1
|
Pinhal D, Gonçalves LDB, Campos VF, Patton JG. Decoding microRNA arm switching: a key to evolutionary innovation and gene regulation. Cell Mol Life Sci 2025; 82:197. [PMID: 40347284 PMCID: PMC12065703 DOI: 10.1007/s00018-025-05663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 05/12/2025]
Abstract
miRNA arm switching is a pivotal regulatory mechanism that allows organisms to fine-tune gene expression by selectively utilizing either the 5p or 3p strand of a miRNA duplex. This process, conserved across species, facilitates adaptive responses to developmental cues, environmental changes, and disease states. By dynamically altering strand selection, arm switching reshapes gene regulatory networks, contributing to phenotypic diversity and evolutionary innovation. Despite its growing recognition, the mechanisms driving arm switching-such as thermodynamic properties and enzyme-mediated processing-remain incompletely understood. This review synthesizes current findings, highlighting arm switching as a highly conserved mechanism with profound implications for the evolution of regulatory networks. We explore how this phenomenon expands miRNA functionality, drives phenotypic plasticity, and co-evolves with miRNA gene duplications to fuel the diversification of biological functions across taxa.
Collapse
Affiliation(s)
- Danillo Pinhal
- Genomics and Molecular Evolution Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, DCQB, IBB, UNESP, Botucatu, SP, CEP 18618-689, Brazil.
| | - Leandro de B Gonçalves
- Genomics and Molecular Evolution Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, DCQB, IBB, UNESP, Botucatu, SP, CEP 18618-689, Brazil
| | - Vinícius F Campos
- Structural Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
2
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Nersisyan S, Loher P, Nazeraj I, Shao Z, Fullard JF, Voloudakis G, Girdhar K, Roussos P, Rigoutsos I. Comprehensive profiling of small RNAs and their changes and linkages to mRNAs in schizophrenia and bipolar disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630254. [PMID: 39763727 PMCID: PMC11703252 DOI: 10.1101/2024.12.24.630254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We investigated small non-coding RNAs (sncRNAs) from the prefrontal cortex of 93 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) and 77 controls. We uncovered recurring complex sncRNA profiles, with 98% of all sncRNAs being accounted for by miRNA isoforms (60.6%), tRNA-derived fragments (17.8%), rRNA-derived fragments (11.4%), and Y RNA-derived fragments (8.3%). In SCZ, 15% of all sncRNAs exhibit statistically significant changes in their abundance. In BD, the fold changes (FCs) are highly correlated with those in SCZ but less acute. Non-templated nucleotide additions to the 3´-ends of many miRNA isoforms determine their FC independently of miRNA identity or genomic locus of origin. In both SCZ and BD, disease- and age-associated sncRNAs and mRNAs reveal accelerated aging. Co-expression modules between sncRNAs and mRNAs align with the polarities of SCZ changes and implicate sncRNAs in critical processes, including synaptic signaling, neurogenesis, memory, behavior, and cognition.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Iliza Nazeraj
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Eisenberg E. Bioinformatic approaches for accurate assessment of A-to-I editing in complete transcriptomes. Methods Enzymol 2024; 710:241-265. [PMID: 39870448 DOI: 10.1016/bs.mie.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
A-to-I RNA editing is an RNA modification that alters the RNA sequence relative to the its genomic blueprint. It is catalyzed by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes, and contributes to the complexity and diversification of the proteome. Advancement in the study of A-to-I RNA editing has been facilitated by computational approaches for accurate mapping and quantification of A-to-I RNA editing based on sequencing data. In this chapter we review some of the main computational approaches currently used, describe potential hurdles, challenges and pitfalls, and discuss possible ways to mitigate them.
Collapse
Affiliation(s)
- Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Cohn DE, Souza VGP, Forder A, Telkar N, Stewart GL, Lam WL. Post-Transcriptional Modifications to miRNAs Undergo Widespread Alterations, Creating a Unique Lung Adenocarcinoma IsomiRome. Cancers (Basel) 2024; 16:3322. [PMID: 39409941 PMCID: PMC11476290 DOI: 10.3390/cancers16193322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) modulate the expression of oncogenes and tumor suppressor genes, functioning as significant epigenetic regulators in cancer. IsomiRs are miRNA molecules that have undergone small modifications during miRNA processing. These modifications can alter an isomiR's binding stability with mRNA targets, and certain isomiRs have been implicated in the development of specific cancers. Still, the isomiRomes of many tissues, including the lung, have not been characterized; Methods: In this study, we analyzed small RNA sequencing data for three cohorts of lung adenocarcinoma (LUAD) and adult non-malignant lung (ANL) samples. RESULTS We quantified isomiR expression and found 16 A-to-I edited isomiRs expressed in multiple cohorts, as well as 213 5' isomiRs, 128 3' adenylated isomiRs, and 100 3' uridylated isomiRs. Rates of A-to-I editing at editing hotspots correlated with mRNA expression of the editing enzymes ADAR and ADARB1, which were both observed to be deregulated in LUAD. LUAD samples displayed lower overall rates of A-to-I editing and 3' adenylation than ANL samples. Support vector machines and random forest models were trained on one cohort to distinguish ANL and stage I/II LUAD samples using reads per million (RPM) and frequency data for different types of isomiRs. Models trained on A-to-I editing rates at editing hotspots displayed high accuracy when tested on the other two cohorts and compared favorably to classifiers trained on miRNA expression alone; Conclusions: We have identified isomiRs in the human lung and found that their expression differs between non-malignant and tumor tissues, suggesting they hold potential as cancer biomarkers.
Collapse
Affiliation(s)
- David E. Cohn
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Vanessa G. P. Souza
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Aisling Forder
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Nikita Telkar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Greg L. Stewart
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Wan L. Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| |
Collapse
|
6
|
Truong VA, Chang YH, Dang TQ, Tu Y, Tu J, Chang CW, Chang YH, Liu GS, Hu YC. Programmable editing of primary MicroRNA switches stem cell differentiation and improves tissue regeneration. Nat Commun 2024; 15:8358. [PMID: 39333549 PMCID: PMC11436717 DOI: 10.1038/s41467-024-52707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Programmable RNA editing is harnessed for modifying mRNA. Besides mRNA, miRNA also regulates numerous biological activities, but current RNA editors have yet to be exploited for miRNA manipulation. To engineer primary miRNA (pri-miRNA), the miRNA precursor, we present a customizable editor REPRESS (RNA Editing of Pri-miRNA for Efficient Suppression of miRNA) and characterize critical parameters. The optimized REPRESS is distinct from other mRNA editing tools in design rationale, hence enabling editing of pri-miRNAs that are not editable by other RNA editing systems. We edit various pri-miRNAs in different cells including adipose-derived stem cells (ASCs), hence attenuating mature miRNA levels without disturbing host gene expression. We further develop an improved REPRESS (iREPRESS) that enhances and prolongs pri-miR-21 editing for at least 10 days, with minimal perturbation of transcriptome and miRNAome. iREPRESS reprograms ASCs differentiation, promotes in vitro cartilage formation and augments calvarial bone regeneration in rats, thus implicating its potentials for engineering miRNA and applications such as stem cell reprogramming and tissue regeneration.
Collapse
Affiliation(s)
- Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Thuc Quyen Dang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi Tu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jui Tu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
7
|
Hu Z, Liu C, Mei Z, Wang X, Ma Y, Liu X, Xu H, Fang G, Liu X, Li R, Wang J, Shi Z, Han C. A-to-I edited miR-154-p13-5p inhibited cell proliferation and migration and induced apoptosis by targeting LIX1L in the bladder cancer. J Cancer 2024; 15:3708-3723. [PMID: 38911375 PMCID: PMC11190776 DOI: 10.7150/jca.93388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 06/25/2024] Open
Abstract
With the advancement of RNA sequencing technology, there has been a drive to uncover and elucidate the pivotal role of A-to-I RNA editing events in tumorigenesis. However, A-to-I miRNA editing events have been clearly identified in bladder cancer, the molecular mechanisms underlying their role in bladder cancer remain unclear. In our investigation, we observed a notable under-expression of edited miR-154-p13-5p in bladder cancer (BC) tissues, in contrast to normal counterparts. Remarkably, heightened expression levels of edited miR-154-p13-5p correlated with improved survival outcomes. To assess the impact of modified miR-154-p13-5p, we conducted a string of cell phenotype assays through transfection of the corresponding miRNAs or siRNAs. The results unequivocally demonstrate that edited miR-154-p13-5p exerts a substantial inhibitory influence on proliferation, migration, and induces apoptosis by specifically targeting LIX1L in bladder cancer. Moreover, we observed that the editing of miR-154-p13-5p or LIX1L-siRNAs inhibits the expression of LIX1L, thereby suppressing EMT-related proteins and cell cycle protein CDK2. Simultaneously, an upregulation in the expression levels of Caspase-3 and Cleaved Caspase-3 were also detected. Our research findings suggest that the upregulation of edited miR-154-p13-5p could potentially enhance the prognosis of bladder cancer, thereby presenting molecular biology-based therapeutic strategies.
Collapse
Affiliation(s)
- Zhengxiang Hu
- Postgraduate Training Base of Jinzhou Medical University in The Central Hospital of Xuzhou, Jinzhou, Liaoning 121013, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221006, China
| | - Chunhui Liu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221004, China
| | - Zujun Mei
- Department of Emergency, Jingzhou Central Hospital, Jingzhou, Hubei 434000, China
| | - Xinlei Wang
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221004, China
| | - Yuyang Ma
- Graduate School of Bengbu Medical College, Bengbu, Anhui 233060, China
| | - Xing Liu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Xu
- Graduate School of Bengbu Medical College, Bengbu, Anhui 233060, China
| | - Gaochuan Fang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xinyu Liu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221004, China
| | - Rui Li
- Central Laboratory, Xuzhou Central Hospital, Jiangsu 221006, China
| | - Jie Wang
- Central Laboratory, Xuzhou Central Hospital, Jiangsu 221006, China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221006, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221006, China
| |
Collapse
|
8
|
Ashley CN, Broni E, Miller WA. ADAR Family Proteins: A Structural Review. Curr Issues Mol Biol 2024; 46:3919-3945. [PMID: 38785511 PMCID: PMC11120146 DOI: 10.3390/cimb46050243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
This review aims to highlight the structures of ADAR proteins that have been crucial in the discernment of their functions and are relevant to future therapeutic development. ADAR proteins can correct or diversify genetic information, underscoring their pivotal contribution to protein diversity and the sophistication of neuronal networks. ADAR proteins have numerous functions in RNA editing independent roles and through the mechanisms of A-I RNA editing that continue to be revealed. Provided is a detailed examination of the ADAR family members-ADAR1, ADAR2, and ADAR3-each characterized by distinct isoforms that offer both structural diversity and functional variability, significantly affecting RNA editing mechanisms and exhibiting tissue-specific regulatory patterns, highlighting their shared features, such as double-stranded RNA binding domains (dsRBD) and a catalytic deaminase domain (CDD). Moreover, it explores ADARs' extensive roles in immunity, RNA interference, and disease modulation, demonstrating their ambivalent nature in both the advancement and inhibition of diseases. Through this comprehensive analysis, the review seeks to underline the potential of targeting ADAR proteins in therapeutic strategies, urging continued investigation into their biological mechanisms and health implications.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
9
|
Guo S, Mao C, Peng J, Xie S, Yang J, Xie W, Li W, Yang H, Guo H, Zhu Z, Zheng Y. Improved lung cancer classification by employing diverse molecular features of microRNAs. Heliyon 2024; 10:e26081. [PMID: 38384512 PMCID: PMC10878959 DOI: 10.1016/j.heliyon.2024.e26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
MiRNAs are edited or modified in multiple ways during their biogenesis pathways. It was reported that miRNA editing was deregulated in tumors, suggesting the potential value of miRNA editing in cancer classification. Here we extracted three types of miRNA features from 395 LUAD and control samples, including the abundances of original miRNAs, the abundances of edited miRNAs, and the editing levels of miRNA editing sites. Our results show that eight classification algorithms selected generally had better performances on combined features than on the abundances of miRNAs or editing features of miRNAs alone. One feature selection algorithm, i.e., the DFL algorithm, selected only three features, i.e., the frequencies of hsa-miR-135b-5p, hsa-miR-210-3p and hsa-mir-182_48u (an edited miRNA), from 316 training samples. Seven classification algorithms achieved 100% accuracies on these three features for 79 independent testing samples. These results indicate that the additional information of miRNA editing is useful in improving the classification of LUAD samples.
Collapse
Affiliation(s)
- Shiyong Guo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, i.e., The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Shaohui Xie
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, Yunnan 650223, China
| | - Wenping Xie
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wanran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Huaide Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Hao Guo
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Zexuan Zhu
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yun Zheng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
10
|
Lau KEH, Nguyen NT, Kesavan JC, Langa E, Fanning K, Brennan GP, Sanz-Rodriguez A, Villegas-Salmerón J, Yan Y, Venø MT, Mills JD, Rosenow F, Bauer S, Kjems J, Henshall DC. Differential microRNA editing may drive target pathway switching in human temporal lobe epilepsy. Brain Commun 2024; 6:fcad355. [PMID: 38204971 PMCID: PMC10781512 DOI: 10.1093/braincomms/fcad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape. RNA editing has been studied for the mRNA landscape but the extent to which microRNA editing occurs in human temporal lobe epilepsy is unknown. Here, we used small RNA-sequencing data to characterize the identity and extent of microRNA editing in human temporal lobe epilepsy brain samples. This detected low-to-high editing in over 40 of the identified microRNAs. Among microRNA exhibiting the highest editing was miR-376a-3p, which was edited in the seed region and this was predicted to significantly change the target pool. The edited form was expressed at lower levels in human temporal lobe epilepsy samples. We modelled the shift in editing levels of miR-376a-3p in human-induced pluripotent stem cell-derived neurons. Reducing levels of the edited form of miR-376a-3p using antisense oligonucleotides resulted in extensive gene expression changes, including upregulation of mitochondrial and metabolism-associated pathways. Together, these results show that differential editing of microRNAs may re-direct targeting and result in altered functions relevant to the pathophysiology of temporal lobe epilepsy and perhaps other disorders of neuronal hyperexcitability.
Collapse
Affiliation(s)
- Kelvin E How Lau
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ngoc T Nguyen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jaideep C Kesavan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Kevin Fanning
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Gary P Brennan
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Javier Villegas-Salmerón
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway H91 TK33, Ireland
| | - Yan Yan
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Morten T Venø
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St.Peter SL9 0RJ, UK
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Felix Rosenow
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Sebastian Bauer
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| |
Collapse
|
11
|
Weng S, Yang X, Yu N, Wang PC, Xiong S, Ruan H. Harnessing ADAR-Mediated Site-Specific RNA Editing in Immune-Related Disease: Prediction and Therapeutic Implications. Int J Mol Sci 2023; 25:351. [PMID: 38203521 PMCID: PMC10779106 DOI: 10.3390/ijms25010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
ADAR (Adenosine Deaminases Acting on RNA) proteins are a group of enzymes that play a vital role in RNA editing by converting adenosine to inosine in RNAs. This process is a frequent post-transcriptional event observed in metazoan transcripts. Recent studies indicate widespread dysregulation of ADAR-mediated RNA editing across many immune-related diseases, such as human cancer. We comprehensively review ADARs' function as pattern recognizers and their capability to contribute to mediating immune-related pathways. We also highlight the potential role of site-specific RNA editing in maintaining homeostasis and its relationship to various diseases, such as human cancers. More importantly, we summarize the latest cutting-edge computational approaches and data resources for predicting and analyzing RNA editing sites. Lastly, we cover the recent advancement in site-directed ADAR editing tool development. This review presents an up-to-date overview of ADAR-mediated RNA editing, how site-specific RNA editing could potentially impact disease pathology, and how they could be harnessed for therapeutic applications.
Collapse
Affiliation(s)
- Shenghui Weng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Xinyi Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Nannan Yu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Peng-Cheng Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Hang Ruan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Xu Y, Liu J, Zhao T, Song F, Tian L, Cai W, Li H, Duan Y. Identification and Interpretation of A-to-I RNA Editing Events in Insect Transcriptomes. Int J Mol Sci 2023; 24:17126. [PMID: 38138955 PMCID: PMC10742984 DOI: 10.3390/ijms242417126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent RNA modification in the nervous systems of metazoans. To study the biological significance of RNA editing, we first have to accurately identify these editing events from the transcriptome. The genome-wide identification of RNA editing sites remains a challenging task. In this review, we will first introduce the occurrence, regulation, and importance of A-to-I RNA editing and then describe the established bioinformatic procedures and difficulties in the accurate identification of these sit esespecially in small sized non-model insects. In brief, (1) to obtain an accurate profile of RNA editing sites, a transcriptome coupled with the DNA resequencing of a matched sample is favorable; (2) the single-cell sequencing technique is ready to be applied to RNA editing studies, but there are a few limitations to overcome; (3) during mapping and variant calling steps, various issues, like mapping and base quality, soft-clipping, and the positions of mismatches on reads, should be carefully considered; (4) Sanger sequencing of both RNA and the matched DNA is the best verification of RNA editing sites, but other auxiliary evidence, like the nonsynonymous-to-synonymous ratio or the linkage information, is also helpful for judging the reliability of editing sites. We have systematically reviewed the understanding of the biological significance of RNA editing and summarized the methodology for identifying such editing events. We also raised several promising aspects and challenges in this field. With insightful perspectives on both scientific and technical issues, our review will benefit the researchers in the broader RNA editing community.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuange Duan
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.X.); (J.L.); (T.Z.); (F.S.); (L.T.); (W.C.); (H.L.)
| |
Collapse
|
13
|
Zhou S, Qi M, Luo Y, Li W, Liu Y, Guo C, Wei W, Chen G, Tu P, Feng H, Pan Y. Radical-Induced Dissociation for Oligonucleotide Sequencing by TiO 2/ZnAl-Layered Double Oxide-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2023; 95:16505-16513. [PMID: 37902600 DOI: 10.1021/acs.analchem.3c02166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
De novo sequencing of oligonucleotides remains challenging, especially for oligonucleotides with post-transcriptional or synthetic modifications. Mass spectrometry (MS) sequencing can reliably detect and locate all of the modification sites in oligonucleotides via m/z variance. However, current MS-based sequencing methods exhibit complex spectra and low ion abundance and usually require coupled instrumentation. Herein, we demonstrate a method of oligonucleotide sequencing using TiO2/ZnAl-layered double oxide (LDO)-assisted laser desorption/ionization (LDI)-MS based on radical-induced dissociation (RID). ·CH2OH radicals can be produced on the surface of a TiO2/ZnAl-LDO matrix via ultraviolet light, inducing an attack on the active site of the oligonucleotide phosphate skeleton to create typical "a-, a-B-, c·-, d-, w-, and y"-type fragments. Compared with the spectra obtained via collision-based methods, such as collision-induced dissociation and higher-energy collisional dissociation, the LDI-MS spectra based on RID exhibit single-charged signals, fewer types of fragments, and a lower proportion of unknown noise peaks. We demonstrate full sequence coverage for a 6-mer 2'-O-methyl-modified oligonucleotide and a 21-mer small interfering RNA and show that RID can sequence oligonucleotides with modifications. Importantly, the mechanism responsible for the RID of the oligonucleotide phosphate skeleton was investigated through offline experiments, demonstrating consistent results with density functional theory calculations.
Collapse
Affiliation(s)
- Shiwen Zhou
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Menghui Qi
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Yuanqing Luo
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Wangyu Li
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009, China
| | - Wei Wei
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Guanru Chen
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Peijun Tu
- Department of Environmental Medicine and Public Health, Mount Sinai Hospital, New York 10029, United States
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| |
Collapse
|
14
|
Liu Y, Guo S, Xie W, Yang H, Li W, Zhou N, Yang J, Zhou G, Mao C, Zheng Y. Identification of microRNA editing sites in clear cell renal cell carcinoma. Sci Rep 2023; 13:15117. [PMID: 37704698 PMCID: PMC10499803 DOI: 10.1038/s41598-023-42302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignant tumor originating from the renal tubular epithelium. Although the microRNAs (miRNAs) transcriptome of ccRCC has been extensively studied, the role of miRNAs editing in ccRCC is largely unknown. By analyzing small RNA sequencing profiles of renal tissues of 154 ccRCC patients and 22 normal controls, we identified 1025 miRNA editing sites from 246 pre-miRNAs. There were 122 editing events with significantly different editing levels in ccRCC compared to normal samples, which include two A-to-I editing events in the seed regions of hsa-mir-376a-3p and hsa-mir-376c-3p, respectively, and one C-to-U editing event in the seed region of hsa-mir-29c-3p. After comparing the targets of the original and edited miRNAs, we found that hsa-mir-376a-1_49g, hsa-mir-376c_48g and hsa-mir-29c_59u had many new targets, respectively. Many of these new targets were deregulated in ccRCC, which might be related to the different editing levels of hsa-mir-376a-3p, hsa-mir-376c-3p, hsa-mir-29c-3p in ccRCC compared to normal controls. Our study sheds new light on miRNA editing events and their potential biological functions in ccRCC.
Collapse
Affiliation(s)
- Yulong Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Shiyong Guo
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenping Xie
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Huaide Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Nan Zhou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, 650223, Yunnan, China
| | - Guangchen Zhou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yun Zheng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
15
|
Broni E, Ashley C, Velazquez M, Khan S, Striegel A, Sakyi PO, Peracha S, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Miller WA. In Silico Discovery of Potential Inhibitors Targeting the RNA Binding Loop of ADAR2 and 5-HT2CR from Traditional Chinese Natural Compounds. Int J Mol Sci 2023; 24:12612. [PMID: 37628792 PMCID: PMC10454645 DOI: 10.3390/ijms241612612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2) is an important enzyme involved in RNA editing processes, particularly in the conversion of adenosine to inosine in RNA molecules. Dysregulation of ADAR2 activity has been implicated in various diseases, including neurological disorders (including schizophrenia), inflammatory disorders, viral infections, and cancers. Therefore, targeting ADAR2 with small molecules presents a promising therapeutic strategy for modulating RNA editing and potentially treating associated pathologies. However, there are limited compounds that effectively inhibit ADAR2 reactions. This study therefore employed computational approaches to virtually screen natural compounds from the traditional Chinese medicine (TCM) library. The shortlisted compounds demonstrated a stronger binding affinity to the ADAR2 (<-9.5 kcal/mol) than the known inhibitor, 8-azanebularine (-6.8 kcal/mol). The topmost compounds were also observed to possess high binding affinity towards 5-HT2CR with binding energies ranging from -7.8 to -12.9 kcal/mol. Further subjecting the top ADAR2-ligand complexes to molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed that five potential hit compounds comprising ZINC000014637370, ZINC000085593577, ZINC000042890265, ZINC000039183320, and ZINC000101100339 had favorable binding free energies of -174.911, -137.369, -117.236, -67.023, and -64.913 kJ/mol, respectively, with the human ADAR2 protein. Residues Lys350, Cys377, Glu396, Cys451, Arg455, Ser486, Gln488, and Arg510 were also predicted to be crucial in ligand recognition and binding. This finding will provide valuable insights into the molecular interactions between ADAR2 and small molecules, aiding in the design of future ADAR2 inhibitors with potential therapeutic applications. The potential lead compounds were also profiled to have insignificant toxicities. A structural similarity search via DrugBank revealed that ZINC000039183320 and ZINC000014637370 were similar to naringin and naringenin, which are known adenosine deaminase (ADA) inhibitors. These potential novel ADAR2 inhibitors identified herein may be beneficial in treating several neurological disorders, cancers, viral infections, and inflammatory disorders caused by ADAR2 after experimental validation.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
16
|
Wu X, Yang H, Lin H, Suo A, Wu S, Xie W, Zhou N, Guo S, Ding H, Zhou G, Qiu Z, Shi H, Yang J, Zheng Y. Characterizing microRNA editing and mutation sites in Autism Spectrum Disorder. Front Mol Neurosci 2023; 15:1105278. [PMID: 36743290 PMCID: PMC9895120 DOI: 10.3389/fnmol.2022.1105278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder whose pathogenesis is still unclear. MicroRNAs (miRNAs) are a kind of endogenous small non-coding RNAs that play important roles in the post-transcriptional regulation of genes. Recent researches show that miRNAs are edited in multiple ways especially in central nervous systems. A-to-I editing of RNA catalyzed by Adenosine deaminases acting on RNA (ADARs) happens intensively in brain and is also noticed in other organs and tissues. Although miRNAs are widely edited in human brain, miRNA editing in ASD is still largely unexplored. In order to reveal the editing events of miRNAs in ASD, we analyzed 131 miRNA-seq samples from 8 different brain regions of ASD patients and normal controls. We identified 834 editing sites with significant editing levels, of which 70 sites showed significantly different editing levels in the superior frontal gyrus samples of ASD patients (ASD-SFG) when compared with those of control samples. The editing level of an A-to-I editing site in hsa-mir-376a-1 (hsa-mir-376a-1_9_A_g) in ASD-SFG is higher than that of normal controls, and the difference is exaggerated in individuals under 10 years. The increased expression of ADAR1 is consistent with the increased editing level of hsa-mir-376a-1_9_A_g in ASD-SFG samples compared to normal SFG samples. Furthermore, we verify that A-to-I edited hsa-mir-376a-5p directly represses GPR85 and NAPB, which may contribute to the abnormal neuronal development of ASD patients. These results provide new insights into the mechanism of ASD.
Collapse
Affiliation(s)
- Xingwang Wu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huaide Yang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Han Lin
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Angbaji Suo
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shuai Wu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenping Xie
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Nan Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guangchen Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhichao Qiu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, Yunnan, China
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
17
|
Characterizing Relevant MicroRNA Editing Sites in Parkinson's Disease. Cells 2022; 12:cells12010075. [PMID: 36611869 PMCID: PMC9818192 DOI: 10.3390/cells12010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are extensively edited in human brains. However, the functional relevance of the miRNA editome is largely unknown in Parkinson's disease (PD). By analyzing small RNA sequencing profiles of brain tissues of 43 PD patients and 88 normal controls, we found that the editing levels of five A-to-I and two C-to-U editing sites are significantly correlated with the ages of normal controls, which is disrupted in PD patients. We totally identified 362 miRNA editing sites with significantly different editing levels in prefrontal cortices of PD patients (PD-PC) compared to results of normal controls. We experimentally validated that A-to-I edited miR-497-5p, with significantly higher expression levels in PD-PC compared to normal controls, directly represses OPA1 and VAPB. Furthermore, overexpression of A-to-I edited miR-497-5p downregulates OPA1 and VAPB in two cell lines, and inhibits proliferation of glioma cells. These results suggest that the hyperediting of miR-497-5p in PD contributes to enhanced progressive neurodegeneration of PD patients. Our results provide new insights into the mechanistic understanding, novel diagnostics, and therapeutic clues of PD.
Collapse
|
18
|
Zolotarov G, Fromm B, Legnini I, Ayoub S, Polese G, Maselli V, Chabot PJ, Vinther J, Styfhals R, Seuntjens E, Di Cosmo A, Peterson KJ, Rajewsky N. MicroRNAs are deeply linked to the emergence of the complex octopus brain. SCIENCE ADVANCES 2022; 8:eadd9938. [PMID: 36427315 PMCID: PMC9699675 DOI: 10.1126/sciadv.add9938] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/27/2022] [Indexed: 05/25/2023]
Abstract
Soft-bodied cephalopods such as octopuses are exceptionally intelligent invertebrates with a highly complex nervous system that evolved independently from vertebrates. Because of elevated RNA editing in their nervous tissues, we hypothesized that RNA regulation may play a major role in the cognitive success of this group. We thus profiled messenger RNAs and small RNAs in three cephalopod species including 18 tissues of the Octopus vulgaris. We show that the major RNA innovation of soft-bodied cephalopods is an expansion of the microRNA (miRNA) gene repertoire. These evolutionarily novel miRNAs were primarily expressed in adult neuronal tissues and during the development and had conserved and thus likely functional target sites. The only comparable miRNA expansions happened, notably, in vertebrates. Thus, we propose that miRNAs are intimately linked to the evolution of complex animal brains.
Collapse
Affiliation(s)
- Grygoriy Zolotarov
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bastian Fromm
- UiT The Arctic University of Norway, Tromsø, Norway
- SciLifeLab, Stockholm University, Stockholm, Sweden
| | - Ivano Legnini
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Salah Ayoub
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Jakob Vinther
- School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Nikolaus Rajewsky
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| |
Collapse
|
19
|
Xie W, Yang J, Zhou N, Ding H, Zhou G, Wu S, Guo S, Li W, Zhang L, Yang H, Mao C, Zheng Y. Identification of microRNA editing sites in three subtypes of leukemia. Front Mol Biosci 2022; 9:1014288. [PMID: 36452459 PMCID: PMC9702332 DOI: 10.3389/fmolb.2022.1014288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/28/2022] [Indexed: 09/15/2023] Open
Abstract
Leukemia is an aberrant hyper-proliferation of immature blood cells that do not form solid tumors. The transcriptomes of microRNAs (miRNAs) of leukemia have been intensively explored. However, miRNA editing of leukemia has not been extensively studied. To identify miRNA editing patterns and explore their functional relevance in leukemia, we analyzed 200 small RNA sequencing profiles of three subtypes of leukemia and identified hundreds of miRNA editing sites in three subtypes of leukemia. Then, we compared the editing levels of identified miRNA editing sites in leukemia and normal controls. Many miRNAs were differential edited in different subtypes of leukemia. We also found the editing levels of 3'-A editing sites of hsa-mir-21-5p and hsa-mir-155-5p decreased in chronic lymphocytic leukemia patients with radiation treatments. By integrating PAR-CLIP sequencing profiles, we predicted the targets of original and edited miRNAs. One of the edited miRNA, hsa-let-7b_5c, with an additional cytosine at 5' end of hsa-let-7b-5p, potentially targeted VBP1 and CTDSP1. CTDSP1 was significantly downregulated in T-ALL compared to normal controls, which might be originated from the hyperediting of hsa-let-7b-5p in T-ALL. Our study provides a comprehensive view of miRNA editing in three different subtypes of leukemia.
Collapse
Affiliation(s)
- Wenping Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jun Yang
- Yunnan Police College, Kunming, Yunnan, China
| | - Nan Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guangchen Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shuai Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lei Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huaide Yang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
20
|
del Valle-Morales D, Le P, Saviana M, Romano G, Nigita G, Nana-Sinkam P, Acunzo M. The Epitranscriptome in miRNAs: Crosstalk, Detection, and Function in Cancer. Genes (Basel) 2022; 13:1289. [PMID: 35886072 PMCID: PMC9316458 DOI: 10.3390/genes13071289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
The epitranscriptome encompasses all post-transcriptional modifications that occur on RNAs. These modifications can alter the function and regulation of their RNA targets, which, if dysregulated, result in various diseases and cancers. As with other RNAs, miRNAs are highly modified by epitranscriptomic modifications such as m6A methylation, 2'-O-methylation, m5C methylation, m7G methylation, polyuridine, and A-to-I editing. miRNAs are a class of small non-coding RNAs that regulates gene expression at the post-transcriptional level. miRNAs have gathered high clinical interest due to their role in disease, development, and cancer progression. Epitranscriptomic modifications alter the targeting, regulation, and biogenesis of miRNAs, increasing the complexity of miRNA regulation. In addition, emerging studies have revealed crosstalk between these modifications. In this review, we will summarize the epitranscriptomic modifications-focusing on those relevant to miRNAs-examine the recent crosstalk between these modifications, and give a perspective on how this crosstalk expands the complexity of miRNA biology.
Collapse
Affiliation(s)
- Daniel del Valle-Morales
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Patricia Le
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Michela Saviana
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Giovanni Nigita
- Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| |
Collapse
|
21
|
Nakano M, Nakajima M. Adenosine-to-Inosine RNA Editing and N 6-Methyladenosine Modification Modulating Expression of Drug Metabolizing Enzymes. Drug Metab Dispos 2022; 50:624-633. [PMID: 35152204 DOI: 10.1124/dmd.121.000390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/02/2022] [Indexed: 02/13/2025] Open
Abstract
Interindividual differences in the expression and activity of drug metabolizing enzymes including cytochrome P450, UDP-glucuronosyltransferase, and esterases cause variable therapeutic efficacy or adverse events of drugs. As the major mechanisms causing the variability in the expression of drug metabolizing enzymes, transcriptional regulation by transcription factors, epigenetic regulation including DNA methylation, and posttranscriptional regulation by microRNA are well known. Recently, adenosine-to-inosine RNA editing and methylation of adenosine at the N 6 position on RNA have emerged as novel regulators of drug metabolism potency. In this review article, the current knowledge of these two prevalent types of posttranscriptional modification mediated modulation of drug metabolism involved genes is introduced. SIGNIFICANCE STATEMENT: Elucidation of the significance of adenosine-to-inosine RNA editing and N 6-methyladenosine in the regulation of drug metabolizing enzymes is expected to lead to a deeper understanding of interindividual variability in the therapeutic efficacy or adverse effects of medicines.
Collapse
Affiliation(s)
- Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (Ma.N., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., Mi.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (Ma.N., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., Mi.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
22
|
Feng YJ, You XJ, Ding JH, Zhang YF, Yuan BF, Feng YQ. Identification of Inosine and 2'- O-Methylinosine Modifications in Yeast Messenger RNA by Liquid Chromatography-Tandem Mass Spectrometry Analysis. Anal Chem 2022; 94:4747-4755. [PMID: 35266699 DOI: 10.1021/acs.analchem.1c05292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The discovery of reversible modifications in messenger RNA (mRNA) opens new research directions in RNA modification-mediated epigenetic regulation. Yeast is an extensively used model organism in molecular biology. Systematic investigation and profiling of modifications in yeast mRNA would promote our understanding of the physiological regulation mechanisms in yeast. However, due to the high abundance of ribosomal RNA (rRNA) and transfer RNA (tRNA) in total RNA, isolation of low abundance of mRNA frequently suffers from the contamination of rRNA and tRNA, which will lead to the false-positive determination and inaccurate quantification of modifications in mRNA. Therefore, obtaining high-purity mRNA is critical for precise determination and accurate quantification of modifications in mRNA, especially for studies that focus on discovering new ones. Herein, we proposed a successive orthogonal isolation method by combining polyT-based purification and agarose gel electrophoresis purification for extracting high-purity mRNA. With the extracted high-purity yeast mRNA, we systemically explored the modifications in yeast mRNA by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. The results showed that in addition to the previously reported eight kinds of modifications, two novel modifications of inosine (Ino) and 2'-O-methylinosine (Im) were identified to be prevalent in yeast mRNA. It is worth noting that Im was reported for the first time, to the best of our knowledge, to exist in living organisms in the three domains of life. Moreover, we observed that the levels of 10 kinds of modifications including Ino and Im in yeast mRNA exhibited dynamic change at different growth stages of yeast cells. Furthermore, Im in mRNA showed a significant decrease while in response to H2O2 treatment. These results indicated that the two newly identified modifications in yeast mRNA were involved in yeast cell growth and response to environmental stress. Taken together, we reported two new modifications of Ino and Im in yeast mRNA, which expends the diversity of RNA modifications in yeast and also suggests new regulators for modulating yeast physiological functions.
Collapse
Affiliation(s)
- Ya-Jing Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xue-Jiao You
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yu-Fan Zhang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
23
|
Moldovan MA, Chervontseva ZS, Nogina DS, Gelfand MS. A hierarchy in clusters of cephalopod mRNA editing sites. Sci Rep 2022; 12:3447. [PMID: 35236910 PMCID: PMC8891338 DOI: 10.1038/s41598-022-07460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
RNA editing in the form of substituting adenine with inosine (A-to-I editing) is the most frequent type of RNA editing in many metazoan species. In most species, A-to-I editing sites tend to form clusters and editing at clustered sites depends on editing of the adjacent sites. Although functionally important in some specific cases, A-to-I editing usually is rare. The exception occurs in soft-bodied coleoid cephalopods, where tens of thousands of potentially important A-to-I editing sites have been identified, making coleoids an ideal model for studying of properties and evolution of A-to-I editing sites. Here, we apply several diverse techniques to demonstrate a strong tendency of coleoid RNA editing sites to cluster along the transcript. We show that clustering of editing sites and correlated editing substantially contribute to the transcriptome diversity that arises due to extensive RNA editing. Moreover, we identify three distinct types of editing site clusters, varying in size, and describe RNA structural features and mechanisms likely underlying formation of these clusters. In particular, these observations may explain sequence conservation at large distances around editing sites and the observed dependency of editing on mutations in the vicinity of editing sites.
Collapse
Affiliation(s)
- Mikhail A Moldovan
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.
| | - Zoe S Chervontseva
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051
| | - Daria S Nogina
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051.,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, Russia, 119991
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.,A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051
| |
Collapse
|
24
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
25
|
Guo S, Yang J, Jiang B, Zhou N, Ding H, Zhou G, Wu S, Suo A, Wu X, Xie W, Li W, Liu Y, Deng W, Zheng Y. MicroRNA editing patterns in Huntington's disease. Sci Rep 2022; 12:3173. [PMID: 35210471 PMCID: PMC8873361 DOI: 10.1038/s41598-022-06970-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease. MicroRNAs (miRNAs) are small non-coding RNAs that mediate post-transcriptional regulation of target genes. Although miRNAs are extensively edited in human brains, the editome of miRNAs in brains of HD patients is largely unknown. By analyzing the small RNA sequencing profiles of brain tissues of 28 HD patients and 83 normal controls, 1182 miRNA editing sites with significant editing levels were identified. In addition to 27 A-to-I editing sites, we identified 3 conserved C-to-U editing sites in miRNAs of HD patients. 30 SNPs in the miRNAs of HD patients were also identified. Furthermore, 129 miRNA editing events demonstrated significantly different editing levels in prefrontal cortex samples of HD patients (HD-PC) when compared to those of healthy controls. We found that hsa-mir-10b-5p was edited to have an additional cytosine at 5'-end in HD-PC, and the edited hsa-mir-10b repressed GTPBP10 that was often downregulated in HD. The down-regulation of GTPBP10 might contribute to the progression of HD by causing gradual loss of function of mitochondrial. These results provide the first endeavor to characterize the miRNA editing events in HD and their potential functions.
Collapse
Affiliation(s)
- Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun Yang
- Physical Evidence Spectral Technology Innovation Team, Yunnan Police College, Kunming, 650223, China
| | - Bingbing Jiang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Nan Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guangchen Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shuai Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Angbaji Suo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xingwang Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenping Xie
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yulong Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Deng
- Center of Statistical Research, Southwestern University of Finance and Economics, Chengdu, 611130, China
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
26
|
Distefano R, Nigita G, Le P, Romano G, Acunzo M, Nana-Sinkam P. Disparities in Lung Cancer: miRNA Isoform Characterization in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:773. [PMID: 35159038 PMCID: PMC8833952 DOI: 10.3390/cancers14030773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the development of targeted therapeutics, immunotherapy, and strategies for early detection, lung cancer carries a high mortality. Further, significant racial disparities in outcomes exist for which the molecular drivers have yet to be fully elucidated. The growing field of Epitranscriptomics has introduced a new layer of complexity to the molecular pathogenesis of cancer. RNA modifications can occur in coding and non-coding RNAs, such as miRNAs, possibly altering their gene regulatory function. The potential role for such modifications as clinically informative biomarkers remains largely unknown. Here, we concurrently profiled canonical miRNAs, shifted isomiRs (templated and non-templated), and miRNAs with single-point modification events (RNA and DNA) in White American (W) and Black or African American (B/AA) lung adenocarcinoma (LUAD) patients. We found that while most deregulated miRNA isoforms were similar in W and B/AA LUAD tissues compared to normal adjacent tissues, there was a subgroup of isoforms with deregulation according to race. We specifically investigated an edited miRNA, miR-151a-3p with an A-to-I editing event at position 3, to determine how its altered expression may be associated with activation of divergent biological pathways between W and B/AA LUAD patients. Finally, we identified distinct race-specific miRNA isoforms that correlated with prognosis for both Ws and B/AAs. Our results suggested that concurrently profiling canonical and non-canonical miRNAs may have potential as a strategy for identifying additional distinct biological pathways and biomarkers in lung cancer.
Collapse
Affiliation(s)
- Rosario Distefano
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (R.D.); (G.N.)
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (R.D.); (G.N.)
| | - Patricia Le
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.L.); (G.R.)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.L.); (G.R.)
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.L.); (G.R.)
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.L.); (G.R.)
| |
Collapse
|
27
|
Widmark A, Sagredo EA, Karlström V, Behm M, Biryukova I, Friedländer MR, Daniel C, Öhman M. ADAR1- and ADAR2-mediated regulation of maturation and targeting of miR-376b to modulate GABA neurotransmitter catabolism. J Biol Chem 2022; 298:101682. [PMID: 35124003 PMCID: PMC8892144 DOI: 10.1016/j.jbc.2022.101682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
miRNAs are short noncoding RNA molecules that regulate gene expression by inhibiting translation or inducing degradation of target mRNAs. miRNAs are often expressed as polycistronic transcripts, so-called miRNA clusters, containing several miRNA precursors. The largest mammalian miRNA cluster, the miR-379–410 cluster, is expressed primarily during embryonic development and in the adult brain; however, downstream regulation of this cluster is not well understood. Here, we investigated adenosine deamination to inosine (RNA editing) in the miR-379–410 cluster by adenosine deaminase acting on RNA (ADAR) enzymes as a possible mechanism modulating the expression and activity of these miRNAs in a brain-specific manner. We show that the levels of editing in the majority of mature miRNAs are lower than the editing levels of the corresponding site in primary miRNA precursors. However, for one miRNA, miR-376b-3p, editing was significantly higher in the mature form than in the primary precursor. We found miR-376b-3p maturation is negatively regulated by ADAR2 in an editing activity–independent manner, whereas ADAR1-mediated and ADAR2-mediated editing were observed to be competitive. In addition, the edited miR-376b-3p targets a different set of mRNAs than unedited miR-376b-3p, including 4-aminobutyrate aminotransferase, encoding the enzyme responsible for the catabolism of the neurotransmitter gamma aminobutyric acid (GABA). Expression of edited miR-376b-3p led to increased intracellular GABA levels as well as increased cell surface presentation of GABA type A receptors. Our results indicate that both editing and editing-independent effects modulate the expression of miR-376b-3p, with the potential to regulate GABAergic signaling in the brain.
Collapse
Affiliation(s)
- Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Victor Karlström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mikaela Behm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
28
|
You XJ, Li L, Ji TT, Xie NB, Yuan BF, Feng YQ. 6-Thioguanine incorporates into RNA and induces adenosine-to-inosine editing in acute lymphoblastic leukemia cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Sonehara K, Sakaue S, Maeda Y, Hirata J, Kishikawa T, Yamamoto K, Matsuoka H, Yoshimura M, Nii T, Ohshima S, Kumanogoh A, Okada Y. Genetic architecture of microRNA expression and its link to complex diseases in the Japanese population. Hum Mol Genet 2021; 31:1806-1820. [PMID: 34919704 PMCID: PMC9169454 DOI: 10.1093/hmg/ddab361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic effects on non-coding RNA (ncRNA) expression facilitates functional characterization of disease-associated genetic loci. Among several classes of ncRNAs, microRNAs (miRNAs) are key post-transcriptional gene regulators. Despite its biological importance, previous studies on the genetic architecture of miRNA expression focused mostly on the European individuals, underrepresented in other populations. Here, we mapped miRNA expression quantitative trait loci (miRNA-eQTL) for 343 miRNAs in 141 Japanese using small RNA sequencing (sRNA-seq) and whole-genome sequencing (WGS), identifying 1275 cis-miRNA-eQTL variants for 40 miRNAs (false discovery rate < 0.2). Of these, 25 miRNAs having eQTL were unreported in the European studies, including 5 miRNAs with their lead variant monomorphic in the European populations, which demonstrates the value of miRNA-eQTL analysis in diverse ancestral populations. MiRNAs with eQTL effect showed allele-specific expression (ASE) (e.g. miR-146a-3p), and ASE analysis further detected cis-regulatory variants not captured by the conventional miRNA-eQTL mapping (e.g. miR-933). We identified a copy number variation (CNV) associated with miRNA expression (e.g. miR-570-3p, P = 7.2 × 10-6), which contributes to a more comprehensive landscape of miRNA-eQTLs. To elucidate a post-transcriptional modification in miRNAs, we created a catalog of miRNA-editing sites, including ten canonical and six non-canonical sites. Finally, by integrating the miRNA-eQTLs and Japanese genome-wide association studies of 25 complex traits (mean n = 192 833), we conducted a transcriptome-wide association study (TWAS), identifying miR-1908-5p as a potential mediator for adult height, colorectal cancer, and type 2 diabetes (P < 9.1 × 10-5). Our study broadens the population diversity in ncRNA-eQTL studies and contributes to functional annotation of disease-associated loci found in non-European populations.
Collapse
Affiliation(s)
- Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Center for Data Sciences, Harvard Medical School, Boston, MA, 02114, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Jun Hirata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Hino, 191-8512, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Hidetoshi Matsuoka
- Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, 586-8521, Japan
| | - Maiko Yoshimura
- Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, 586-8521, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Shiro Ohshima
- Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, 586-8521, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan.,The Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, 565-0871, Japan.,Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| |
Collapse
|
30
|
Voss G, Edsjö A, Bjartell A, Ceder Y. Quantification of microRNA editing using two-tailed RT-qPCR for improved biomarker discovery. RNA (NEW YORK, N.Y.) 2021; 27:1412-1424. [PMID: 34433636 PMCID: PMC8522694 DOI: 10.1261/rna.078867.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Even though microRNAs have been viewed as promising biomarkers for years, their clinical implementation is still lagging far behind. This is in part due to the lack of RT-qPCR technologies that can differentiate between microRNA isoforms. For example, A-to-I editing of microRNAs through adenosine deaminase acting on RNA (ADAR) enzymes can affect their expression levels and functional roles, but editing isoform-specific assays are not commercially available. Here, we describe RT-qPCR assays that are specific for editing isoforms, using microRNA-379 (miR-379) as a model. The assays are based on two-tailed RT-qPCR, and we show them to be compatible both with SYBR Green and hydrolysis-based chemistries, as well as with both qPCR and digital PCR. The assays could readily detect different miR-379 editing isoforms in various human tissues as well as changes of editing levels in ADAR-overexpressing cell lines. We found that the miR-379 editing frequency was higher in prostate cancer samples compared to benign prostatic hyperplasia samples. Furthermore, decreased expression of unedited miR-379, but not edited miR-379, was associated with treatment resistance, metastasis, and shorter overall survival. Taken together, this study presents the first RT-qPCR assays that were demonstrated to distinguish A-to-I-edited microRNAs, and shows that they can be useful in the identification of biomarkers that previously have been masked by other isoforms.
Collapse
Affiliation(s)
- Gjendine Voss
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 22381 Lund, Sweden
| | - Anders Edsjö
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Medical Services, Region Skåne, 22185 Lund, Sweden
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, 20502 Malmö, Sweden
| | - Yvonne Ceder
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 22381 Lund, Sweden
| |
Collapse
|
31
|
Soler M, Davalos V, Sánchez-Castillo A, Mora-Martinez C, Setién F, Siqueira E, Castro de Moura M, Esteller M, Guil S. The transcribed ultraconserved region uc.160+ enhances processing and A-to-I editing of the miR-376 cluster: hypermethylation improves glioma prognosis. Mol Oncol 2021; 16:648-664. [PMID: 34665919 PMCID: PMC8807354 DOI: 10.1002/1878-0261.13121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Transcribed ultraconserved regions (T‐UCRs) are noncoding RNAs derived from DNA sequences that are entirely conserved across species. Their expression is altered in many tumor types, and, although a role for T‐UCRs as regulators of gene expression has been proposed, their functions remain largely unknown. Herein, we describe the epigenetic silencing of the uc.160+ T‐UCR in gliomas and mechanistically define a novel RNA–RNA regulatory network in which uc.160+ modulates the biogenesis of several members of the miR‐376 cluster. This includes the positive regulation of primary microRNA (pri‐miRNA) cleavage and an enhanced A‐to‐I editing on its mature sequence. As a consequence, the expression of uc.160+ affects the downstream, miR‐376‐regulated genes, including the transcriptional coregulators RING1 and YY1‐binding protein (RYBP) and forkhead box P2 (FOXP2). Finally, we elucidate the clinical impact of our findings, showing that hypermethylation of the uc.160+ CpG island is an independent prognostic factor associated with better overall survival in lower‐grade gliomas, highlighting the importance of T‐UCRs in cancer pathophysiology.
Collapse
Affiliation(s)
- Marta Soler
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands
| | - Carlos Mora-Martinez
- Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland
| | - Fernando Setién
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Brasilia, Brazil
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Germans Trias i Pujol Health Science Research Institute, Barcelona, Spain
| |
Collapse
|
32
|
Duan Y, Tang X, Lu J. Evolutionary driving forces of A-to-I editing in metazoans. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1666. [PMID: 33998151 DOI: 10.1002/wrna.1666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 11/05/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an evolutionarily conserved mechanism that converts adenosines to inosines in metazoans' transcriptomes. However, the landscapes of editomes have considerably changed during evolution. Here, we review some of our current knowledge of A-to-I editing in the metazoan transcriptomes, focusing on the possible evolutionary driving forces underlying the editing events. First, we review the evolution of ADAR gene family in animals. Then, we summarize the recent advances in characterizing the editomes of various metazoan species. Next, we highlight several factors contributing to the interspecies differences in editomes, including variations in copy number and expression patterns of ADAR genes, the differences in genomic architectures and contents, and the differences in the efficacy of natural selection. After that, we review the possible diversifying and restorative effects of the editing (recoding) events that change the protein sequences. Finally, we discuss the possible convergent evolution of RNA editing in distantly related clades. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
33
|
Marceca GP, Tomasello L, Distefano R, Acunzo M, Croce CM, Nigita G. Detecting and Characterizing A-To-I microRNA Editing in Cancer. Cancers (Basel) 2021; 13:1699. [PMID: 33916692 PMCID: PMC8038323 DOI: 10.3390/cancers13071699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
Adenosine to inosine (A-to-I) editing consists of an RNA modification where single adenosines along the RNA sequence are converted into inosines. Such a biochemical transformation is catalyzed by enzymes belonging to the family of adenosine deaminases acting on RNA (ADARs) and occurs either co- or post-transcriptionally. The employment of powerful, high-throughput detection methods has recently revealed that A-to-I editing widely occurs in non-coding RNAs, including microRNAs (miRNAs). MiRNAs are a class of small regulatory non-coding RNAs (ncRNAs) acting as translation inhibitors, known to exert relevant roles in controlling cell cycle, proliferation, and cancer development. Indeed, a growing number of recent researches have evidenced the importance of miRNA editing in cancer biology by exploiting various detection and validation methods. Herein, we briefly overview early and currently available A-to-I miRNA editing detection and validation methods and discuss the significance of A-to-I miRNA editing in human cancer.
Collapse
Affiliation(s)
- Gioacchino P. Marceca
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| | - Rosario Distefano
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| |
Collapse
|
34
|
Abstract
RNA editing is an RNA modification that alters the RNA sequence relative to its genomic blueprint. The most common type of RNA editing is A-to-I editing by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. Editing of a protein-coding region within the RNA molecule may result in non-synonymous substitutions, leading to a modified protein product. These editing sites, also known as "recoding" sites, contribute to the complexity and diversification of the proteome. Recent computational transcriptomic studies have identified thousands of recoding sites in multiple species, many of which are conserved within (but not usually across) lineages and have functional and evolutionary importance. In this chapter we describe the recoding phenomenon across species, consider its potential utility for diversity and adaptation, and discuss its evolution.
Collapse
|
35
|
Duan Y, Dou S, Porath HT, Huang J, Eisenberg E, Lu J. A-to-I RNA editing in honeybees shows signals of adaptation and convergent evolution. iScience 2021; 24:101983. [PMID: 33458624 PMCID: PMC7797907 DOI: 10.1016/j.isci.2020.101983] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Social insects exhibit extensive phenotypic diversities among the genetically similar individuals, suggesting a role for the epigenetic regulations beyond the genome level. The ADAR-mediated adenosine-to-inosine (A-to-I) RNA editing, an evolutionarily conserved mechanism, facilitates adaptive evolution by expanding proteomic diversities. Here, we characterize the A-to-I RNA editome of honeybees (Apis mellifera), identifying 407 high-confidence A-to-I editing sites. Editing is most abundant in the heads and shows signatures for positive selection. Editing behavior differs between foragers and nurses, suggesting a role for editing in caste differentiation. Although only five sites are conserved between bees and flies, an unexpectedly large number of genes exhibit editing in both species, albeit at different locations, including the nonsynonymous auto-editing of Adar. This convergent evolution, where the same target genes independently acquire recoding events in distant diverged clades, together with the signals of adaptation observed in honeybees alone, further supports the notion of recoding being adaptive. Nonsynonymous editing sites in honeybees were under positive selection Differential editing may contribute to the phenotypic diversity between sub-castes Target genes acquire editing in different clades, suggesting convergent evolution
Collapse
Affiliation(s)
- Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hagit T Porath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 52900, Israel
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
36
|
Tassinari V, Cesarini V, Silvestris DA, Scafidi A, Cucina L, Gallo A. MicroRNA Editing Detection and Function: A Combined In Silico and Experimental Approach for the Identification and Validation of Putative Oncogenic Targets. Methods Mol Biol 2021; 2181:253-267. [PMID: 32729085 DOI: 10.1007/978-1-0716-0787-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are a class of ~22 nt noncoding RNAs playing essential roles in the post-transcriptional regulation of gene expression, cell proliferation, and cell differentiation and are often found deregulated in several diseases including cancer.The A-to-I RNA editing, mediated by ADAR enzymes, is a diffuse post-transcriptional mechanism that converts the genetically coded adenosine (A) into inosine (I) at the RNA level. Among different RNA targets, the ADAR enzymes can also edit miRNA precursors. Specifically, a single nucleotide change (A/I) lying within the mature miRNA can alter the miRNA binding specificity and redirect the edited miRNA to a different mRNA target. In several cancer types a consistent deregulation of A-to-I RNA editing machinery also involves important miRNAs (either oncomiRs or tumor-suppressor miRNAs). Herein we describe a combined in silico and experimental approach for the detection of edited miRNAs and the identification and validation of their target genes potentially involved in cancer progression or invasion.
Collapse
Affiliation(s)
- Valentina Tassinari
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Valeriana Cesarini
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | | | - Andrea Scafidi
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Lorenzo Cucina
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Rome, Italy.
| |
Collapse
|
37
|
Schaffer AA, Levanon EY. ALU A-to-I RNA Editing: Millions of Sites and Many Open Questions. Methods Mol Biol 2021; 2181:149-162. [PMID: 32729079 DOI: 10.1007/978-1-0716-0787-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alu elements are repetitive short interspersed elements prevalent in the primate genome. These repeats account for over 10% of the genome with more than a million highly similar copies. A direct outcome of this is an enrichment in long structures of stable dsRNA, which are the target of adenosine deaminases acting on RNAs (ADARs), the enzymes catalyzing A-to-I RNA editing. Indeed, A-to-I editing by ADARs is extremely abundant in primates: over a hundred million editing sites exist in their genomes. However, despite the radical increase in ADAR targets brought on by the introduction of Alu elements, the few evolutionary conserved editing sites manage to retain their editing levels. Here, we review and discuss the cost of having an unusual amount of dsRNA and editing in the transcriptome, as well as the opportunities it presents, which possibly contributed to accelerating primate evolution.
Collapse
Affiliation(s)
- Amos A Schaffer
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
38
|
Moldovan M, Chervontseva Z, Bazykin G, Gelfand MS. Adaptive evolution at mRNA editing sites in soft-bodied cephalopods. PeerJ 2020; 8:e10456. [PMID: 33312772 PMCID: PMC7703385 DOI: 10.7717/peerj.10456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The bulk of variability in mRNA sequence arises due to mutation-change in DNA sequence which is heritable if it occurs in the germline. However, variation in mRNA can also be achieved by post-transcriptional modification including mRNA editing, changes in mRNA nucleotide sequence that mimic the effect of mutations. Such modifications are not inherited directly; however, as the processes affecting them are encoded in the genome, they have a heritable component, and therefore can be shaped by selection. In soft-bodied cephalopods, adenine-to-inosine RNA editing is very frequent, and much of it occurs at nonsynonymous sites, affecting the sequence of the encoded protein. METHODS We study selection regimes at coleoid A-to-I editing sites, estimate the prevalence of positive selection, and analyze interdependencies between the editing level and contextual characteristics of editing site. RESULTS Here, we show that mRNA editing of individual nonsynonymous sites in cephalopods originates in evolution through substitutions at regions adjacent to these sites. As such substitutions mimic the effect of the substitution at the edited site itself, we hypothesize that they are favored by selection if the inosine is selectively advantageous to adenine at the edited position. Consistent with this hypothesis, we show that edited adenines are more frequently substituted with guanine, an informational analog of inosine, in the course of evolution than their unedited counterparts, and for heavily edited adenines, these transitions are favored by positive selection. Our study shows that coleoid editing sites may enhance adaptation, which, together with recent observations on Drosophila and human editing sites, points at a general role of RNA editing in the molecular evolution of metazoans.
Collapse
Affiliation(s)
- Mikhail Moldovan
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Zoe Chervontseva
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Moscow, Russian Federation
| | - Georgii Bazykin
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Moscow, Russian Federation
| | - Mikhail S. Gelfand
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Moscow, Russian Federation
| |
Collapse
|
39
|
van der Kwast RVCT, Parma L, van der Bent ML, van Ingen E, Baganha F, Peters HAB, Goossens EAC, Simons KH, Palmen M, de Vries MR, Quax PHA, Nossent AY. Adenosine-to-Inosine Editing of Vasoactive MicroRNAs Alters Their Targetome and Function in Ischemia. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:932-953. [PMID: 32814251 PMCID: PMC7452086 DOI: 10.1016/j.omtn.2020.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Adenosine-to-inosine (A-to-I) editing in the seed sequence of microRNAs can shift the microRNAs’ targetomes and thus their function. Using public RNA-sequencing data, we identified 35 vasoactive microRNAs that are A-to-I edited. We quantified A-to-I editing of the primary (pri-)microRNAs in vascular fibroblasts and endothelial cells. Nine pri-microRNAs were indeed edited, and editing consistently increased under ischemia. We determined mature microRNA editing for the highest expressed microRNAs, i.e., miR-376a-3p, miR-376c-3p, miR-381-3p, and miR-411-5p. All four mature microRNAs were edited in their seed sequence. We show that both ADAR1 and ADAR2 (adenosine deaminase acting on RNA 1 and RNA 2) can edit pri-microRNAs in a microRNA-specific manner. MicroRNA editing also increased under ischemia in vivo in a murine hindlimb ischemia model and ex vivo in human veins. For each edited microRNA, we confirmed a shift in targetome. Expression of the edited microRNA targetomes, not the wild-type targetomes, was downregulated under ischemia in vivo. Furthermore, microRNA editing enhanced angiogenesis in vitro and ex vivo. In conclusion, we show that microRNA A-to-I editing is a widespread phenomenon, induced by ischemia. Each editing event results in a novel microRNA with a unique targetome, leading to increased angiogenesis.
Collapse
Affiliation(s)
- Reginald V C T van der Kwast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Laura Parma
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - M Leontien van der Bent
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eva van Ingen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Fabiana Baganha
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hendrika A B Peters
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eveline A C Goossens
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Karin H Simons
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Meindert Palmen
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
40
|
Non-Coding RNA Editing in Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12071845. [PMID: 32650588 PMCID: PMC7408896 DOI: 10.3390/cancers12071845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
In the last two decades, RNA post-transcriptional modifications, including RNA editing, have been the subject of increasing interest among the scientific community. The efforts of the Human Genome Project combined with the development of new sequencing technologies and dedicated bioinformatic approaches created to detect and profile RNA transcripts have served to further our understanding of RNA editing. Investigators have determined that non-coding RNA (ncRNA) A-to-I editing is often deregulated in cancer. This discovery has led to an increased number of published studies in the field. However, the eventual clinical application for these findings remains a work in progress. In this review, we provide an overview of the ncRNA editing phenomenon in cancer. We discuss the bioinformatic strategies for RNA editing detection as well as the potential roles for ncRNA A to I editing in tumor immunity and as clinical biomarkers.
Collapse
|
41
|
Schaffer AA, Kopel E, Hendel A, Picardi E, Levanon E, Eisenberg E. The cell line A-to-I RNA editing catalogue. Nucleic Acids Res 2020; 48:5849-5858. [PMID: 32383740 PMCID: PMC7293008 DOI: 10.1093/nar/gkaa305] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a common post transcriptional modification. It has a critical role in protecting against false activation of innate immunity by endogenous double stranded RNAs and has been associated with various regulatory processes and diseases such as autoimmune and cardiovascular diseases as well as cancer. In addition, the endogenous A-to-I editing machinery has been recently harnessed for RNA engineering. The study of RNA editing in humans relies heavily on the usage of cell lines as an important and commonly-used research tool. In particular, manipulations of the editing enzymes and their targets are often developed using cell line platforms. However, RNA editing in cell lines behaves very differently than in normal and diseased tissues, and most cell lines exhibit low editing levels, requiring over-expression of the enzymes. Here, we explore the A-to-I RNA editing landscape across over 1000 human cell lines types and show that for almost every editing target of interest a suitable cell line that mimics normal tissue condition may be found. We provide CLAIRE, a searchable catalogue of RNA editing levels across cell lines available at http://srv00.recas.ba.infn.it/atlas/claire.html, to facilitate rational choice of appropriate cell lines for future work on A-to-I RNA editing.
Collapse
Affiliation(s)
- Amos A Schaffer
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Kopel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ayal Hendel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, I-70126 Bari, Italy
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
42
|
Human Brain Shows Recurrent Non-Canonical MicroRNA Editing Events Enriched for Seed Sequence with Possible Functional Consequence. Noncoding RNA 2020; 6:ncrna6020021. [PMID: 32498345 PMCID: PMC7345632 DOI: 10.3390/ncrna6020021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
RNA editing is a post-transcriptional modification, which can provide tissue-specific functions not encoded in DNA. Adenosine-to-inosine is the predominant editing event and, along with cytosine-to-uracil changes, constitutes canonical editing. The rest is non-canonical editing. In this study, we have analysed non-canonical editing of microRNAs in the human brain. We have performed massively parallel small RNA sequencing of frontal cortex (FC) and corpus callosum (CC) pairs from nine normal individuals (post-mortem). We found 113 and 90 unique non-canonical editing events in FC and CC samples, respectively. More than 70% of events were in the miRNA seed sequence—implicating an altered set of target mRNAs and possibly resulting in a functional consequence. Up to 15% of these events were recurring and found in at least three samples, also supporting the biological relevance of such variations. Two specific sequence variations, C-to-A and G-to-U, accounted for over 80% of non-canonical miRNA editing events—and revealed preferred sequence motifs. Our study is one of the first reporting non-canonical editing in miRNAs in the human brain. Our results implicate miRNA non-canonical editing as one of the contributing factors towards transcriptomic diversity in the human brain.
Collapse
|
43
|
Song Y, Li L, Yang W, Fu Q, Chen W, Fang Z, Li W, Gu N, Zhang R. Sense-antisense miRNA pairs constitute an elaborate reciprocal regulatory circuit. Genome Res 2020; 30:661-672. [PMID: 32424073 PMCID: PMC7263187 DOI: 10.1101/gr.257121.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
Antisense transcription of protein-coding genes has been increasingly recognized as an important regulatory mechanism of gene expression. However, less is known about the extent and importance of antisense transcription of noncoding genes. Here, we investigate the breadth and dynamics of antisense transcription of miRNAs, a class of important noncoding RNAs. Because the antisense transcript of a miRNA is likely to form a hairpin suitable as the substrate of ADARs, which convert adenosine to inosine in double-stranded RNAs, we used A-to-I RNA editing as ultrasensitive readout for antisense transcription of the miRNAs. Through examining the unstranded targeted RNA-seq libraries covering all miRNA loci in 25 types of human tissues, we identified 7275 editing events located in 81% of the antisense strand of the miRNA loci, thus uncovering the previously unknown prevalent antisense transcription of the miRNAs. We found that antisense transcripts are tightly regulated, and a substantial fraction of miRNAs and their antisense transcripts are coexpressed. Sense miRNAs have been shown to down-regulate the coexpressed antisense transcripts, whereas the act of antisense transcription, rather than the transcripts themselves, regulates the expression of sense miRNAs. RNA editing tends to decrease the miRNA accessibility of the antisense transcripts, therefore protecting them from being degraded by the sense-mature miRNAs. Altogether, our study reveals the landscape of antisense transcription and editing of miRNAs, as well as a previously unknown reciprocal regulatory circuit of sense-antisense miRNA pairs.
Collapse
Affiliation(s)
- Yulong Song
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lishi Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenbing Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiang Fu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wanying Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zeng Fang
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wen Li
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Nannan Gu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
44
|
Gassner FJ, Zaborsky N, Feldbacher D, Greil R, Geisberger R. RNA Editing Alters miRNA Function in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12051159. [PMID: 32380696 PMCID: PMC7280959 DOI: 10.3390/cancers12051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a high incidence B cell leukemia with a highly variable clinical course, leading to survival times ranging from months to several decades. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression levels of genes by binding to the untranslated regions of transcripts. Although miRNAs have been previously shown to play a crucial role in CLL development, progression and treatment resistance, their further processing and diversification by RNA editing (specifically adenosine to inosine or cytosine to uracil deamination) has not been addressed so far. In this study, we analyzed next generation sequencing data to provide a detailed map of adenosine to inosine and cytosine to uracil changes in miRNAs from CLL and normal B cells. Our results reveal that in addition to a CLL-specific expression pattern, there is also specific RNA editing of many miRNAs, particularly miR-3157 and miR-6503, in CLL. Our data draw further light on how miRNAs and miRNA editing might be implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Franz J. Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Daniel Feldbacher
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Department of Biosciences, University of Salzburg, Hellbrunner Strasse, 34, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Correspondence: ; Tel.: +43-57255-25847; Fax: +43-57255-25998
| |
Collapse
|
45
|
Costa Cruz PH, Kato Y, Nakahama T, Shibuya T, Kawahara Y. A comparative analysis of ADAR mutant mice reveals site-specific regulation of RNA editing. RNA (NEW YORK, N.Y.) 2020; 26:454-469. [PMID: 31941663 PMCID: PMC7075269 DOI: 10.1261/rna.072728.119] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/09/2020] [Indexed: 05/03/2023]
Abstract
Adenosine-to-inosine RNA editing is an essential post-transcriptional modification catalyzed by adenosine deaminase acting on RNA (ADAR)1 and ADAR2 in mammals. For numerous sites in coding sequences (CDS) and microRNAs, editing is highly conserved and has significant biological consequences, for example, by altering amino acid residues and target recognition. However, no comprehensive and quantitative studies have been undertaken to determine how specific ADARs contribute to conserved sites in vivo. Here, we amplified each RNA region with editing site(s) separately and combined these for deep sequencing. Then, we compared the editing ratios of all sites that were conserved in CDS and microRNAs in the cerebral cortex and spleen of wild-type mice, Adar1E861A/E861AIfih-/- mice expressing inactive ADAR1 (Adar1 KI) and Adar2-/-Gria2R/R (Adar2 KO) mice. We found that most of the sites showed a preference for one ADAR. In contrast, some sites, such as miR-3099-3p, showed no ADAR preference. In addition, we found that the editing ratio for several sites, such as DACT3 R/G, was up-regulated in either Adar mutant mouse strain, whereas a coordinated interplay between ADAR1 and ADAR2 was required for the efficient editing of specific sites, such as the 5-HT2CR B site. We further created double mutant Adar1 KI Adar2 KO mice and observed viable and fertile animals with the complete absence of editing, demonstrating that ADAR1 and ADAR2 are the sole enzymes responsible for all editing sites in vivo. Collectively, these findings indicate that editing is regulated in a site-specific manner by the different interplay between ADAR1 and ADAR2.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
46
|
Muthusamy S. m 6A mRNA methylation: A pleiotropic regulator of cancer. Gene 2020; 736:144415. [PMID: 32006598 DOI: 10.1016/j.gene.2020.144415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
In recent days, RNA modifications are gaining the interest of biologist worldwide. Till date, a total of 171 RNA modifications has been reported, and the number may increase with advancing technologies. The mRNA undergoes modifications like m5M, hm5C, m1A, m6A and pseudouridine, collectively called as epitranscriptomic alterations, each of them has their functional significance. m6A modification is the most common one which occurs at the motif of RRm6AACH in mRNA. The altered profiles of these epitranscriptomic changes are reported in multiple cancers. The present review discusses the dynamic nature of functional enzymes called methyltransferase (writer), demethylase (erasers) and m6A binding proteins (readers) and importance of the balance between these proteins for the homeostasis of our body functions like metabolism, circadian rhythm, immune response, viral replications, embryogenesis and cancer development. Nevertheless, the main focus has been on cancer development and progression. The understanding of such differential modifications are at infancy and may provide bring about a paradigm shift in our understanding of cancer for management and treatment.
Collapse
|
47
|
Batool A, Hill TDM, Nguyen NT, Langa E, Diviney M, Mooney C, Brennan GP, Connolly NMC, Sanz-Rodriguez A, Cavanagh BL, Henshall DC. Altered Biogenesis and MicroRNA Content of Hippocampal Exosomes Following Experimental Status Epilepticus. Front Neurosci 2020; 13:1404. [PMID: 32009885 PMCID: PMC6978807 DOI: 10.3389/fnins.2019.01404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Repetitive or prolonged seizures (status epilepticus) can damage neurons within the hippocampus, trigger gliosis, and generate an enduring state of hyperexcitability. Recent studies have suggested that microvesicles including exosomes are released from brain cells following stimulation and tissue injury, conveying contents between cells including microRNAs (miRNAs). Here, we characterized the effects of experimental status epilepticus on the expression of exosome biosynthesis components and analyzed miRNA content in exosome-enriched fractions. Status epilepticus induced by unilateral intra-amygdala kainic acid in mice resulted in acute subfield-specific, bi-directional changes in hippocampal transcripts associated with exosome biosynthesis including up-regulation of endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. Increased expression of exosome components including Alix were detectable in samples obtained 2 weeks after status epilepticus and changes occurred in both the ipsilateral and contralateral hippocampus. RNA sequencing of exosome-enriched fractions prepared using two different techniques detected a rich diversity of conserved miRNAs and showed that status epilepticus selectively alters miRNA contents. We also characterized editing sites of the exosome-enriched miRNAs and found six exosome-enriched miRNAs that were adenosine-to-inosine (ADAR) edited with the majority of the editing events predicted to occur within miRNA seed regions. However, the prevalence of these editing events was not altered by status epilepticus. These studies demonstrate that status epilepticus alters the exosome pathway and its miRNA content, but not editing patterns. Further functional studies will be needed to determine if these changes have pathophysiological significance for epileptogenesis.
Collapse
Affiliation(s)
- Aasia Batool
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Thomas D M Hill
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ngoc T Nguyen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mairéad Diviney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine Mooney
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Computer Science, University College Dublin, Dublin, Ireland
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
48
|
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci 2019; 20:E6249. [PMID: 31835747 PMCID: PMC6941098 DOI: 10.3390/ijms20246249] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the capability of modulating gene expression at the post-transcriptional level either by inhibiting messenger RNA (mRNA) translation or by promoting mRNA degradation. The outcome of a myriad of physiological processes and pathologies, including cancer, cardiovascular and metabolic diseases, relies highly on miRNAs. However, deciphering the precise roles of specific miRNAs in these pathophysiological contexts is challenging due to the high levels of complexity of their actions. Indeed, regulation of mRNA expression by miRNAs is frequently cell/organ specific; highly dependent on the stress and metabolic status of the organism; and often poorly correlated with miRNA expression levels. Such biological features of miRNAs suggest that various regulatory mechanisms control not only their expression, but also their activity and/or bioavailability. Several mechanisms have been described to modulate miRNA action, including genetic polymorphisms, methylation of miRNA promoters, asymmetric miRNA strand selection, interactions with RNA-binding proteins (RBPs) or other coding/non-coding RNAs. Moreover, nucleotide modifications (A-to-I or C-to-U) within the miRNA sequences at different stages of their maturation are also critical for their functionality. This regulatory mechanism called "RNA editing" involves specific enzymes of the adenosine/cytidine deaminase family, which trigger single nucleotide changes in primary miRNAs. These nucleotide modifications greatly influence a miRNA's stability, maturation and activity by changing its specificity towards target mRNAs. Understanding how editing events impact miRNA's ability to regulate stress responses in cells and organs, or the development of specific pathologies, e.g., metabolic diseases or cancer, should not only deepen our knowledge of molecular mechanisms underlying complex diseases, but can also facilitate the design of new therapeutic approaches based on miRNA targeting. Herein, we will discuss the current knowledge on miRNA editing and how this mechanism regulates miRNA biogenesis and activity.
Collapse
Affiliation(s)
| | | | | | | | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (M.C.d.S.); (M.G.); (D.D.); (C.S.)
| |
Collapse
|
49
|
Xu X, Wang Y, Mojumdar K, Zhou Z, Jeong KJ, Mangala LS, Yu S, Tsang YH, Rodriguez-Aguayo C, Lu Y, Lopez-Berestein G, Sood AK, Mills GB, Liang H. A-to-I-edited miRNA-379-5p inhibits cancer cell proliferation through CD97-induced apoptosis. J Clin Invest 2019; 129:5343-5356. [PMID: 31682236 PMCID: PMC6877318 DOI: 10.1172/jci123396] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Abstract
Both miRNAs and A-to-I RNA editing, a widespread nucleotide modification mechanism, have recently emerged as key players in cancer pathophysiology. However, the functional impact of RNA editing of miRNAs in cancer remains largely unexplored. Here, we focused on an ADAR2-catalyzed RNA editing site within the miR-379-5p seed region. This site was under-edited in tumors relative to normal tissues, with a high editing level being correlated with better patient survival times across cancer types. We demonstrated that in contrast to wild-type miRNA, edited miR-379-5p inhibited cell proliferation and promoted apoptosis in diverse tumor contexts in vitro, which was due to the ability of edited but not wild-type miR-379-5p to target CD97. Importantly, through nanoliposomal delivery, edited miR-379-5p mimics significantly inhibited tumor growth and extended survival of mice. Our study indicates a role of RNA editing in diversifying miRNA function during cancer progression and highlights the translational potential of edited miRNAs as a new class of cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA
| | - Kamalika Mojumdar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhicheng Zhou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Systems Biology
| | | | - Lingegowda S. Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, and
- Center for RNA Interference and Non–Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non–Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, and
- Center for RNA Interference and Non–Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Systems Biology
| |
Collapse
|
50
|
Zhang Y, Qian H, Xu J, Gao W. ADAR, the carcinogenesis mechanisms of ADAR and related clinical applications. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:686. [PMID: 31930087 DOI: 10.21037/atm.2019.11.06] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze the conversion of adenosine (A) to inosine (I) in double-stranded RNA, which can change the codons after transcription. Abnormal ADAR editing is present in a variety of cancers. However, the study of the biological effects of ADARs in cancer is not very deep. Here, we review current important ADAR-mediated editing events, related carcinogenic mechanisms and applications in clinical medicine. Further exploration in ADARs can provide a new direction for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huizhu Qian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|