1
|
Ogawa T, Isik M, Wu Z, Kurmi K, Meng J, Cho S, Lee G, Fernandez-Cardenas LP, Mizunuma M, Blenis J, Haigis MC, Blackwell TK. Nutrient control of growth and metabolism through mTORC1 regulation of mRNA splicing. Mol Cell 2024; 84:4558-4575.e8. [PMID: 39571580 DOI: 10.1016/j.molcel.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024]
Abstract
Cellular growth and organismal development are remarkably complex processes that require the nutrient-responsive kinase mechanistic target of rapamycin complex 1 (mTORC1). Anticipating that important mTORC1 functions remained to be identified, we employed genetic and bioinformatic screening in C. elegans to uncover mechanisms of mTORC1 action. Here, we show that during larval growth, nutrients induce an extensive reprogramming of gene expression and alternative mRNA splicing by acting through mTORC1. mTORC1 regulates mRNA splicing and the production of protein-coding mRNA isoforms largely independently of its target p70 S6 kinase (S6K) by increasing the activity of the serine/arginine-rich (SR) protein RSP-6 (SRSF3/7) and other splicing factors. mTORC1-mediated mRNA splicing regulation is critical for growth; mediates nutrient control of mechanisms that include energy, nucleotide, amino acid, and other metabolic pathways; and may be conserved in humans. Although mTORC1 inhibition delays aging, mTORC1-induced mRNA splicing promotes longevity, suggesting that when mTORC1 is inhibited, enhancement of this splicing might provide additional anti-aging benefits.
Collapse
Affiliation(s)
- Takafumi Ogawa
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Meltem Isik
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Meng
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sungyun Cho
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gina Lee
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - L Paulette Fernandez-Cardenas
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Webster AK, Chitrakar R, Taylor SM, Baugh LR. Alternative somatic and germline gene-regulatory strategies during starvation-induced developmental arrest. Cell Rep 2022; 41:111473. [PMID: 36223742 PMCID: PMC9608353 DOI: 10.1016/j.celrep.2022.111473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Nutrient availability governs growth and quiescence, and many animals arrest development when starved. Using C. elegans L1 arrest as a model, we show that gene expression changes deep into starvation. Surprisingly, relative expression of germline-enriched genes increases for days. We conditionally degrade the large subunit of RNA polymerase II using the auxin-inducible degron system and analyze absolute expression levels. We find that somatic transcription is required for survival, but the germline maintains transcriptional quiescence. Thousands of genes are continuously transcribed in the soma, though their absolute abundance declines, such that relative expression of germline transcripts increases given extreme transcript stability. Aberrantly activating transcription in starved germ cells compromises reproduction, demonstrating important physiological function of transcriptional quiescence. This work reveals alternative somatic and germline gene-regulatory strategies during starvation, with the soma maintaining a robust transcriptional response to support survival and the germline maintaining transcriptional quiescence to support future reproductive success. Webster et al. show that the transcriptional response to starvation is mounted early in larval somatic cells supporting survival but that it wanes over time. In contrast, they show that the germline remains transcriptionally quiescent deep into starvation, supporting reproductive potential, while maintaining its transcriptome via transcript stability.
Collapse
Affiliation(s)
- Amy K. Webster
- Department of Biology, Duke University, Durham, NC 27708, USA,Present address: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Seth M. Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA,Lead contact,Correspondence:
| |
Collapse
|
3
|
Hou X, Zhu C, Xu M, Chen X, Sun C, Nashan B, Guang S, Feng X. The SNAPc complex mediates starvation-induced trans-splicing in Caenorhabditis elegans. J Genet Genomics 2022; 49:952-964. [DOI: 10.1016/j.jgg.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
|
4
|
Molecular insights into transgenerational inheritance of stress memory. J Genet Genomics 2021; 49:89-95. [PMID: 34923165 DOI: 10.1016/j.jgg.2021.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environmental cues (e.g., diet, heat stress, toxins) indicate that altered DNA methylations, histone modifications, or non-coding RNAs in the germ cells are responsible for the transgenerational effects. In addition, it has also become evident that maternal provision could provide a mechanism for the transgenerational inheritance of stress adaptations that result from ancestral environmental cues. However, how the signal of environmentally-induced stress response transmits from the soma to the germline, which may influence offspring fitness, remains largely elusive. Small RNAs could serve as signaling molecules that transmit between tissues and even across generations. Furthermore, a recent study revealed that neuronal mitochondrial perturbations induce a transgenerational induction of the mitochondrial unfolded protein response mediated by a Wnt-dependent increase in mitochondrial DNA levels. Here, we review recent work on the molecular mechanism by which parental experience can affect future generations and the importance of soma-to-germline signaling for transgenerational inheritance.
Collapse
|
5
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
6
|
Qu Z, Ji S, Zheng S. Glucose and cholesterol induce abnormal cell divisions via DAF-12 and MPK-1 in C. elegans. Aging (Albany NY) 2020; 12:16255-16269. [PMID: 32857726 PMCID: PMC7485695 DOI: 10.18632/aging.103647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
People exposed to starvation have a high risk of developing cancer later in life, and prior studies have shown these individuals have high insulin and cholesterol levels and are sensitive to glucose. Using C. elegans as a model, we found that glucose and cholesterol can promote survival and cause starved L1 diapause worms to undergo abnormal neuronal cell divisions. Starvation has also been shown to promote long-term survival; however, we found that the functions of glucose and cholesterol in relation to these cell divisions are distinct from their effects on survival. We demonstrate that glucose functions in a DAF-16/FOXO-independent IIS pathway to activate the MAPK ontogenetic signaling to induce neuronal Q-cell divisions, and cholesterol works through DAF-12/steroidogenic pathways to promote these cell divisions. daf-12 and mpk-1/MAPK mutants suppress the function of glucose and cholesterol in these divisions, and a fully functioning dpMPK-1 requires the steroid hormone receptor DAF-12 for these divisions to occur. These afflictions also can be passed on to the immediate progeny. This work indicates a possible link between glucose and cholesterol in starved animals and an increased risk of cancer.
Collapse
Affiliation(s)
- Zhi Qu
- School of Nursing and Health, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| | - Shaoping Ji
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| |
Collapse
|
7
|
Li R, Ren X, Ding Q, Bi Y, Xie D, Zhao Z. Direct full-length RNA sequencing reveals unexpected transcriptome complexity during Caenorhabditis elegans development. Genome Res 2020; 30:287-298. [PMID: 32024662 PMCID: PMC7050527 DOI: 10.1101/gr.251512.119] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023]
Abstract
Massively parallel sequencing of the polyadenylated RNAs has played a key role in delineating transcriptome complexity, including alternative use of an exon, promoter, 5′ or 3′ splice site or polyadenylation site, and RNA modification. However, reads derived from the current RNA-seq technologies are usually short and deprived of information on modification, compromising their potential in defining transcriptome complexity. Here, we applied a direct RNA sequencing method with ultralong reads using Oxford Nanopore Technologies to study the transcriptome complexity in Caenorhabditis elegans. We generated approximately six million reads using native poly(A)-tailed mRNAs from three developmental stages, with average read lengths ranging from 900 to 1100 nt. Around half of the reads represent full-length transcripts. To utilize the full-length transcripts in defining transcriptome complexity, we devised a method to classify the long reads as the same as existing transcripts or as a novel transcript using sequence mapping tracks rather than existing intron/exon structures, which allowed us to identify roughly 57,000 novel isoforms and recover at least 26,000 out of the 33,500 existing isoforms. The sets of genes with differential expression versus differential isoform usage over development are largely different, implying a fine-tuned regulation at isoform level. We also observed an unexpected increase in putative RNA modification in all bases in the coding region relative to the UTR, suggesting their possible roles in translation. The RNA reads and the method for read classification are expected to deliver new insights into RNA processing and modification and their underlying biology in the future.
Collapse
Affiliation(s)
- Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China.,State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, 999077, China
| |
Collapse
|
8
|
Selection and gene flow shape niche-associated variation in pheromone response. Nat Ecol Evol 2019; 3:1455-1463. [PMID: 31548647 PMCID: PMC6764921 DOI: 10.1038/s41559-019-0982-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/14/2019] [Indexed: 11/18/2022]
Abstract
From quorum sensing in bacteria to pheromone signaling in social insects, chemical communication mediates interactions among individuals in a local population. In Caenorhabditis elegans, ascaroside pheromones can dictate local population density, in which high levels of pheromones inhibit the reproductive maturation of individuals. Little is known about how natural genetic diversity affects the pheromone responses of individuals from diverse habitats. Here, we show that a niche-associated variation in pheromone receptor genes contributes to natural differences in pheromone responses. We identified putative loss-of-function deletions that impair duplicated pheromone receptor genes (srg-36 and srg-37), which were shown previously to be lost in population-dense laboratory cultures. A common natural deletion in srg-37 arose recently from a single ancestral population that spread throughout the world and underlies reduced pheromone sensitivity across the global C. elegans population. We found that many local populations harbor individuals with wild-type or a deletion allele of srg-37, suggesting that balancing selection has maintained the recent variation in this pheromone receptor gene. The two srg-37 genotypes are associated with niche diversity underlying boom-and-bust population dynamics. We hypothesize that human activities likely contributed to the gene flow and balancing selection of srg-37 variation through facilitating migration of species and providing favorable niche for recently arose srg-37 deletion.
Collapse
|
9
|
Jordan JM, Hibshman JD, Webster AK, Kaplan REW, Leinroth A, Guzman R, Maxwell CS, Chitrakar R, Bowman EA, Fry AL, Hubbard EJA, Baugh LR. Insulin/IGF Signaling and Vitellogenin Provisioning Mediate Intergenerational Adaptation to Nutrient Stress. Curr Biol 2019; 29:2380-2388.e5. [PMID: 31280992 PMCID: PMC6650306 DOI: 10.1016/j.cub.2019.05.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/19/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
Abstract
The roundworm C. elegans reversibly arrests larval development during starvation [1], but extended early-life starvation reduces reproductive success [2, 3]. Maternal dietary restriction (DR) buffers progeny from starvation as young larvae, preserving reproductive success [4]. However, the developmental basis of reduced fertility following early-life starvation is unknown, and it is unclear how maternal diet modifies developmental physiology in progeny. We show here that extended starvation in first-stage (L1) larvae followed by unrestricted feeding results in a variety of developmental abnormalities in the reproductive system, including proliferative germ-cell tumors and uterine masses that express neuronal and epidermal cell fate markers. We found that maternal DR and reduced maternal insulin/insulin-like growth factor (IGF) signaling (IIS) increase oocyte provisioning of vitellogenin lipoprotein, reducing penetrance of starvation-induced abnormalities in progeny, including tumors. Furthermore, we show that maternal DR and reduced maternal IIS reduce IIS in progeny. daf-16/FoxO and skn-1/Nrf, transcriptional effectors of IIS, are required in progeny for maternal DR and increased vitellogenin provisioning to suppress starvation-induced abnormalities. daf-16/FoxO activity in somatic tissues is sufficient to suppress starvation-induced abnormalities, suggesting cell-nonautonomous regulation of reproductive system development. This work reveals that early-life starvation compromises reproductive development and that vitellogenin-mediated intergenerational insulin/IGF-to-insulin/IGF signaling mediates adaptation to nutrient availability.
Collapse
Affiliation(s)
- James M Jordan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Amy K Webster
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | | - Ryan Guzman
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Colin S Maxwell
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Amanda L Fry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
10
|
Characteristics of Patients Experiencing Extrapyramidal Symptoms or Other Movement Disorders Related to Dopamine Receptor Blocking Agent Therapy. J Clin Psychopharmacol 2019; 39:336-343. [PMID: 31205194 PMCID: PMC6594730 DOI: 10.1097/jcp.0000000000001061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE/BACKGROUND Dopamine receptor blocking agents (DRBAs), also known as antipsychotics, are medications widely used to treat a growing number of mental health diagnoses. However, their utility is limited by the potential to cause serious adverse movement reactions. Akathisia, dystonia, parkinsonism, and tardive dyskinesia (collectively known as extrapyramidal symptoms or EPSs) are associated with reduced social and occupational functioning, negative patient attitudes toward treatment, and nonadherence to pharmacotherapy. Neuroleptic malignant syndrome is a life-threatening reaction that can result from DRBA use and cause musculoskeletal dysfunction. The aim of this study is to profile patients who have developed DRBA-related movement adverse effects and identify risk factors significantly associated with each subtype of EPSs or other movement disorders (OMDs) such as neuroleptic malignant syndrome. METHODS/PROCEDURES A report of all potential DRBA-related EPSs or OMDs occurrences within a large community hospital network was generated using International Classification of Diseases, Ninth Revision (ICD-9) and 10th Revision (ICD-10) billing codes. Each patient encounter was manually reviewed to confirm that a documented case of DRBA-related EPSs or OMDs had indeed occurred and subsequently determine the likely causative agent(s). FINDINGS/RESULTS The resultant cohort of 148 patients experiencing unique DRBA-related EPS or OMD events was analyzed. The average patient was female, middle-aged, and overweight. The most common DRBAs precipitating EPSs or OMDs were haloperidol and quetiapine. In the population studied, age was significantly associated with the subtype of EPSs experienced such that those patients with akathisia and dystonia tended to be younger, whereas those with tardive dyskinesia tended to be older. Body mass index (BMI) category was also negatively correlated with the incidence of dystonia. In addition, it was observed that exposure to specific DRBAs, classes, and routes of administration significantly affected the risk of developing different subtypes of EPSs or OMDs in the study population. IMPLICATIONS/CONCLUSIONS To our knowledge, this is the first study to describe an association between age and BMI with the risk of akathisia and dystonia, respectively, in patients taking DRBAs. Other trends observed with age and BMI in patients developing DRBA-related EPSs support previously reported findings. Expanding the knowledge base of individual characteristics associated with the risk of developing different subtypes of EPSs or OMDs can help providers and patients anticipate and attempt to mitigate these reactions, and may ultimately improve adherence to DRBA therapy.
Collapse
|
11
|
Cheng AA, Li W, Hernandez LL. Effect of high-fat diet feeding and associated transcriptome changes in the peak lactation mammary gland in C57BL/6 dams. Physiol Genomics 2018; 50:1059-1070. [DOI: 10.1152/physiolgenomics.00052.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maternal consumption of a high-fat diet (HFD) during pregnancy has established adverse effects on the developing neonate. In this study, we aimed to investigate the effect of an HFD on the murine mammary gland during midlactation. Female C57BL/6J mice were placed on either a low-fat diet (LFD/10% fat) or HFD (60% fat) from 3 wk of age through peak lactation (lactation day 11/L11). After 4 wk of consuming either the LFD or HFD, female mice were bred. There were no significant differences in milk yield between treatment groups, which was measured from L1 to L9. On L10, mice were subjected to an overnight fast and then euthanized on the morning of L11. Total RNA was isolated from inguinal mammary glands for whole transcriptome sequencing. We found 628 genes that were differentially expressed between the treatment groups. Notably, HFD feeding resulted in expression alterations of genes involved in collagen and cytoplasmic components. Additionally, genes related to inflammatory and immune responses were also impacted. Differential expression in gene transcript isoforms between the treatment groups was detected in three genes related to mammary duct development. This study sheds light as to how an HFD may affect the mammary gland transcriptome during midlactation.
Collapse
Affiliation(s)
- A. A. Cheng
- Department of Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| | - W. Li
- United States Department of Agriculture Dairy Forage, Madison, Wisconsin
| | - L. L. Hernandez
- Department of Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
12
|
Kaplan REW, Webster AK, Chitrakar R, Dent JA, Baugh LR. Food perception without ingestion leads to metabolic changes and irreversible developmental arrest in C. elegans. BMC Biol 2018; 16:112. [PMID: 30296941 PMCID: PMC6176503 DOI: 10.1186/s12915-018-0579-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Developmental physiology is very sensitive to nutrient availability. For instance, in the nematode Caenorhabditis elegans, newly hatched L1-stage larvae require food to initiate postembryonic development. In addition, larvae arrested in the dauer diapause, a non-feeding state of developmental arrest that occurs during the L3 stage, initiate recovery when exposed to food. Despite the essential role of food in C. elegans development, the contribution of food perception versus ingestion on physiology has not been delineated. RESULTS We used a pharmacological approach to uncouple the effects of food (bacteria) perception and ingestion in C. elegans. Perception was not sufficient to promote postembryonic development in L1-stage larvae. However, L1 larvae exposed to food without ingestion failed to develop upon return to normal culture conditions, instead displaying an irreversible arrest phenotype. Inhibition of gene expression during perception rescued subsequent development, demonstrating that the response to perception without feeding is deleterious. Perception altered DAF-16/FOXO subcellular localization, reflecting activation of insulin/IGF signaling (IIS). The insulin-like peptide daf-28 was specifically required, suggesting perception in chemosensory neurons, where it is expressed, regulates peptide synthesis and possibly secretion. However, genetic manipulation of IIS did not modify the irreversible arrest phenotype caused by food perception, revealing that wild-type function of the IIS pathway is not required to produce this phenotype and that other pathways affected by perception of food in the absence of its ingestion are likely to be involved. Gene expression and Nile red staining showed that food perception could alter lipid metabolism and storage. We found that starved larvae sense environmental polypeptides, with similar molecular and developmental effects as perception of bacteria. Environmental polypeptides also promoted recovery from dauer diapause, suggesting that perception of polypeptides plays an important role in the life history of free-living nematodes. CONCLUSIONS We conclude that actual ingestion of food is required to initiate postembryonic development in C. elegans. We also conclude that polypeptides are perceived as a food-associated cue in this and likely other animals, initiating a signaling and gene regulatory cascade that alters metabolism in anticipation of feeding and development, but that this response is detrimental if feeding does not occur.
Collapse
Affiliation(s)
- Rebecca E W Kaplan
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA
| | - Amy K Webster
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA
| | - Rojin Chitrakar
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA
| | - Joseph A Dent
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - L Ryan Baugh
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA.
| |
Collapse
|
13
|
Webster AK, Jordan JM, Hibshman JD, Chitrakar R, Baugh LR. Transgenerational Effects of Extended Dauer Diapause on Starvation Survival and Gene Expression Plasticity in Caenorhabditis elegans. Genetics 2018; 210:263-274. [PMID: 30049782 PMCID: PMC6116965 DOI: 10.1534/genetics.118.301250] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
Phenotypic plasticity is facilitated by epigenetic regulation, and remnants of such regulation may persist after plasticity-inducing cues are gone. However, the relationship between plasticity and transgenerational epigenetic memory is not understood. Dauer diapause in Caenorhabditis elegans provides an opportunity to determine how a plastic response to the early-life environment affects traits later in life and in subsequent generations. We report that, after extended diapause, postdauer worms initially exhibit reduced reproductive success and greater interindividual variation. In contrast, F3 progeny of postdauers display increased starvation resistance and lifespan, revealing potentially adaptive transgenerational effects. Transgenerational effects are dependent on the duration of diapause, indicating an effect of extended starvation. In agreement, RNA-seq demonstrates a transgenerational effect on nutrient-responsive genes. Further, postdauer F3 progeny exhibit reduced gene expression plasticity, suggesting a trade-off between plasticity and epigenetic memory. This work reveals complex effects of nutrient stress over different time scales in an animal that evolved to thrive in feast and famine.
Collapse
Affiliation(s)
- Amy K Webster
- Department of Biology, Duke University, Durham, North Carolina 27708
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27708
| | - James M Jordan
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Jonathan D Hibshman
- Department of Biology, Duke University, Durham, North Carolina 27708
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27708
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
14
|
Yague-Sanz C, Hermand D. SL-quant: a fast and flexible pipeline to quantify spliced leader trans-splicing events from RNA-seq data. Gigascience 2018; 7:5052207. [PMID: 30010768 PMCID: PMC6055573 DOI: 10.1093/gigascience/giy084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/04/2018] [Accepted: 07/01/2018] [Indexed: 11/13/2022] Open
Abstract
Background The spliceosomal transfer of a short spliced leader (SL) RNA to an independent pre-mRNA molecule is called SL trans-splicing and is widespread in the nematode Caenorhabditis elegans. While RNA-sequencing (RNA-seq) data contain information on such events, properly documented methods to extract them are lacking. Findings To address this, we developed SL-quant, a fast and flexible pipeline that adapts to paired-end and single-end RNA-seq data and accurately quantifies SL trans-splicing events. It is designed to work downstream of read mapping and uses the reads left unmapped as primary input. Briefly, the SL sequences are identified with high specificity and are trimmed from the input reads, which are then remapped on the reference genome and quantified at the nucleotide position level (SL trans-splice sites) or at the gene level. Conclusions SL-quant completes within 10 minutes on a basic desktop computer for typical C. elegans RNA-seq datasets and can be applied to other species as well. Validating the method, the SL trans-splice sites identified display the expected consensus sequence, and the results of the gene-level quantification are predictive of the gene position within operons. We also compared SL-quant to a recently published SL-containing read identification strategy that was found to be more sensitive but less specific than SL-quant. Both methods are implemented as a bash script available under the MIT license [1]. Full instructions for its installation, usage, and adaptation to other organisms are provided.
Collapse
Affiliation(s)
- Carlo Yague-Sanz
- URPhyM-GEMO, The University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Damien Hermand
- URPhyM-GEMO, The University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| |
Collapse
|
15
|
Ho MCW, Quintero-Cadena P, Sternberg PW. Genome-wide discovery of active regulatory elements and transcription factor footprints in Caenorhabditis elegans using DNase-seq. Genome Res 2017; 27:2108-2119. [PMID: 29074739 PMCID: PMC5741056 DOI: 10.1101/gr.223735.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/18/2017] [Indexed: 12/23/2022]
Abstract
Deep sequencing of size-selected DNase I–treated chromatin (DNase-seq) allows high-resolution measurement of chromatin accessibility to DNase I cleavage, permitting identification of de novo active cis-regulatory modules (CRMs) and individual transcription factor (TF) binding sites. We adapted DNase-seq to nuclei isolated from C. elegans embryos and L1 arrest larvae to generate high-resolution maps of TF binding. Over half of embryonic DNase I hypersensitive sites (DHSs) were annotated as noncoding, with 24% in intergenic, 12% in promoters, and 28% in introns, with similar statistics observed in L1 arrest larvae. Noncoding DHSs are highly conserved and enriched in marks of enhancer activity and transcription. We validated noncoding DHSs against known enhancers from myo-2, myo-3, hlh-1, elt-2, and lin-26/lir-1 and recapitulated 15 of 17 known enhancers. We then mined DNase-seq data to identify putative active CRMs and TF footprints. Using DNase-seq data improved predictions of tissue-specific expression compared with motifs alone. In a pilot functional test, 10 of 15 DHSs from pha-4, icl-1, and ceh-13 drove reporter gene expression in transgenic C. elegans. Overall, we provide experimental annotation of 26,644 putative CRMs in the embryo containing 55,890 TF footprints, as well as 15,841 putative CRMs in the L1 arrest larvae containing 32,685 TF footprints.
Collapse
Affiliation(s)
- Margaret C W Ho
- Division of Biology and Bioengineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Porfirio Quintero-Cadena
- Division of Biology and Bioengineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Paul W Sternberg
- Division of Biology and Bioengineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
16
|
Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. Nat Protoc 2017; 12:2081-2096. [PMID: 28880279 DOI: 10.1038/nprot.2017.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell invasion through basement membrane (BM) barriers is crucial in development, leukocyte trafficking and the spread of cancer. The mechanisms that direct invasion, despite their importance in normal and disease states, are poorly understood, largely because of the inability to visualize dynamic cell-BM interactions in vivo. This protocol describes multichannel time-lapse confocal imaging of anchor-cell invasion in live Caenorhabditis elegans. Methods presented include outline-slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min) and quantitative analysis (variable timing). The acquired images enable direct measurement of invasive dynamics including formation of invadopodia and cell-membrane protrusions, and removal of BM. This protocol can be combined with genetic analysis, molecular-activity probes and optogenetic approaches to uncover the molecular mechanisms underlying cell invasion. These methods can also be readily adapted by any worm laboratory for real-time analysis of cell migration, BM turnover and cell-membrane dynamics.
Collapse
|
17
|
Tang H, Han M. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation. Cell 2017; 169:457-469.e13. [PMID: 28431246 DOI: 10.1016/j.cell.2017.03.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/03/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development.
Collapse
Affiliation(s)
- Hongyun Tang
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
18
|
Gracida X, Norris AD, Calarco JA. Regulation of Tissue-Specific Alternative Splicing: C. elegans as a Model System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:229-61. [DOI: 10.1007/978-3-319-29073-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Kaplan REW, Chen Y, Moore BT, Jordan JM, Maxwell CS, Schindler AJ, Baugh LR. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest. PLoS Genet 2015; 11:e1005731. [PMID: 26656736 PMCID: PMC4676721 DOI: 10.1371/journal.pgen.1005731] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022] Open
Abstract
Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This “L1 arrest” (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development. Animals must cope with feast and famine in the wild. Environmental fluctuations require a balancing act between development in favorable conditions and survival during starvation. Disruption of the pathways that govern this balance can lead to cancer, where cells proliferate when they should not, and metabolic diseases, where nutrient sensing is impaired. In the roundworm Caenorhabditis elegans, larval development is controlled by nutrient availability. Larvae are able to survive starvation by stopping development and starting again after feeding. Stopping and starting development in this multicellular animal requires signaling to coordinate development across tissues and organs. How such coordination is accomplished is poorly understood. Insulin/insulin-like growth factor (IGF) signaling governs larval development in response to nutrient availability. Here we show that insulin/IGF signaling activity in one tissue can affect the development of other tissues, suggesting regulation of additional signaling pathways. We identified two pathways that promote development in fed larvae and are repressed by lack of insulin/IGF signaling in starved larvae. Repression of these pathways is crucial to stopping development throughout the animal during starvation. These three pathways are widely conserved and associated with disease, suggesting the nutrient-dependent regulatory network they comprise is important to human health.
Collapse
Affiliation(s)
- Rebecca E. W. Kaplan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Yutao Chen
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brad T. Moore
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - James M. Jordan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Colin S. Maxwell
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Adam J. Schindler
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Lagido C, McLaggan D, Glover LA. A Screenable In Vivo Assay for Mitochondrial Modulators Using Transgenic Bioluminescent Caenorhabditis elegans. J Vis Exp 2015:e53083. [PMID: 26554627 PMCID: PMC4692654 DOI: 10.3791/53083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The multicellular model organism Caenorhabditis elegans is a small nematode of approximately 1 mm in size in adulthood that is genetically and experimentally tractable. It is economical and easy to culture and dispense in liquid medium which makes it well suited for medium-throughput screening. We have previously validated the use of transgenic luciferase expressing C. elegans strains to provide rapid in vivo assessment of the nematode’s ATP levels.1-3 Here we present the required materials and procedure to carry out bioassays with the bioluminescent C. elegans strains PE254 or PE255 (or any of their derivative strains). The protocol allows for in vivo detection of sublethal effects of drugs that may identify mitochondrial toxicity, as well as for in vivo detection of potential beneficial drug effects. Representative results are provided for the chemicals paraquat, rotenone, oxaloacetate and for four firefly luciferase inhibitory compounds. The methodology can be scaled up to provide a platform for screening drug libraries for compounds capable of modulating mitochondrial function. Pre-clinical evaluation of drug toxicity is often carried out on immortalized cancerous human cell lines which derive ATP mostly from glycolysis and are often tolerant of mitochondrial toxicants.4,5 In contrast, C. elegans depends on oxidative phosphorylation to sustain development into adulthood, drawing a parallel with humans and providing a unique opportunity for compound evaluation in the physiological context of a whole live multicellular organism.
Collapse
Affiliation(s)
| | | | - L Anne Glover
- Institute of Medical Sciences, University of Aberdeen
| |
Collapse
|
21
|
Anava S, Posner R, Rechavi O. The soft genome. WORM 2015; 3:e989798. [PMID: 26430554 DOI: 10.4161/21624054.2014.989798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022]
Abstract
Caenorhabditis elegans (C. elegans) nematodes transmit small RNAs across generations, a process that enables transgenerational regulation of genes. In contrast to changes to the DNA sequence, transgenerational transmission of small RNA-mediated responses is reversible, and thus enables "soft" or "flexible" inheritance of acquired characteristics. Until very recently only introduction of foreign genetic material (viruses, transposons, transgenes) was shown to directly lead to inheritance of small RNAs. New discoveries however, demonstrate that starvation also triggers inheritance of endogenous small RNAs in C.elegans. Multiple generations of worms inherit starvation-responsive endogenous small RNAs, and starvation also results in heritable extension of the progeny's lifespan. In this Commentary paper we explore the intriguing possibility that large parts of the genome and many additional traits are similarly subjected to heritable small RNA-mediated regulation, and focus on the potential influence of transgenerational RNAi on the worm's physiology. While the universal relevance of this mechanism remains to be discovered, we will examine how the discoveries made in worms already challenge long held dogmas in genetics and evolution.
Collapse
Affiliation(s)
- Sarit Anava
- Department of Neurobiology; Wise Faculty of Life Sciences & Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv, Israel
| | - Rachel Posner
- Department of Neurobiology; Wise Faculty of Life Sciences & Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv, Israel
| | - Oded Rechavi
- Department of Neurobiology; Wise Faculty of Life Sciences & Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv, Israel
| |
Collapse
|
22
|
Danks GB, Raasholm M, Campsteijn C, Long AM, Manak JR, Lenhard B, Thompson EM. Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest. Mol Biol Evol 2014; 32:585-99. [PMID: 25525214 DOI: 10.1093/molbev/msu336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced-leader (SL) RNA. Trans-splicing also occurs at monocistronic transcripts. The phlyogenetically sporadic appearance of trans-splicing and operons has made the driving force(s) for their evolution in metazoans unclear. Previous work has proposed that germline expression drives operon organization in Caenorhabditis elegans, and a recent hypothesis proposes that operons provide an evolutionary advantage via the conservation of transcriptional machinery during recovery from growth arrested states. Using a modified cap analysis of gene expression protocol we mapped sites of SL trans-splicing genome-wide in the marine chordate Oikopleura dioica. Tiled microarrays revealed the expression dynamics of trans-spliced genes across development and during recovery from growth arrest. Operons did not facilitate recovery from growth arrest in O. dioica. Instead, we found that trans-spliced transcripts were predominantly maternal. We then analyzed data from C. elegans and Ciona intestinalis and found that an enrichment of trans-splicing and operon gene expression in maternal mRNA is shared between all three species, suggesting that this may be a driving force for operon evolution in metazoans. Furthermore, we found that the majority of known terminal oligopyrimidine (TOP) mRNAs are trans-spliced in O. dioica and that the SL contains a TOP-like motif. This suggests that the SL in O. dioica confers nutrient-dependent translational control to trans-spliced mRNAs via the TOR-signaling pathway. We hypothesize that SL-trans-splicing provides an evolutionary advantage in species that depend on translational control for regulating early embryogenesis, growth and oocyte production in response to nutrient levels.
Collapse
Affiliation(s)
- Gemma B Danks
- Computational Biology Unit, Uni Computing, Uni Research, Bergen, Norway Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Martina Raasholm
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Coen Campsteijn
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - J Robert Manak
- Department of Biology, University of Iowa Carver Center for Genomics, Department of Biology, University of Iowa Department of Pediatrics, Carver College of Medicine, University of Iowa
| | - Boris Lenhard
- Computational Biology Unit, Uni Computing, Uni Research, Bergen, Norway Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway Department of Molecular Sciences Imperial College London and MRC Clinical Sciences Centre, London, United Kingdom
| | - Eric M Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Niu L, Huang W, Umbach DM, Li L. IUTA: a tool for effectively detecting differential isoform usage from RNA-Seq data. BMC Genomics 2014; 15:862. [PMID: 25283306 PMCID: PMC4195885 DOI: 10.1186/1471-2164-15-862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/29/2014] [Indexed: 01/10/2023] Open
Abstract
Background Most genes in mammals generate several transcript isoforms that differ in stability and translational efficiency through alternative splicing. Such alternative splicing can be tissue- and developmental stage-specific, and such specificity is sometimes associated with disease. Thus, detecting differential isoform usage for a gene between tissues or cell lines/types (differences in the fraction of total expression of a gene represented by the expression of each of its isoforms) is potentially important for cell and developmental biology. Results We present a new method IUTA that is designed to test each gene in the genome for differential isoform usage between two groups of samples. IUTA also estimates isoform usage for each gene in each sample as well as averaged across samples within each group. IUTA is the first method to formulate the testing problem as testing for equal means of two probability distributions under the Aitchison geometry, which is widely recognized as the most appropriate geometry for compositional data (vectors that contain the relative amount of each component comprising the whole). Evaluation using simulated data showed that IUTA was able to provide test results for many more genes than was Cuffdiff2 (version 2.2.0, released in Mar. 2014), and IUTA performed better than Cuffdiff2 for the limited number of genes that Cuffdiff2 did analyze. When applied to actual mouse RNA-Seq datasets from six tissues, IUTA identified 2,073 significant genes with clear patterns of differential isoform usage between a pair of tissues. IUTA is implemented as an R package and is available at http://www.niehs.nih.gov/research/resources/software/biostatistics/iuta/index.cfm. Conclusions Both simulation and real-data results suggest that IUTA accurately detects differential isoform usage. We believe that our analysis of RNA-seq data from six mouse tissues represents the first comprehensive characterization of isoform usage in these tissues. IUTA will be a valuable resource for those who study the roles of alternative transcripts in cell development and disease. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-862) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Leping Li
- Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
24
|
Chen Y, Baugh LR. Ins-4 and daf-28 function redundantly to regulate C. elegans L1 arrest. Dev Biol 2014; 394:314-26. [PMID: 25128585 DOI: 10.1016/j.ydbio.2014.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/08/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Caenorhabditis elegans larvae reversibly arrest development in the first larval stage in response to starvation (L1 arrest or L1 diapause). Insulin-like signaling is a critical regulator of L1 arrest. However, the C. elegans genome encodes 40 insulin-like peptides, and it is unknown which peptides participate in nutritional control of L1 development. Work in other contexts has revealed that insulin-like genes can promote development ("agonists") or developmental arrest ("antagonists"), suggesting that such agonists promote L1 development in response to feeding. We measured mRNA expression dynamics with high temporal resolution for all 40 insulin-like genes during entry into and recovery from L1 arrest. Nutrient availability influences expression of the majority of insulin-like genes, with variable dynamics suggesting complex regulation. We identified thirteen candidate agonists and eight candidate antagonists based on expression in response to nutrient availability. We selected ten candidate agonists (daf-28, ins-3, ins-4, ins-5, ins-6, ins-7, ins-9, ins-26, ins-33 and ins-35) for further characterization in L1 stage larvae. We used destabilized reporter genes to determine spatial expression patterns. Expression of candidate agonists is largely overlapping in L1 stage larvae, suggesting a role of the intestine, chemosensory neurons ASI and ASJ, and the interneuron PVT in control of L1 development. Transcriptional regulation of candidate agonists is most significant in the intestine, as if internal nutrient status is a more important influence on transcription than sensory perception. Phenotypic analysis of single and compound deletion mutants did not reveal effects on L1 developmental dynamics, though simultaneous disruption of ins-4 and daf-28 increases survival of L1 arrest. Furthermore, overexpression of ins-4, ins-6 or daf-28 alone decreases survival and promotes cell division during starvation. These results suggest extensive functional overlap among insulin-like genes in nutritional control of L1 development while highlighting the role of ins-4, daf-28 and to a lesser extent ins-6.
Collapse
Affiliation(s)
- Yutao Chen
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
25
|
Rechavi O, Houri-Ze'evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014; 158:277-287. [PMID: 25018105 PMCID: PMC4377509 DOI: 10.1016/j.cell.2014.06.020] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 01/03/2023]
Abstract
Evidence from animal studies and human famines suggests that starvation may affect the health of the progeny of famished individuals. However, it is not clear whether starvation affects only immediate offspring or has lasting effects; it is also unclear how such epigenetic information is inherited. Small RNA-induced gene silencing can persist over several generations via transgenerationally inherited small RNA molecules in C. elegans, but all known transgenerational silencing responses are directed against foreign DNA introduced into the organism. We found that starvation-induced developmental arrest, a natural and drastic environmental change, leads to the generation of small RNAs that are inherited through at least three consecutive generations. These small, endogenous, transgenerationally transmitted RNAs target genes with roles in nutrition. We defined genes that are essential for this multigenerational effect. Moreover, we show that the F3 offspring of starved animals show an increased lifespan, corroborating the notion of a transgenerational memory of past conditions.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA.
| | - Leah Houri-Ze'evi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wee Siong Sho Goh
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Sze Yen Kerk
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Oliver Hobert
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| |
Collapse
|
26
|
Maxwell CS, Kruesi WS, Core LJ, Kurhanewicz N, Waters CT, Lewarch CL, Antoshechkin I, Lis JT, Meyer BJ, Baugh LR. Pol II docking and pausing at growth and stress genes in C. elegans. Cell Rep 2014; 6:455-66. [PMID: 24485661 PMCID: PMC4026043 DOI: 10.1016/j.celrep.2014.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 11/01/2013] [Accepted: 01/06/2014] [Indexed: 11/25/2022] Open
Abstract
Fluctuations in nutrient availability profoundly impact gene expression. Previous work revealed postrecruitment regulation of RNA polymerase II (Pol II) during starvation and recovery in Caenorhabditis elegans, suggesting that promoter-proximal pausing promotes rapid response to feeding. To test this hypothesis, we measured Pol II elongation genome wide by two complementary approaches and analyzed elongation in conjunction with Pol II binding and expression. We confirmed bona fide pausing during starvation and also discovered Pol II docking. Pausing occurs at active stress-response genes that become downregulated in response to feeding. In contrast, "docked" Pol II accumulates without initiating upstream of inactive growth genes that become rapidly upregulated upon feeding. Beyond differences in function and expression, these two sets of genes have different core promoter motifs, suggesting alternative transcriptional machinery. Our work suggests that growth and stress genes are both regulated postrecruitment during starvation but at initiation and elongation, respectively, coordinating gene expression with nutrient availability.
Collapse
Affiliation(s)
- Colin S Maxwell
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - William S Kruesi
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Nicole Kurhanewicz
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Colin T Waters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Caitlin L Lewarch
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Igor Antoshechkin
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Barbara J Meyer
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - L Ryan Baugh
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
27
|
Stadler M, Fire A. Conserved translatome remodeling in nematode species executing a shared developmental transition. PLoS Genet 2013; 9:e1003739. [PMID: 24098135 PMCID: PMC3789828 DOI: 10.1371/journal.pgen.1003739] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022] Open
Abstract
Nematodes of the genus Caenorhabditis enter a developmental diapause state after hatching in the absence of food. To better understand the relative contributions of distinct regulatory modalities to gene expression changes associated with this developmental transition, we characterized genome-wide changes in mRNA abundance and translational efficiency associated with L1 diapause exit in four species using ribosome profiling and mRNA-seq. We found a strong tendency for translational regulation and mRNA abundance processes to act synergistically, together effecting a dramatic remodeling of the gene expression program. While gene-specific differences were observed between species, overall translational dynamics were broadly and functionally conserved. A striking, conserved feature of the response was strong translational suppression of ribosomal protein production during L1 diapause, followed by activation upon resumed development. On a global scale, ribosome footprint abundance changes showed greater similarity between species than changes in mRNA abundance, illustrating a substantial and genome-wide contribution of translational regulation to evolutionary maintenance of stable gene expression.
Collapse
Affiliation(s)
- Michael Stadler
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Andrew Fire
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Pathology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
28
|
Farajzadeh L, Hornshøj H, Momeni J, Thomsen B, Larsen K, Hedegaard J, Bendixen C, Madsen LB. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level. Biochem Biophys Res Commun 2013; 438:346-52. [PMID: 23896602 DOI: 10.1016/j.bbrc.2013.07.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
Abstract
The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i.e. cerebellum versus heart for differential variation at the gene, isoform, and transcription start site (TSS), and promoter level showed that several of the genes differed at all four levels. Interestingly, these genes were mainly annotated to the "electron transport chain" and neuronal differentiation, emphasizing that "tissue important" genes are regulated at several levels. Furthermore, our analysis shows that the "across tissue approach" has a promising potential when screening for possible explanations for variations, such as those observed at the gene expression levels.
Collapse
Affiliation(s)
- Leila Farajzadeh
- Department of Molecular Biology and Genetics, Faculty of Sciences and Technology, Aarhus University, DK-8830 Tjele, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Baugh LR. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics 2013; 194:539-55. [PMID: 23824969 PMCID: PMC3697962 DOI: 10.1534/genetics.113.150847] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/09/2013] [Indexed: 12/30/2022] Open
Abstract
It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. "L1 arrest" (also known as "L1 diapause") occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, North Carolina 27708-0338, USA.
| |
Collapse
|
30
|
Kruesi WS, Core LJ, Waters CT, Lis JT, Meyer BJ. Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife 2013; 2:e00808. [PMID: 23795297 PMCID: PMC3687364 DOI: 10.7554/elife.00808] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/09/2013] [Indexed: 01/24/2023] Open
Abstract
The X-chromosome gene regulatory process called dosage compensation ensures that males (1X) and females (2X) express equal levels of X-chromosome transcripts. The mechanism in Caenorhabditis elegans has been elusive due to improperly annotated transcription start sites (TSSs). Here we define TSSs and the distribution of transcriptionally engaged RNA polymerase II (Pol II) genome-wide in wild-type and dosage-compensation-defective animals to dissect this regulatory mechanism. Our TSS-mapping strategy integrates GRO-seq, which tracks nascent transcription, with a new derivative of this method, called GRO-cap, which recovers nascent RNAs with 5' caps prior to their removal by co-transcriptional processing. Our analyses reveal that promoter-proximal pausing is rare, unlike in other metazoans, and promoters are unexpectedly far upstream from the 5' ends of mature mRNAs. We find that C. elegans equalizes X-chromosome expression between the sexes, to a level equivalent to autosomes, by reducing Pol II recruitment to promoters of hermaphrodite X-linked genes using a chromosome-restructuring condensin complex. DOI:http://dx.doi.org/10.7554/eLife.00808.001.
Collapse
Affiliation(s)
- William S Kruesi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Colin T Waters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
31
|
FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms. BIOLOGY 2012; 1:895-905. [PMID: 24832523 PMCID: PMC4009805 DOI: 10.3390/biology1030895] [Citation(s) in RCA: 460] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/21/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
Quantitative and systems biology approaches benefit from the unprecedented depth of next-generation sequencing. A typical experiment yields millions of short reads, which oftentimes carry particular sequence tags. These tags may be: (a) specific to the sequencing platform and library construction method (e.g., adapter sequences); (b) have been introduced by experimental design (e.g., sample barcodes); or (c) constitute some biological signal (e.g., splice leader sequences in nematodes). Our software FLEXBAR enables accurate recognition, sorting and trimming of sequence tags with maximal flexibility, based on exact overlap sequence alignment. The software supports data formats from all current sequencing platforms, including color-space reads. FLEXBAR maintains read pairings and processes separate barcode reads on demand. Our software facilitates the fine-grained adjustment of sequence tag detection parameters and search regions. FLEXBAR is a multi-threaded software and combines speed with precision. Even complex read processing scenarios might be executed with a single command line call. We demonstrate the utility of the software in terms of read mapping applications, library demultiplexing and splice leader detection. FLEXBAR and additional information is available for academic use from the website: http://sourceforge.net/projects/flexbar/.
Collapse
|