|
RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and a novel mRNA decay pathway. Nat Commun 2022; 13:7184. [PMID: 36418294 PMCID: PMC9684461 DOI: 10.1038/s41467-022-34417-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
mRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the 5' to 3' exonuclease Xrn1. Here we show that nucleocytoplasmic shuttling of several yeast mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1, location of one of which is conserved from yeast to human. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Preventing Xrn1 import, either by deleting KAP120 or mutating the two Xrn1 NLSs, compromises transcription and, unexpectedly, also cytoplasmic decay, uncovering a cytoplasmic decay pathway that initiates in the nucleus. Most mRNAs are degraded by both pathways - the ratio between them represents a full spectrum. Importantly, Xrn1 shuttling is required for proper responses to environmental changes, e.g., fluctuating temperatures, involving proper changes in mRNA abundance and in cell proliferation rate.
Collapse
|
38
|
Agarwal V, Kelley DR. The genetic and biochemical determinants of mRNA degradation rates in mammals. Genome Biol 2022; 23:245. [PMID: 36419176 PMCID: PMC9684954 DOI: 10.1186/s13059-022-02811-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Degradation rate is a fundamental aspect of mRNA metabolism, and the factors governing it remain poorly characterized. Understanding the genetic and biochemical determinants of mRNA half-life would enable more precise identification of variants that perturb gene expression through post-transcriptional gene regulatory mechanisms. RESULTS We establish a compendium of 39 human and 27 mouse transcriptome-wide mRNA decay rate datasets. A meta-analysis of these data identified a prevalence of technical noise and measurement bias, induced partially by the underlying experimental strategy. Correcting for these biases allowed us to derive more precise, consensus measurements of half-life which exhibit enhanced consistency between species. We trained substantially improved statistical models based upon genetic and biochemical features to better predict half-life and characterize the factors molding it. Our state-of-the-art model, Saluki, is a hybrid convolutional and recurrent deep neural network which relies only upon an mRNA sequence annotated with coding frame and splice sites to predict half-life (r=0.77). The key novel principle learned by Saluki is that the spatial positioning of splice sites, codons, and RNA-binding motifs within an mRNA is strongly associated with mRNA half-life. Saluki predicts the impact of RNA sequences and genetic mutations therein on mRNA stability, in agreement with functional measurements derived from massively parallel reporter assays. CONCLUSIONS Our work produces a more robust ground truth for transcriptome-wide mRNA half-lives in mammalian cells. Using these revised measurements, we trained Saluki, a model that is over 50% more accurate in predicting half-life from sequence than existing models. Saluki succinctly captures many of the known determinants of mRNA half-life and can be rapidly deployed to predict the functional consequences of arbitrary mutations in the transcriptome.
Collapse
Affiliation(s)
- Vikram Agarwal
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.
- Present Address: mRNA Center of Excellence, Sanofi Pasteur Inc., Waltham, MA, 02451, USA.
| | - David R Kelley
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.
| |
Collapse
|
39
|
Yahya G, Menges P, Amponsah PS, Ngandiri DA, Schulz D, Wallek A, Kulak N, Mann M, Cramer P, Savage V, Räschle M, Storchova Z. Sublinear scaling of the cellular proteome with ploidy. Nat Commun 2022; 13:6182. [PMID: 36261409 PMCID: PMC9581932 DOI: 10.1038/s41467-022-33904-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Ploidy changes are frequent in nature and contribute to evolution, functional specialization and tumorigenesis. Analysis of model organisms of different ploidies revealed that increased ploidy leads to an increase in cell and nuclear volume, reduced proliferation, metabolic changes, lower fitness, and increased genomic instability, but the underlying mechanisms remain poorly understood. To investigate how gene expression changes with cellular ploidy, we analyzed isogenic series of budding yeasts from 1N to 4N. We show that mRNA and protein abundance scales allometrically with ploidy, with tetraploid cells showing only threefold increase in protein abundance compared to haploids. This ploidy-dependent sublinear scaling occurs via decreased rRNA and ribosomal protein abundance and reduced translation. We demonstrate that the activity of Tor1 is reduced with increasing ploidy, which leads to diminished rRNA gene repression via a Tor1-Sch9-Tup1 signaling pathway. mTORC1 and S6K activity are also reduced in human tetraploid cells and the concomitant increase of the Tup1 homolog Tle1 downregulates the rDNA transcription. Our results suggest that the mTORC1-Sch9/S6K-Tup1/TLE1 pathway ensures proteome remodeling in response to increased ploidy.
Collapse
Affiliation(s)
- G. Yahya
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany ,grid.31451.320000 0001 2158 2757Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - P. Menges
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - P. S. Amponsah
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - D. A. Ngandiri
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - D. Schulz
- grid.7400.30000 0004 1937 0650Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | - A. Wallek
- grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - N. Kulak
- grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - M. Mann
- grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - P. Cramer
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - V. Savage
- grid.19006.3e0000 0000 9632 6718Department of Biomathematics, University of California at Los Angeles, Los Angeles, CA 90095 USA
| | - M. Räschle
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Z. Storchova
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
40
|
Abstract
The most fundamental feature of cellular form is size, which sets the scale of all cell biological processes. Growth, form, and function are all necessarily linked in cell biology, but we often do not understand the underlying molecular mechanisms nor their specific functions. Here, we review progress toward determining the molecular mechanisms that regulate cell size in yeast, animals, and plants, as well as progress toward understanding the function of cell size regulation. It has become increasingly clear that the mechanism of cell size regulation is deeply intertwined with basic mechanisms of biosynthesis, and how biosynthesis can be scaled (or not) in proportion to cell size. Finally, we highlight recent findings causally linking aberrant cell size regulation to cellular senescence and their implications for cancer therapies.
Collapse
Affiliation(s)
- Shicong Xie
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, California, USA;
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
41
|
Esposito E, Weidemann DE, Rogers JM, Morton CM, Baybay EK, Chen J, Hauf S. Mitotic checkpoint gene expression is tuned by codon usage bias. EMBO J 2022; 41:e107896. [PMID: 35811551 PMCID: PMC9340482 DOI: 10.15252/embj.2021107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
The mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Correct functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about the regulation of SAC gene expression. Here, we show in the fission yeast Schizosaccharomyces pombe that a combination of short mRNA half-lives and long protein half-lives supports stable SAC protein levels. For the SAC genes mad2+ and mad3+ , their short mRNA half-lives are caused, in part, by a high frequency of nonoptimal codons. In contrast, mad1+ mRNA has a short half-life despite a higher frequency of optimal codons, and despite the lack of known RNA-destabilizing motifs. Hence, different SAC genes employ different strategies of expression. We further show that Mad1 homodimers form co-translationally, which may necessitate a certain codon usage pattern. Taken together, we propose that the codon usage of SAC genes is fine-tuned to ensure proper SAC function. Our work shines light on gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.
Collapse
Affiliation(s)
- Eric Esposito
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Douglas E Weidemann
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jessie M Rogers
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Claire M Morton
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Erod Keaton Baybay
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jing Chen
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Silke Hauf
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| |
Collapse
|
42
|
Rodríguez-Molina JB, O'Reilly FJ, Fagarasan H, Sheekey E, Maslen S, Skehel JM, Rappsilber J, Passmore LA. Mpe1 senses the binding of pre-mRNA and controls 3' end processing by CPF. Mol Cell 2022; 82:2490-2504.e12. [PMID: 35584695 PMCID: PMC9380774 DOI: 10.1016/j.molcel.2022.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Most eukaryotic messenger RNAs (mRNAs) are processed at their 3' end by the cleavage and polyadenylation specificity factor (CPF/CPSF). CPF mediates the endonucleolytic cleavage of the pre-mRNA and addition of a polyadenosine (poly(A)) tail, which together define the 3' end of the mature transcript. The activation of CPF is highly regulated to maintain the fidelity of RNA processing. Here, using cryo-EM of yeast CPF, we show that the Mpe1 subunit directly contacts the polyadenylation signal sequence in nascent pre-mRNA. The region of Mpe1 that contacts RNA also promotes the activation of CPF endonuclease activity and controls polyadenylation. The Cft2 subunit of CPF antagonizes the RNA-stabilized configuration of Mpe1. In vivo, the depletion or mutation of Mpe1 leads to widespread defects in transcription termination by RNA polymerase II, resulting in transcription interference on neighboring genes. Together, our data suggest that Mpe1 plays a major role in accurate 3' end processing, activating CPF, and ensuring timely transcription termination.
Collapse
Affiliation(s)
| | - Francis J O'Reilly
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany
| | | | | | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
43
|
Chappleboim A, Joseph-Strauss D, Gershon O, Friedman N. Transcription feedback dynamics in the wake of cytoplasmic mRNA degradation shutdown. Nucleic Acids Res 2022; 50:5864-5880. [PMID: 35640599 PMCID: PMC9177992 DOI: 10.1093/nar/gkac411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
In the last decade, multiple studies demonstrated that cells maintain a balance of mRNA production and degradation, but the mechanisms by which cells implement this balance remain unknown. Here, we monitored cells' total and recently-transcribed mRNA profiles immediately following an acute depletion of Xrn1-the main 5'-3' mRNA exonuclease-which was previously implicated in balancing mRNA levels. We captured the detailed dynamics of the adaptation to rapid degradation of Xrn1 and observed a significant accumulation of mRNA, followed by a delayed global reduction in transcription and a gradual return to baseline mRNA levels. We found that this transcriptional response is not unique to Xrn1 depletion; rather, it is induced earlier when upstream factors in the 5'-3' degradation pathway are perturbed. Our data suggest that the mRNA feedback mechanism monitors the accumulation of inputs to the 5'-3' exonucleolytic pathway rather than its outputs.
Collapse
Affiliation(s)
- Alon Chappleboim
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daphna Joseph-Strauss
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Omer Gershon
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Friedman
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
44
|
Mechanisms of cellular mRNA transcript homeostasis. Trends Cell Biol 2022; 32:655-668. [PMID: 35660047 DOI: 10.1016/j.tcb.2022.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
For most genes, mRNA transcript abundance scales with cell size to ensure a constant concentration. Scaling of mRNA synthesis rates with cell size plays an important role, with regulation of the activity and abundance of RNA polymerase II (Pol II) now emerging as a key point of control. However, there is also considerable evidence for feedback mechanisms that kinetically couple the rates of mRNA synthesis, nuclear export, and degradation to allow cells to compensate for changes in one by adjusting the others. Researchers are beginning to integrate results from these different fields to reveal the mechanisms underlying transcript homeostasis. This will be crucial for moving beyond our current understanding of relative gene expression towards an appreciation of how absolute transcript levels are linked to other aspects of the cellular phenotype.
Collapse
|
45
|
Berry S, Müller M, Rai A, Pelkmans L. Feedback from nuclear RNA on transcription promotes robust RNA concentration homeostasis in human cells. Cell Syst 2022; 13:454-470.e15. [PMID: 35613616 DOI: 10.1016/j.cels.2022.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/13/2021] [Accepted: 04/21/2022] [Indexed: 12/18/2022]
Abstract
RNA concentration homeostasis involves coordinating RNA abundance and synthesis rates with cell size. Here, we study this in human cells by combining genome-wide perturbations with quantitative single-cell measurements. Despite relative ease in perturbing RNA synthesis, we find that RNA concentrations generally remain highly constant. Perturbations that would be expected to increase nuclear mRNA levels, including those targeting nuclear mRNA degradation or export, result in downregulation of RNA synthesis. This is associated with reduced abundance of transcription-associated proteins and protein states that are normally coordinated with RNA production in single cells, including RNA polymerase II (RNA Pol II) itself. Acute perturbations, elevation of nuclear mRNA levels, and mathematical modeling indicate that mammalian cells achieve robust mRNA concentration homeostasis by the mRNA-based negative feedback on transcriptional activity in the nucleus. This ultimately acts to coordinate RNA Pol II abundance with nuclear mRNA degradation and export rates and may underpin the scaling of mRNA abundance with cell size.
Collapse
Affiliation(s)
- Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Micha Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Arpan Rai
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
46
|
Arora D, Robey PG. Recent updates on the biological basis of heterogeneity in bone marrow stromal cells/skeletal stem cells. BIOMATERIALS TRANSLATIONAL 2022; 3:3-16. [PMID: 35837340 PMCID: PMC9255791 DOI: 10.12336/biomatertransl.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/15/2022]
Abstract
Based on studies over the last several decades, the self-renewing skeletal lineages derived from bone marrow stroma could be an ideal source for skeletal tissue engineering. However, the markers for osteogenic precursors; i.e., bone marrowderived skeletal stem cells (SSCs), in association with other cells of the marrow stroma (bone marrow stromal cells, BMSCs) and their heterogeneous nature both in vivo and in vitro remain to be clarified. This review aims to highlight: i) the importance of distinguishing BMSCs/SSCs from other "mesenchymal stem/stromal cells", and ii) factors that are responsible for their heterogeneity, and how these factors impact on the differentiation potential of SSCs towards bone. The prospective role of SSC enrichment, their expansion and its impact on SSC phenotype is explored. Emphasis has also been given to emerging single cell RNA sequencing approaches in scrutinizing the unique population of SSCs within the BMSC population, along with their committed progeny. Understanding the factors involved in heterogeneity may help researchers to improvise their strategies to isolate, characterize and adopt best culture practices and source identification to develop standard operating protocols for developing reproducible stem cells grafts. However, more scientific understanding of the molecular basis of heterogeneity is warranted that may be obtained from the robust high-throughput functional transcriptomics of single cells or clonal populations.
Collapse
Affiliation(s)
- Deepika Arora
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Department of Commerce, Gaithersburg, MD, USA
- Department of Biotechnology, School of Biological Engineering & Life Sciences, Shobhit Institute of Engineering & Technology (Deemed-to-be-University), Meerut, India
| | - Pamela Gehron Robey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
47
|
Niederer RO, Rojas-Duran MF, Zinshteyn B, Gilbert WV. Direct analysis of ribosome targeting illuminates thousand-fold regulation of translation initiation. Cell Syst 2022; 13:256-264.e3. [PMID: 35041803 PMCID: PMC8930539 DOI: 10.1016/j.cels.2021.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Translational control shapes the proteome in normal and pathophysiological conditions. Current high-throughput approaches reveal large differences in mRNA-specific translation activity but cannot identify the causative mRNA features. We developed direct analysis of ribosome targeting (DART) and used it to dissect regulatory elements within 5' untranslated regions that confer 1,000-fold differences in ribosome recruitment in biochemically accessible cell lysates. Using DART, we determined a functional role for most alternative 5' UTR isoforms expressed in yeast, revealed a general mode of increased translation via direct binding to a core translation factor, and identified numerous translational control elements including C-rich silencers that are sufficient to repress translation both in vitro and in vivo. DART enables systematic assessment of the translational regulatory potential of 5' UTR variants, whether native or disease-associated, and will facilitate engineering of mRNAs for optimized protein production in various systems.
Collapse
Affiliation(s)
- Rachel O Niederer
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maria F Rojas-Duran
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Moqtaderi Z, Geisberg JV, Struhl K. A compensatory link between cleavage/polyadenylation and mRNA turnover regulates steady-state mRNA levels in yeast. Proc Natl Acad Sci U S A 2022; 119:e2121488119. [PMID: 35058367 PMCID: PMC8794773 DOI: 10.1073/pnas.2121488119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/18/2021] [Indexed: 12/20/2022] Open
Abstract
Cells have compensatory mechanisms to coordinate the rates of major biological processes, thereby permitting growth in a wide variety of conditions. Here, we uncover a compensatory link between cleavage/polyadenylation in the nucleus and messenger RNA (mRNA) turnover in the cytoplasm. On a global basis, same-gene 3' mRNA isoforms with twofold or greater differences in half-lives have steady-state mRNA levels that differ by significantly less than a factor of 2. In addition, increased efficiency of cleavage/polyadenylation at a specific site is associated with reduced stability of the corresponding 3' mRNA isoform. This inverse relationship between cleavage/polyadenylation and mRNA isoform half-life reduces the variability in the steady-state levels of mRNA isoforms, and it occurs in all four growth conditions tested. These observations suggest that during cleavage/polyadenylation in the nucleus, mRNA isoforms are marked in a manner that persists upon translocation to the cytoplasm and affects the activity of mRNA degradation machinery, thus influencing mRNA stability.
Collapse
Affiliation(s)
- Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
49
|
Jaquet V, Wallerich S, Voegeli S, Túrós D, Viloria EC, Becskei A. Determinants of the temperature adaptation of mRNA degradation. Nucleic Acids Res 2022; 50:1092-1110. [PMID: 35018460 PMCID: PMC8789057 DOI: 10.1093/nar/gkab1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
The rate of chemical reactions increases proportionally with temperature, but the interplay of biochemical reactions permits deviations from this relation and adaptation. The degradation of individual mRNAs in yeast increased to varying degrees with temperature. We examined how these variations are influenced by the translation and codon composition of mRNAs. We developed a method that revealed the existence of a neutral half-life above which mRNAs are stabilized by translation but below which they are destabilized. The proportion of these two mRNA subpopulations remained relatively constant under different conditions, even with slow cell growth due to nutrient limitation, but heat shock reduced the proportion of translationally stabilized mRNAs. At the same time, the degradation of these mRNAs was partially temperature-compensated through Upf1, the mediator of nonsense-mediated decay. Compensation was also promoted by some asparagine and serine codons, whereas tyrosine codons promote temperature sensitization. These codons play an important role in the degradation of mRNAs encoding key cell membrane and cell wall proteins, which promote cell integrity.
Collapse
Affiliation(s)
- Vincent Jaquet
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sandrine Wallerich
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sylvia Voegeli
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Demeter Túrós
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Eduardo C Viloria
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
50
|
García-Martínez J, Medina DA, Bellvís P, Sun M, Cramer P, Chávez S, Pérez-Ortín JE. The total mRNA concentration buffering system in yeast is global rather than gene-specific. RNA (NEW YORK, N.Y.) 2021; 27:1281-1290. [PMID: 34272303 PMCID: PMC8456998 DOI: 10.1261/rna.078774.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Gene expression in eukaryotes does not follow a linear process from transcription to translation and mRNA degradation. Instead it follows a circular process in which cytoplasmic mRNA decay crosstalks with nuclear transcription. In many instances, this crosstalk contributes to buffer mRNA at a roughly constant concentration. Whether the mRNA buffering concept operates on the total mRNA concentration or at the gene-specific level, and if the mechanism to do so is a global or a specific one, remain unknown. Here we assessed changes in mRNA concentrations and their synthesis rates along the transcriptome of aneuploid strains of the yeast Saccharomyces cerevisiae We also assessed mRNA concentrations and their synthesis rates in nonsense-mediated decay (NMD) targets in euploid strains. We found that the altered synthesis rates in the genes from the aneuploid chromosome and the changes in their mRNA stabilities were not counterbalanced. In addition, the stability of NMD targets was not specifically compensated by the changes in synthesis rate. We conclude that there is no genetic compensation of NMD mRNA targets in yeast, and total mRNA buffering uses mostly a global system rather than a gene-specific one.
Collapse
Affiliation(s)
- José García-Martínez
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, E46100 Burjassot, Spain
| | - Daniel A Medina
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, E46100 Burjassot, Spain
| | - Pablo Bellvís
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
| | - Mai Sun
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
- Dirección de Evaluación y Acreditación, Agencia Andaluza del Conocimiento, planta 3ª C.P. 14006 Córdoba, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, E46100 Burjassot, Spain
| |
Collapse
|