1
|
Pinhal D, Gonçalves LDB, Campos VF, Patton JG. Decoding microRNA arm switching: a key to evolutionary innovation and gene regulation. Cell Mol Life Sci 2025; 82:197. [PMID: 40347284 PMCID: PMC12065703 DOI: 10.1007/s00018-025-05663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 05/12/2025]
Abstract
miRNA arm switching is a pivotal regulatory mechanism that allows organisms to fine-tune gene expression by selectively utilizing either the 5p or 3p strand of a miRNA duplex. This process, conserved across species, facilitates adaptive responses to developmental cues, environmental changes, and disease states. By dynamically altering strand selection, arm switching reshapes gene regulatory networks, contributing to phenotypic diversity and evolutionary innovation. Despite its growing recognition, the mechanisms driving arm switching-such as thermodynamic properties and enzyme-mediated processing-remain incompletely understood. This review synthesizes current findings, highlighting arm switching as a highly conserved mechanism with profound implications for the evolution of regulatory networks. We explore how this phenomenon expands miRNA functionality, drives phenotypic plasticity, and co-evolves with miRNA gene duplications to fuel the diversification of biological functions across taxa.
Collapse
Affiliation(s)
- Danillo Pinhal
- Genomics and Molecular Evolution Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, DCQB, IBB, UNESP, Botucatu, SP, CEP 18618-689, Brazil.
| | - Leandro de B Gonçalves
- Genomics and Molecular Evolution Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, DCQB, IBB, UNESP, Botucatu, SP, CEP 18618-689, Brazil
| | - Vinícius F Campos
- Structural Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
2
|
Andrews RJ, Bass BL. Comprehensive Mapping of Human dsRNAome Reveals Conservation, Neuronal Enrichment, and Intermolecular Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634786. [PMID: 39975386 PMCID: PMC11838218 DOI: 10.1101/2025.01.24.634786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The human transcriptome contains millions of A-to-I editing sites arising from an unclear number of poorly characterized dsRNAs. Editing sites are often used to infer presence of dsRNA, but this method is limited by transcription levels, read depth, ADAR expression and cannot identify unedited dsRNA. To address these limitations, we developed dsRNAscan. Applying dsRNAscan to the human genome predicted 5 million dsRNAs. Genomic distribution of dsRNAs encompassing repetitive elements was widespread, but non-repetitive dsRNAs were sparse and enriched at chromosomal tips. dsRNAscan predicted hundreds of long, highly paired dsRNAs suspected to be immunogenic, but only one was in a 3'UTR, and thus likely to challenge cytoplasmic immune sensors. We observed several thousand editing enriched regions suspected to arise from intermolecular structures, and dozens of neuronally enriched dsRNAs conserved across vertebrates. This study offers the first comprehensive set of dsRNA annotations for the human genome, available as a resource at https://dsrna.chpc.utah.edu/.
Collapse
Affiliation(s)
- Ryan J Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Knittel TL, Montgomery BE, Tate AJ, Deihl EW, Nawrocki AS, Hoerndli FJ, Montgomery TA. A low-abundance class of Dicer-dependent siRNAs produced from a variety of features in C. elegans. Genome Res 2024; 34:2203-2216. [PMID: 39622635 PMCID: PMC11694761 DOI: 10.1101/gr.279083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Canonical small interfering RNAs (siRNAs) are processed from double-stranded RNA (dsRNA) by Dicer and associate with Argonautes to direct RNA silencing. In Caenorhabditis elegans, 22G-RNAs and 26G-RNAs are often referred to as siRNAs but display distinct characteristics. For example, 22G-RNAs do not originate from dsRNA and do not depend on Dicer, whereas 26G-RNAs require Dicer but derive from an atypical RNA duplex and are produced exclusively antisense to their messenger RNA (mRNA) templates. To identify canonical siRNAs in C. elegans, we first characterized the siRNAs produced via the exogenous RNA interference (RNAi) pathway. During RNAi, dsRNA is processed into ∼23 nt duplexes with ∼2 nt, 3'-overhangs, ultimately yielding siRNAs devoid of 5'G-containing sequences that bind with high affinity to the Argonaute RDE-1, but also to the microRNA (miRNA) pathway Argonaute, ALG-1. Using these characteristics, we searched for their endogenous counterparts and identified thousands of endogenous loci representing dozens of unique elements that give rise to mostly low to moderate levels of siRNAs, called 23H-RNAs. These loci include repetitive elements, putative coding genes, pseudogenes, noncoding RNAs, and unannotated features, many of which adopt hairpin (hp) structures reminiscent of the hpRNA/RNAi pathway in flies and mice. RDE-1 competes with other Argonautes for binding to 23H-RNAs. When RDE-1 is depleted, these siRNAs are enriched in ALG-1 and ALG-2 complexes. Our results expand the known repertoire of C. elegans small RNAs and their Argonaute interactors, and demonstrate that key features of the endogenous siRNA pathway are relatively unchanged in animals.
Collapse
Affiliation(s)
- Thiago L Knittel
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Alex J Tate
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ennis W Deihl
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Anastasia S Nawrocki
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Frederic J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA;
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
4
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
5
|
Cottrell KA, Andrews RJ, Bass BL. The competitive landscape of the dsRNA world. Mol Cell 2024; 84:107-119. [PMID: 38118451 PMCID: PMC10843539 DOI: 10.1016/j.molcel.2023.11.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.
Collapse
Affiliation(s)
- Kyle A Cottrell
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Ryan J Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADAR-mediated regulation of PQM-1 expression in neurons impacts gene expression throughout C. elegans and regulates survival from hypoxia. PLoS Biol 2023; 21:e3002150. [PMID: 37747897 PMCID: PMC10553819 DOI: 10.1371/journal.pbio.3002150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA-binding protein (RBP), ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RBP, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia, phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important posttranscriptional gene regulatory mechanism in Caenorhabditis elegans that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, Indiana, United States of America
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Heather A. Hundley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
7
|
EpisomiR, a New Family of miRNAs, and Its Possible Roles in Human Diseases. Biomedicines 2022; 10:biomedicines10061280. [PMID: 35740302 PMCID: PMC9220071 DOI: 10.3390/biomedicines10061280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are synthesized through a canonical pathway and play a role in human diseases, such as cancers and cardiovascular, neurodegenerative, psychiatric, and chronic inflammatory diseases. The development of sequencing technologies has enabled the identification of variations in noncoding miRNAs. These miRNA variants, called isomiRs, are generated through a non-canonical pathway, by several enzymes that alter the length and sequence of miRNAs. The isomiR family is, now, expanding further to include episomiRs, which are miRNAs with different modifications. Since recent findings have shown that isomiRs reflect the cell-specific biological function of miRNAs, knowledge about episomiRs and isomiRs can, possibly, contribute to the optimization of diagnosis and therapeutic technology for precision medicine.
Collapse
|
8
|
Li D, Liu Y, Yi P, Zhu Z, Li W, Zhang QC, Li JB, Ou G. RNA editing restricts hyperactive ciliary kinases. Science 2021; 373:984-991. [PMID: 34446600 DOI: 10.1126/science.abd8971] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/01/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Protein kinase activity must be precisely regulated, but how a cell governs hyperactive kinases remains unclear. In this study, we generated a constitutively active mitogen-activated protein kinase DYF-5 (DYF-5CA) in Caenorhabditis elegans that disrupted sensory cilia. Genetic suppressor screens identified that mutations of ADR-2, an RNA adenosine deaminase, rescued ciliary phenotypes of dyf-5CA We found that dyf-5CA animals abnormally transcribed antisense RNAs that pair with dyf-5CA messenger RNA (mRNA) to form double-stranded RNA, recruiting ADR-2 to edit the region ectopically. RNA editing impaired dyf-5CA mRNA splicing, and the resultant intron retentions blocked DYF-5CA protein translation and activated nonsense-mediated dyf-5CA mRNA decay. The kinase RNA editing requires kinase hyperactivity. The similar RNA editing-dependent feedback regulation restricted the other ciliary kinases NEKL-4/NEK10 and DYF-18/CCRK, which suggests a widespread mechanism that underlies kinase regulation.
Collapse
Affiliation(s)
- Dongdong Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yufan Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Peishan Yi
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiangfeng Cliff Zhang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Huemer F, Leisch M, Geisberger R, Zaborsky N, Greil R. miRNA-Based Therapeutics in the Era of Immune-Checkpoint Inhibitors. Pharmaceuticals (Basel) 2021; 14:89. [PMID: 33530393 PMCID: PMC7911012 DOI: 10.3390/ph14020089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to complementary target regions on gene transcripts. Thus, miRNAs fine-tune gene expression profiles in a cell-type-specific manner and thereby regulate important cellular functions, such as cell growth, proliferation and cell death. MiRNAs are frequently dysregulated in cancer cells by several mechanisms, which significantly affect the course of the disease. In this review, we summarize the current knowledge on how dysregulated miRNAs contribute to cancer and how miRNAs can be exploited as predictive factors and therapeutic targets, particularly in regard to immune-checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Michael Leisch
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
10
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
11
|
Felicetti T, Cecchetti V, Manfroni G. Modulating microRNA Processing: Enoxacin, the Progenitor of a New Class of Drugs. J Med Chem 2020; 63:12275-12289. [PMID: 32672457 PMCID: PMC8009507 DOI: 10.1021/acs.jmedchem.0c00510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 12/16/2022]
Abstract
The RNA interference (RNAi) process encompasses the cellular mechanisms by which short-noncoding RNAs posttranscriptionally modulate gene expression. First discovered in 1998, today RNAi represents the foundation underlying complex biological mechanisms that are dysregulated in many diseases. MicroRNAs are effector molecules of gene silencing in RNAi, and their modulation can lead to a wide response in cells. Enoxacin was reported as the first and unique small-molecule enhancer of microRNA (SMER) maturation. Herein, the biological activity of enoxacin as SMER is discussed to shed light on its innovative mode of action, its potential in treating different diseases, and the feasibility of using enoxacin as a chemical template for inspiring medicinal chemists. We debate its mechanism of action at the molecular level and the possible impact on future ligand and/or structure-guided chemical optimizations, as well as opportunities and drawbacks associated with the development of quinolones such as SMERs.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
12
|
PhenoMIP: High-Throughput Phenotyping of Diverse Caenorhabditis elegans Populations via Molecular Inversion Probes. G3-GENES GENOMES GENETICS 2020; 10:3977-3990. [PMID: 32868407 PMCID: PMC7642933 DOI: 10.1534/g3.120.401656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whether generated within a lab setting or isolated from the wild, variant alleles continue to be an important resource for decoding gene function in model organisms such as Caenorhabditis elegans. With advances in massively parallel sequencing, multiple whole-genome sequenced (WGS) strain collections are now available to the research community. The Million Mutation Project (MMP) for instance, analyzed 2007 N2-derived, mutagenized strains. Individually, each strain averages ∼400 single nucleotide variants amounting to ∼80 protein-coding variants. The effects of these variants, however, remain largely uncharacterized and querying the breadth of these strains for phenotypic changes requires a method amenable to rapid and sensitive high-throughput analysis. Here we present a pooled competitive fitness approach to quantitatively phenotype subpopulations of sequenced collections via molecular inversion probes (PhenoMIP). We phenotyped the relative fitness of 217 mutant strains on multiple food sources and classified these into five categories. We also demonstrate on a subset of these strains, that their fitness defects can be genetically mapped. Overall, our results suggest that approximately 80% of MMP mutant strains may have a decreased fitness relative to the lab reference, N2. The costs of generating this form of analysis through WGS methods would be prohibitive while PhenoMIP analysis in this manner is accomplished at less than one-tenth of projected WGS costs. We propose methods for applying PhenoMIP to a broad range of population selection experiments in a cost-efficient manner that would be useful to the community at large.
Collapse
|
13
|
Abstract
RNA editing is a post-transcriptional process increasing transcript diversity, thereby regulating different biological processes. We recently observed that mutations resulting from RNA editing due to hydrolytic deamination of adenosine increase during the development of mesothelioma, a rare cancer linked to chronic exposure to asbestos. This review gathers information from the published literature and public data mining to explore several aspects of RNA editing and their possible implications for cancer growth and therapy. We address possible links between RNA editing and particular types of mesothelioma genetic and epigenetic alterations and discuss the relevance of an edited substrate in the context of current chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| |
Collapse
|
14
|
Svendsen JM, Reed KJ, Vijayasarathy T, Montgomery BE, Tucci RM, Brown KC, Marks TN, Nguyen DAH, Phillips CM, Montgomery TA. henn-1/HEN1 Promotes Germline Immortality in Caenorhabditis elegans. Cell Rep 2020; 29:3187-3199.e4. [PMID: 31801082 PMCID: PMC6922003 DOI: 10.1016/j.celrep.2019.10.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/28/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
The germline contains an immortal cell lineage that ensures the faithful transmission of genetic and, in some instances, epigenetic information from one generation to the next. Here, we show that in Caenorhabditis elegans, the small RNA 3′-2′-O-methyltransferase henn-1/HEN1 is required for sustained fertility across generations. In the absence of henn-1, animals become progressively less fertile, becoming sterile after ~30 generations at 25°C. Sterility in henn-1 mutants is accompanied by severe defects in germline proliferation and maintenance. The requirement for henn-1 in transgenerational fertility is likely due to its role in methylating and, thereby, stabilizing Piwi-interacting RNAs (piRNAs). However, despite being essential for piRNA stability in embryos, henn-1 is not required for piRNA stability in adults. Thus, we propose that methylation is important for the role of piRNAs in establishing proper gene silencing during early stages of development but is dispensable for their role in the proliferated germline. Svendsen et al. identify a requirement for the small RNA methyltransferase HENN-1 in germline immortality. HENN-1 is required for piRNA stability during embryogenesis but is dispensable in the adult germline, pointing to a role for piRNAs in establishing a gene regulatory network in embryos that protects the germline throughout development.
Collapse
Affiliation(s)
- Joshua M Svendsen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Kailee J Reed
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Tarah Vijayasarathy
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Rachel M Tucci
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Taylor N Marks
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dieu An H Nguyen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
15
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
16
|
Ganem NS, Ben-Asher N, Manning AC, Deffit SN, Washburn MC, Wheeler EC, Yeo GW, Zgayer OBN, Mantsur E, Hundley HA, Lamm AT. Disruption in A-to-I Editing Levels Affects C. elegans Development More Than a Complete Lack of Editing. Cell Rep 2020; 27:1244-1253.e4. [PMID: 31018137 PMCID: PMC8139731 DOI: 10.1016/j.celrep.2019.03.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/25/2018] [Accepted: 03/26/2019] [Indexed: 11/25/2022] Open
Abstract
A-to-I RNA editing, catalyzed by ADAR proteins, is widespread in eukaryotic transcriptomes. Studies showed that, in C. elegans, ADR-2 can actively deaminate dsRNA, whereas ADR-1 cannot. Therefore, we set out to study the effect of each of the ADAR genes on the RNA editing process. We performed comprehensive phenotypic, transcriptomics, proteomics, and RNA binding screens on worms mutated in a single ADAR gene. We found that ADR-1 mutants exhibit more-severe phenotypes than ADR-2, and some of them are a result of non-editing functions of ADR-1. We also show that ADR-1 significantly binds edited genes and regulates mRNA expression, whereas the effect on protein levels is minor. In addition, ADR-1 primarily promotes editing by ADR-2 at the L4 stage of development. Our results suggest that ADR-1 has a significant role in the RNA editing process and in altering editing levels that affect RNA expression; loss of ADR-1 results in severe phenotypes.
Collapse
Affiliation(s)
- Nabeel S Ganem
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Noa Ben-Asher
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Aidan C Manning
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | - Sarah N Deffit
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | | | - Emily C Wheeler
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, USA
| | - Orna Ben-Naim Zgayer
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Einav Mantsur
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Heather A Hundley
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | - Ayelet T Lamm
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
17
|
Gassner FJ, Zaborsky N, Feldbacher D, Greil R, Geisberger R. RNA Editing Alters miRNA Function in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12051159. [PMID: 32380696 PMCID: PMC7280959 DOI: 10.3390/cancers12051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a high incidence B cell leukemia with a highly variable clinical course, leading to survival times ranging from months to several decades. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression levels of genes by binding to the untranslated regions of transcripts. Although miRNAs have been previously shown to play a crucial role in CLL development, progression and treatment resistance, their further processing and diversification by RNA editing (specifically adenosine to inosine or cytosine to uracil deamination) has not been addressed so far. In this study, we analyzed next generation sequencing data to provide a detailed map of adenosine to inosine and cytosine to uracil changes in miRNAs from CLL and normal B cells. Our results reveal that in addition to a CLL-specific expression pattern, there is also specific RNA editing of many miRNAs, particularly miR-3157 and miR-6503, in CLL. Our data draw further light on how miRNAs and miRNA editing might be implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Franz J. Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Daniel Feldbacher
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Department of Biosciences, University of Salzburg, Hellbrunner Strasse, 34, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Correspondence: ; Tel.: +43-57255-25847; Fax: +43-57255-25998
| |
Collapse
|
18
|
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci 2019; 20:E6249. [PMID: 31835747 PMCID: PMC6941098 DOI: 10.3390/ijms20246249] [Citation(s) in RCA: 590] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the capability of modulating gene expression at the post-transcriptional level either by inhibiting messenger RNA (mRNA) translation or by promoting mRNA degradation. The outcome of a myriad of physiological processes and pathologies, including cancer, cardiovascular and metabolic diseases, relies highly on miRNAs. However, deciphering the precise roles of specific miRNAs in these pathophysiological contexts is challenging due to the high levels of complexity of their actions. Indeed, regulation of mRNA expression by miRNAs is frequently cell/organ specific; highly dependent on the stress and metabolic status of the organism; and often poorly correlated with miRNA expression levels. Such biological features of miRNAs suggest that various regulatory mechanisms control not only their expression, but also their activity and/or bioavailability. Several mechanisms have been described to modulate miRNA action, including genetic polymorphisms, methylation of miRNA promoters, asymmetric miRNA strand selection, interactions with RNA-binding proteins (RBPs) or other coding/non-coding RNAs. Moreover, nucleotide modifications (A-to-I or C-to-U) within the miRNA sequences at different stages of their maturation are also critical for their functionality. This regulatory mechanism called "RNA editing" involves specific enzymes of the adenosine/cytidine deaminase family, which trigger single nucleotide changes in primary miRNAs. These nucleotide modifications greatly influence a miRNA's stability, maturation and activity by changing its specificity towards target mRNAs. Understanding how editing events impact miRNA's ability to regulate stress responses in cells and organs, or the development of specific pathologies, e.g., metabolic diseases or cancer, should not only deepen our knowledge of molecular mechanisms underlying complex diseases, but can also facilitate the design of new therapeutic approaches based on miRNA targeting. Herein, we will discuss the current knowledge on miRNA editing and how this mechanism regulates miRNA biogenesis and activity.
Collapse
Affiliation(s)
| | | | | | | | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (M.C.d.S.); (M.G.); (D.D.); (C.S.)
| |
Collapse
|
19
|
Esse R, Gushchanskaia ES, Lord A, Grishok A. DOT1L complex suppresses transcription from enhancer elements and ectopic RNAi in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2019; 25:1259-1273. [PMID: 31300558 PMCID: PMC6800474 DOI: 10.1261/rna.070292.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/10/2019] [Indexed: 05/14/2023]
Abstract
Methylation of histone H3 on lysine 79 (H3K79) by DOT1L is associated with actively transcribed genes. Earlier, we described that DOT-1.1, the Caenorhabditis elegans homolog of mammalian DOT1L, cooperates with the chromatin-binding protein ZFP-1 (AF10 homolog) to negatively modulate transcription of highly and widely expressed target genes. Also, the reduction of ZFP-1 levels has consistently been associated with lower efficiency of RNA interference (RNAi) triggered by exogenous double-stranded RNA (dsRNA), but the reason for this is not clear. Here, we demonstrate that the DOT1L complex suppresses transcription originating from enhancer elements and antisense transcription, thus potentiating the expression of enhancer-regulated genes. We also show that worms lacking H3K79 methylation do not survive, and this lethality is suppressed by a loss of caspase-3 or Dicer complex components that initiate gene silencing response to exogenous dsRNA. Our results suggest that ectopic elevation of endogenous dsRNA directly or indirectly resulting from global misregulation of transcription in DOT1L complex mutants may engage the Dicer complex and, therefore, limit the efficiency of exogenous RNAi.
Collapse
Affiliation(s)
- Ruben Esse
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Avery Lord
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alla Grishok
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Genome Science Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
20
|
Abstract
Long double-stranded RNAs (dsRNAs) are abundantly expressed in animals, in which they frequently occur in introns and 3' untranslated regions of mRNAs. Functions of long, cellular dsRNAs are poorly understood, although deficiencies in adenosine deaminases that act on RNA, or ADARs, promote their recognition as viral dsRNA and an aberrant immune response. Diverse dsRNA-binding proteins bind cellular dsRNAs, hinting at additional roles. Understanding these roles is facilitated by mapping the genomic locations that express dsRNA in various tissues and organisms. ADAR editing provides a signature of dsRNA structure in cellular transcripts. In this review, we detail approaches to map ADAR editing sites and dsRNAs genome-wide, with particular focus on high-throughput sequencing methods and considerations for their successful application to the detection of editing sites and dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
21
|
Pinto S, Sato VN, De-Souza EA, Ferraz RC, Camara H, Pinca APF, Mazzotti DR, Lovci MT, Tonon G, Lopes-Ramos CM, Parmigiani RB, Wurtele M, Massirer KB, Mori MA. Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis. Redox Biol 2018; 18:84-92. [PMID: 29986212 PMCID: PMC6037660 DOI: 10.1016/j.redox.2018.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 11/29/2022] Open
Abstract
Alterations in microRNA (miRNA) processing have been previously linked to aging. Here we used the small molecule enoxacin to pharmacologically interfere with miRNA biogenesis and study how it affects aging in C. elegans. Enoxacin extended worm lifespan and promoted survival under normal and oxidative stress conditions. Enoxacin-induced longevity required the transcription factor SKN-1/Nrf2 and was blunted by the antioxidant N-acetyl-cysteine, suggesting a prooxidant-mediated mitohormetic response. The longevity effects of enoxacin were also dependent on the miRNA pathway, consistent with changes in miRNA expression elicited by the drug. Among these differentially expressed miRNAs, the widely conserved miR-34-5p was found to play an important role in enoxacin-mediated longevity. Enoxacin treatment down-regulated miR-34-5p and did not further extend lifespan of long-lived mir-34 mutants. Moreover, N-acetyl-cysteine abrogated mir-34(gk437)-induced longevity. Evidence also points to double-stranded RNA-specific adenosine deaminases (ADARs) as new targets of enoxacin since ADAR loss-of-function abrogates enoxacin-induced lifespan extension. Thus, enoxacin increases lifespan by reducing miR-34-5p levels, interfering with the redox balance and promoting healthspan.
Collapse
Affiliation(s)
- Silas Pinto
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Vitor N Sato
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Evandro A De-Souza
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael C Ferraz
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Henrique Camara
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana Paula F Pinca
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Diego R Mazzotti
- Department of Psychobiology. São Paulo School of Medicine. Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Michael T Lovci
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Guilherme Tonon
- Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Martin Wurtele
- Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Katlin B Massirer
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo A Mori
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
22
|
Krestel H, Meier JC. RNA Editing and Retrotransposons in Neurology. Front Mol Neurosci 2018; 11:163. [PMID: 29875629 PMCID: PMC5974252 DOI: 10.3389/fnmol.2018.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Compared to sites in protein-coding sequences many more targets undergoing adenosine to inosine (A-to-I) RNA editing were discovered in non-coding regions of human cerebral transcripts, particularly in genetic transposable elements called retrotransposons. We review here the interaction mechanisms of RNA editing and retrotransposons and their impact on normal function and human neurological diseases. Exemplarily, A-to-I editing of retrotransposons embedded in protein-coding mRNAs can contribute to protein abundance and function via circular RNA formation, alternative splicing, and exonization or silencing of retrotransposons. Interactions leading to disease are not very well understood. We describe human diseases with involvement of the central nervous system including inborn errors of metabolism, neurodevelopmental disorders, neuroinflammatory and neurodegenerative and paroxysmal diseases, in which retrotransposons (Alu and/or L1 elements) appear to be causally involved in genetic rearrangements. Sole binding of single-stranded retrotransposon transcripts by RNA editing enzymes rather than enzymatic deamination may have a homeostatic effect on retrotransposon turnover. We also review evidence in support of the emerging pathophysiological function of A-to-I editing of retrotransposons in inflammation and its implication for different neurological diseases including amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's and Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- Heinz Krestel
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
23
|
Reich DP, Tyc KM, Bass BL. C. elegans ADARs antagonize silencing of cellular dsRNAs by the antiviral RNAi pathway. Genes Dev 2018; 32:271-282. [PMID: 29483152 PMCID: PMC5859968 DOI: 10.1101/gad.310672.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 12/03/2022]
Abstract
In this study, Reich et al. researched the functions of Caenorhabditis elegans adenosine deaminases that act on RNA (ADARs), which catalyze A-to-I RNA editing in dsRNA. Using dsRNA immunoprecipitation (dsRIP) and RNA-seq, they identified 1523 regions of clustered A-to-I editing, termed editing-enriched regions (EERs), in four stages of C. elegans development, often with highest expression in embryos. Cellular dsRNAs are edited by adenosine deaminases that act on RNA (ADARs). While editing can alter mRNA-coding potential, most editing occurs in noncoding sequences, the function of which is poorly understood. Using dsRNA immunoprecipitation (dsRIP) and RNA sequencing (RNA-seq), we identified 1523 regions of clustered A-to-I editing, termed editing-enriched regions (EERs), in four stages of Caenorhabditis elegans development, often with highest expression in embryos. Analyses of small RNA-seq data revealed 22- to 23-nucleotide (nt) siRNAs, reminiscent of viral siRNAs, that mapped to EERs and were abundant in adr-1;adr-2 mutant animals. Consistent with roles for these siRNAs in silencing, EER-associated genes (EAGs) were down-regulated in adr-1;adr-2 embryos, and this was dependent on associated EERs and the RNAi factor RDE-4. We observed that ADARs genetically interact with the 26G endogenous siRNA (endo-siRNA) pathway, which likely competes for RNAi components; deletion of factors required for this pathway (rrf-3 or ergo-1) in adr-1;adr-2 mutant strains caused a synthetic phenotype that was rescued by deleting antiviral RNAi factors. Poly(A)+ RNA-seq revealed EAG down-regulation and antiviral gene induction in adr-1;adr-2;rrf-3 embryos, and these expression changes were dependent on rde-1 and rde-4. Our data suggest that ADARs restrict antiviral silencing of cellular dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Katarzyna M Tyc
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
24
|
Abstract
Adenosine-to-inosine RNA editing is a conserved process, which is performed by ADAR enzymes. By changing nucleotides in coding regions of genes and altering codons, ADARs expand the cell's protein repertoire. This function of the ADAR enzymes is essential for human brain development. However, most of the known editing sites are in non-coding repetitive regions in the transcriptome and the purpose of editing in these regions is unclear. Recent studies, which have shown that editing levels of transcripts vary between tissues and developmental stages in many organisms, suggest that the targeted RNA and ADAR editing are both regulated. We discuss the implications of these findings, and the possible role of RNA editing in innate immunity.
Collapse
Affiliation(s)
- Nabeel S Ganem
- a Faculty of Biology , Technion- Israel Institute of Technology , Technion City , Haifa , Israel
| | - Ayelet T Lamm
- a Faculty of Biology , Technion- Israel Institute of Technology , Technion City , Haifa , Israel
| |
Collapse
|
25
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
26
|
Abstract
Constitutive and regulated turnover of RNAs is necessary to eliminate aberrant RNA molecules and control the level of specific mRNAs to maintain homeostasis or to respond to signals in living cells. Modifications of nucleosides in specific RNAs are important in modulating the functions of these transcripts, but they can also dramatically impact their fate and turnover. This chapter will review how RNA modifications impact the activities of ribonucleases that target these RNAs for degradation or cleavage, focusing more particularly on tRNAs and mRNAs in eukaryotic cells. Many nucleoside modifications are important to promote proper folding of tRNAs, and the absence of specific modifications makes them susceptible to degradation by quality control pathways that eliminate improperly folded species. Modifications in tRNAs can also modulate their cleavage during stress or by fungal toxins that target modified nucleosides. Modifications of the cap structure found at the 5'-end of eukaryotic mRNAs are essential to control the degradation of these mRNAs. In addition, internal modifications of eukaryotic mRNAs can change their secondary structures or provide binding sites for reader proteins, which can dramatically impact their stability. Recent examples show that mRNA modifications play important roles in regulating mRNA stability during development, cellular differentiation and physiological responses. Finally, many modifications can impact microRNA- and siRNA-mediated gene regulation by direct or indirect effects. With the growing number of genomic techniques able to identify modifications genome wide, it is anticipated that novel chemical modifications or new modification sites will be identified, which will play additional regulatory functions for RNA turnover.
Collapse
|
27
|
Goldstein B, Agranat-Tamir L, Light D, Ben-Naim Zgayer O, Fishman A, Lamm AT. A-to-I RNA editing promotes developmental stage-specific gene and lncRNA expression. Genome Res 2016; 27:462-470. [PMID: 28031250 PMCID: PMC5340973 DOI: 10.1101/gr.211169.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/20/2016] [Indexed: 01/02/2023]
Abstract
A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3′ UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi.
Collapse
Affiliation(s)
- Boaz Goldstein
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Lily Agranat-Tamir
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Dean Light
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Orna Ben-Naim Zgayer
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Alla Fishman
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Ayelet T Lamm
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
28
|
Abstract
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference.
Collapse
|
29
|
Deffit SN, Hundley HA. To edit or not to edit: regulation of ADAR editing specificity and efficiency. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:113-27. [PMID: 26612708 DOI: 10.1002/wrna.1319] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 11/08/2022]
Abstract
Hundreds to millions of adenosine (A)-to-inosine (I) modifications are present in eukaryotic transcriptomes and play an essential role in the creation of proteomic and phenotypic diversity. As adenosine and inosine have different base-pairing properties, the functional consequences of these modifications or 'edits' include altering coding potential, splicing, and miRNA-mediated gene silencing of transcripts. However, rather than serving as a static control of gene expression, A-to-I editing provides a means to dynamically rewire the genetic code during development and in a cell-type specific manner. Interestingly, during normal development, in specific cells, and in both neuropathological diseases and cancers, the extent of RNA editing does not directly correlate with levels of the substrate mRNA or the adenosine deaminase that act on RNA (ADAR) editing enzymes, implying that cellular factors are required for spatiotemporal regulation of A-to-I editing. The factors that affect the specificity and extent of ADAR activity have been thoroughly dissected in vitro. Yet, we still lack a complete understanding of how specific ADAR family members can selectively deaminate certain adenosines while others cannot. Additionally, in the cellular environment, ADAR specificity and editing efficiency is likely to be influenced by cellular factors, which is currently an area of intense investigation. Data from many groups have suggested two main mechanisms for controlling A-to-I editing in the cell: (1) regulating ADAR accessibility to target RNAs and (2) protein-protein interactions that directly alter ADAR enzymatic activity. Recent studies suggest cis- and trans-acting RNA elements, heterodimerization and RNA-binding proteins play important roles in regulating RNA editing levels in vivo. WIREs RNA 2016, 7:113-127. doi: 10.1002/wrna.1319.
Collapse
Affiliation(s)
- Sarah N Deffit
- Medical Sciences Program, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
30
|
Liscovitch N, Bazak L, Levanon EY, Chechik G. Positive correlation between ADAR expression and its targets suggests a complex regulation mediated by RNA editing in the human brain. RNA Biol 2015; 11:1447-56. [PMID: 25692240 DOI: 10.4161/15476286.2014.992286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism.
Collapse
Affiliation(s)
- Noa Liscovitch
- a Gonda Multidisiplinary Brain Research Center ; Bar-Ilan University ; Ramat Gan , Israel
| | | | | | | |
Collapse
|
31
|
Yang XZ, Chen JY, Liu CJ, Peng J, Wee YR, Han X, Wang C, Zhong X, Shen QS, Liu H, Cao H, Chen XW, Tan BCM, Li CY. Selectively Constrained RNA Editing Regulation Crosstalks with piRNA Biogenesis in Primates. Mol Biol Evol 2015; 32:3143-57. [PMID: 26341297 PMCID: PMC4652623 DOI: 10.1093/molbev/msv183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing—a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates.
Collapse
Affiliation(s)
- Xin-Zhuang Yang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia-Yu Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chu-Jun Liu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jiguang Peng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yin Rei Wee
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Xiaorui Han
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chenqu Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China Peking-Tsinghua Center for Life Sciences, Beijing, China Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoming Zhong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hsuan Liu
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Huiqing Cao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiao-Wei Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China Peking-Tsinghua Center for Life Sciences, Beijing, China Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuan-Yun Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
32
|
Yuan Z, Ding S, Yan M, Zhu X, Liu L, Tan S, Jin Y, Sun Y, Li Y, Huang T. Variability of miRNA expression during the differentiation of human embryonic stem cells into retinal pigment epithelial cells. Gene 2015; 569:239-49. [PMID: 26028588 DOI: 10.1016/j.gene.2015.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/23/2015] [Accepted: 05/25/2015] [Indexed: 01/08/2023]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells can be induced to differentiate into retinal pigment epithelium (RPE). MiRNAs have been characterized and found playing important roles in the differentiation process of ESCs, but their length and sequence heterogeneity (isomiRs), and their non-canonical forms of miRNAs are underestimated or ignored. In this report, we found some non-canonical miRNAs (dominant isomiRs) in all differentiation stages, and 27 statistically significant editing sites were identified in 24 different miRNAs. Moreover, we found marked major-to-minor arm-switching events in 14 pre-miRNAs during the hESC to RPE cell differentiation phases. Our study for the first time reports exploring the variability of miRNA expression during the differentiation of hESCs into RPE cells and the results show that miRNA variability is a ubiquitous phenomenon in the ESC differentiation.
Collapse
Affiliation(s)
- Zhidong Yuan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China.
| | - Suping Ding
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, China
| | - Lili Liu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Shuhua Tan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Yuanchang Jin
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuandong Sun
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Yufeng Li
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ting Huang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
33
|
Whipple JM, Youssef OA, Aruscavage PJ, Nix DA, Hong C, Johnson WE, Bass BL. Genome-wide profiling of the C. elegans dsRNAome. RNA (NEW YORK, N.Y.) 2015; 21:786-800. [PMID: 25805852 PMCID: PMC4408787 DOI: 10.1261/rna.048801.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/23/2014] [Indexed: 06/01/2023]
Abstract
Recent studies hint that endogenous dsRNA plays an unexpected role in cellular signaling. However, a complete understanding of endogenous dsRNA signaling is hindered by an incomplete annotation of dsRNA-producing genes. To identify dsRNAs expressed in Caenorhabditis elegans, we developed a bioinformatics pipeline that identifies dsRNA by detecting clustered RNA editing sites, which are strictly limited to long dsRNA substrates of Adenosine Deaminases that act on RNA (ADAR). We compared two alignment algorithms for mapping both unique and repetitive reads and detected as many as 664 editing-enriched regions (EERs) indicative of dsRNA loci. EERs are visually enriched on the distal arms of autosomes and are predicted to possess strong internal secondary structures as well as sequence complementarity with other EERs, indicative of both intramolecular and intermolecular duplexes. Most EERs were associated with protein-coding genes, with ∼1.7% of all C. elegans mRNAs containing an EER, located primarily in very long introns and in annotated, as well as unannotated, 3' UTRs. In addition to numerous EERs associated with coding genes, we identified a population of prospective noncoding EERs that were distant from protein-coding genes and that had little or no coding potential. Finally, subsets of EERs are differentially expressed during development as well as during starvation and infection with bacterial or fungal pathogens. By combining RNA-seq with freely available bioinformatics tools, our workflow provides an easily accessible approach for the identification of dsRNAs, and more importantly, a catalog of the C. elegans dsRNAome.
Collapse
Affiliation(s)
- Joseph M Whipple
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Osama A Youssef
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - David A Nix
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112-5775, USA
| | - Changjin Hong
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - W Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| |
Collapse
|
34
|
Alon S, Erew M, Eisenberg E. DREAM: a webserver for the identification of editing sites in mature miRNAs using deep sequencing data. Bioinformatics 2015; 31:2568-70. [PMID: 25840043 DOI: 10.1093/bioinformatics/btv187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/29/2015] [Indexed: 12/20/2022] Open
Abstract
DREAM detecting RNA editing associated with microRNAs, is a webserver for the identification of mature microRNA editing events using deep sequencing data. Raw microRNA sequencing reads can be provided as input, the reads are aligned against the genome and custom scripts process the data, search for potential editing sites and assess the statistical significance of the findings. The output is a text file with the location and the statistical description of all the putative editing sites detected.
Collapse
Affiliation(s)
- Shahar Alon
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience and
| | - Muhammad Erew
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eli Eisenberg
- Sagol School of Neuroscience and Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
35
|
Chen T, Xiang JF, Zhu S, Chen S, Yin QF, Zhang XO, Zhang J, Feng H, Dong R, Li XJ, Yang L, Chen LL. ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Res 2015; 25:459-76. [PMID: 25708366 DOI: 10.1038/cr.2015.24] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/09/2014] [Accepted: 12/01/2014] [Indexed: 02/08/2023] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are involved in adenosine-to-inosine RNA editing and are implicated in development and diseases. Here we observed that ADAR1 deficiency in human embryonic stem cells (hESCs) significantly affected hESC differentiation and neural induction with widespread changes in mRNA and miRNA expression, including upregulation of self-renewal-related miRNAs, such as miR302s. Global editing analyses revealed that ADAR1 editing activity contributes little to the altered miRNA/mRNA expression in ADAR1-deficient hESCs upon neural induction. Genome-wide iCLIP studies identified that ADAR1 binds directly to pri-miRNAs to interfere with miRNA processing by acting as an RNA-binding protein. Importantly, aberrant expression of miRNAs and phenotypes observed in ADAR1-depleted hESCs upon neural differentiation could be reversed by an enzymatically inactive ADAR1 mutant, but not by the RNA-binding-null ADAR1 mutant. These findings reveal that ADAR1, but not its editing activity, is critical for hESC differentiation and neural induction by regulating miRNA biogenesis via direct RNA interaction.
Collapse
Affiliation(s)
- Tian Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Feng Xiang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanshan Zhu
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Siye Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing-Fei Yin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Ou Zhang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Feng
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Dong
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue-Jun Li
- Department of Neuroscience, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Li Yang
- 1] CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [2] School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Ling-Ling Chen
- 1] State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [2] School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
36
|
Zhao HQ, Zhang P, Gao H, He X, Dou Y, Huang AY, Liu XM, Ye AY, Dong MQ, Wei L. Profiling the RNA editomes of wild-type C. elegans and ADAR mutants. Genome Res 2015; 25:66-75. [PMID: 25373143 PMCID: PMC4317174 DOI: 10.1101/gr.176107.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
RNA editing increases transcriptome diversity through post-transcriptional modifications of RNA. Adenosine deaminases that act on RNA (ADARs) catalyze the adenosine-to-inosine (A-to-I) conversion, the most common type of RNA editing in higher eukaryotes. Caenorhabditis elegans has two ADARs, ADR-1 and ADR-2, but their functions remain unclear. Here, we profiled the RNA editomes of C. elegans at different developmental stages of wild-type and ADAR mutants. We developed a new computational pipeline with a "bisulfite-seq-mapping-like" step and achieved a threefold increase in identification sensitivity. A total of 99.5% of the 47,660 A-to-I editing sites were found in clusters. Of the 3080 editing clusters, 65.7% overlapped with DNA transposons in noncoding regions and 73.7% could form hairpin structures. The numbers of editing sites and clusters were highest at the L1 and embryonic stages. The editing frequency of a cluster positively correlated with the number of editing sites within it. Intriguingly, for 80% of the clusters with 10 or more editing sites, almost all expressed transcripts were edited. Deletion of adr-1 reduced the editing frequency but not the number of editing clusters, whereas deletion of adr-2 nearly abolished RNA editing, indicating a modulating role of ADR-1 and an essential role of ADR-2 in A-to-I editing. Quantitative proteomics analysis showed that adr-2 mutant worms altered the abundance of proteins involved in aging and lifespan regulation. Consistent with this finding, we observed that worms lacking RNA editing were short-lived. Taken together, our results reveal a sophisticated landscape of RNA editing and distinct modes of action of different ADARs.
Collapse
Affiliation(s)
- Han-Qing Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Pan Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hua Gao
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiandong He
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yanmei Dou
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - August Y Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xi-Ming Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Adam Y Ye
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China;
| | - Liping Wei
- National Institute of Biological Sciences, Beijing 102206, China; Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Saldi TK, Ash PE, Wilson G, Gonzales P, Garrido-Lecca A, Roberts CM, Dostal V, Gendron TF, Stein LD, Blumenthal T, Petrucelli L, Link CD. TDP-1, the Caenorhabditis elegans ortholog of TDP-43, limits the accumulation of double-stranded RNA. EMBO J 2014; 33:2947-66. [PMID: 25391662 PMCID: PMC4282642 DOI: 10.15252/embj.201488740] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans mutants deleted for TDP-1, an ortholog of the neurodegeneration-associated RNA-binding protein TDP-43, display only mild phenotypes. Nevertheless, transcriptome sequencing revealed that many RNAs were altered in accumulation and/or processing in the mutant. Analysis of these transcriptional abnormalities demonstrates that a primary function of TDP-1 is to limit formation or stability of double-stranded RNA. Specifically, we found that deletion of tdp-1: (1) preferentially alters the accumulation of RNAs with inherent double-stranded structure (dsRNA); (2) increases the accumulation of nuclear dsRNA foci; (3) enhances the frequency of adenosine-to-inosine RNA editing; and (4) dramatically increases the amount of transcripts immunoprecipitable with a dsRNA-specific antibody, including intronic sequences, RNAs with antisense overlap to another transcript, and transposons. We also show that TDP-43 knockdown in human cells results in accumulation of dsRNA, indicating that suppression of dsRNA is a conserved function of TDP-43 in mammals. Altered accumulation of structured RNA may account for some of the previously described molecular phenotypes (e.g., altered splicing) resulting from reduction of TDP-43 function.
Collapse
Affiliation(s)
- Tassa K Saldi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Peter Ea Ash
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Gavin Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada Informatics and Biocomputing Platform, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Patrick Gonzales
- Institute for Behavioral Genetics University of Colorado, Boulder, CO, USA
| | - Alfonso Garrido-Lecca
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | | | - Vishantie Dostal
- Institute for Behavioral Genetics University of Colorado, Boulder, CO, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Thomas Blumenthal
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | | | - Christopher D Link
- Institute for Behavioral Genetics University of Colorado, Boulder, CO, USA Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
38
|
Vesely C, Tauber S, Sedlazeck FJ, Tajaddod M, von Haeseler A, Jantsch MF. ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain. Nucleic Acids Res 2014; 42:12155-68. [PMID: 25260591 PMCID: PMC4231736 DOI: 10.1093/nar/gku844] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to inosines in double-stranded RNAs including miRNA precursors. A to I editing is widespread and required for normal life. By comparing deep sequencing data of brain miRNAs from wild-type and ADAR2 deficient mouse strains, we detect editing sites and altered miRNA processing at high sensitivity. We detect 48 novel editing events in miRNAs. Some editing events reach frequencies of up to 80%. About half of all editing events depend on ADAR2 while some miRNAs are preferentially edited by ADAR1. Sixty-four percent of all editing events are located within the seed region of mature miRNAs. For the highly edited miR-3099, we experimentally prove retargeting of the edited miRNA to novel 3′ UTRs. We show further that an abundant editing event in miR-497 promotes processing by Drosha of the corresponding pri-miRNA. We also detect reproducible changes in the abundance of specific miRNAs in ADAR2-deficient mice that occur independent of adjacent A to I editing events. This indicates that ADAR2 binding but not editing of miRNA precursors may influence their processing. Correlating with changes in miRNA abundance we find misregulation of putative targets of these miRNAs in the presence or absence of ADAR2.
Collapse
Affiliation(s)
- Cornelia Vesely
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, A-1030 Vienna, Austria
| | - Stefanie Tauber
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, and University of Veterinary Medicine, Dr. Bohr Gasse 9, A-1030 Vienna, Austria
| | - Fritz J Sedlazeck
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, and University of Veterinary Medicine, Dr. Bohr Gasse 9, A-1030 Vienna, Austria
| | - Mansoureh Tajaddod
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, A-1030 Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, and University of Veterinary Medicine, Dr. Bohr Gasse 9, A-1030 Vienna, Austria Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Währinger Straße 29, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, A-1030 Vienna, Austria
| |
Collapse
|
39
|
Abstract
The ability to distinguish self from non-self nucleic acids enables eukaryotes to suppress mobile elements and maintain genome integrity. In organisms from protist to human, this function is performed by RNA silencing pathways. There have been major advances in our understanding of the RNA silencing machinery, but the mechanisms by which these pathways distinguish self from non-self remain unclear. Recent studies in the yeast C. neoformans indicate that transposon-derived transcripts encode suboptimal introns and tend to stall in spliceosomes, which promotes the biogenesis of siRNA that targets these transcripts. These findings identify gene expression signal strength as a metric by which a foreign element can be distinguished from a host gene, and reveal a new function for introns and the spliceosome in genome defense. Anticipating that these principles may apply to RNA silencing in other systems, we discuss strong hints in the literature suggesting that the spliceosome may guide small RNA biogenesis in the siRNA and piRNA pathways of plants and animals.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Biochemistry and Biophysics; University of California; San Francisco, CA USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics; University of California; San Francisco, CA USA
| |
Collapse
|
40
|
Warnefors M, Liechti A, Halbert J, Valloton D, Kaessmann H. Conserved microRNA editing in mammalian evolution, development and disease. Genome Biol 2014; 15:R83. [PMID: 24964909 PMCID: PMC4197820 DOI: 10.1186/gb-2014-15-6-r83] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/25/2014] [Indexed: 01/31/2023] Open
Abstract
Background Mammalian microRNAs (miRNAs) are sometimes subject to adenosine-to-inosine RNA editing, which can lead to dramatic changes in miRNA target specificity or expression levels. However, although a few miRNAs are known to be edited at identical positions in human and mouse, the evolution of miRNA editing has not been investigated in detail. In this study, we identify conserved miRNA editing events in a range of mammalian and non-mammalian species. Results We demonstrate deep conservation of several site-specific miRNA editing events, including two that date back to the common ancestor of mammals and bony fishes some 450 million years ago. We also find evidence of a recent expansion of an edited miRNA family in placental mammals and show that editing of these miRNAs is associated with changes in target mRNA expression during primate development and aging. While global patterns of miRNA editing tend to be conserved across species, we observe substantial variation in editing frequencies depending on tissue, age and disease state: editing is more frequent in neural tissues compared to heart, kidney and testis; in older compared to younger individuals; and in samples from healthy tissues compared to tumors, which together suggests that miRNA editing might be associated with a reduced rate of cell proliferation. Conclusions Our results show that site-specific miRNA editing is an evolutionarily conserved mechanism, which increases the functional diversity of mammalian miRNA transcriptomes. Furthermore, we find that although miRNA editing is rare compared to editing of long RNAs, miRNAs are greatly overrepresented among conserved editing targets.
Collapse
|
41
|
Washburn MC, Kakaradov B, Sundararaman B, Wheeler E, Hoon S, Yeo GW, Hundley HA. The dsRBP and inactive editor ADR-1 utilizes dsRNA binding to regulate A-to-I RNA editing across the C. elegans transcriptome. Cell Rep 2014; 6:599-607. [PMID: 24508457 DOI: 10.1016/j.celrep.2014.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 12/18/2022] Open
Abstract
Inadequate adenosine-to-inosine editing of noncoding regions occurs in disease but is often uncorrelated with ADAR levels, underscoring the need to study deaminase-independent control of editing. C. elegans have two ADAR proteins, ADR-2 and the theoretically catalytically inactive ADR-1. Using high-throughput RNA sequencing of wild-type and adr mutant worms, we expand the repertoire of C. elegans edited transcripts over 5-fold and confirm that ADR-2 is the only active deaminase in vivo. Despite lacking deaminase function, ADR-1 affects editing of over 60 adenosines within the 3' UTRs of 16 different mRNAs. Furthermore, ADR-1 interacts directly with ADR-2 substrates, even in the absence of ADR-2, and mutations within its double-stranded RNA (dsRNA) binding domains abolish both binding and editing regulation. We conclude that ADR-1 acts as a major regulator of editing by binding ADR-2 substrates in vivo. These results raise the possibility that other dsRNA binding proteins, including the inactive human ADARs, regulate RNA editing through deaminase-independent mechanisms.
Collapse
Affiliation(s)
| | - Boyko Kakaradov
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093-0419, USA; Department of Cellular and Molecular Medicine, UCSD Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Balaji Sundararaman
- Department of Cellular and Molecular Medicine, UCSD Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Emily Wheeler
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | - Shawn Hoon
- Molecular Engineering Laboratory, A(∗)STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Gene W Yeo
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093-0419, USA; Department of Cellular and Molecular Medicine, UCSD Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA; Molecular Engineering Laboratory, A(∗)STAR, Singapore 138673, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Heather A Hundley
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
42
|
ADAR enzyme and miRNA story: a nucleotide that can make the difference. Int J Mol Sci 2013; 14:22796-816. [PMID: 24256817 PMCID: PMC3856091 DOI: 10.3390/ijms141122796] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
Abstract
Adenosine deaminase acting on RNA (ADAR) enzymes convert adenosine (A) to inosine (I) in double-stranded (ds) RNAs. Since Inosine is read as Guanosine, the biological consequence of ADAR enzyme activity is an A/G conversion within RNA molecules. A-to-I editing events can occur on both coding and non-coding RNAs, including microRNAs (miRNAs), which are small regulatory RNAs of ~20–23 nucleotides that regulate several cell processes by annealing to target mRNAs and inhibiting their translation. Both miRNA precursors and mature miRNAs undergo A-to-I RNA editing, affecting the miRNA maturation process and activity. ADARs can also edit 3′ UTR of mRNAs, further increasing the interplay between mRNA targets and miRNAs. In this review, we provide a general overview of the ADAR enzymes and their mechanisms of action as well as miRNA processing and function. We then review the more recent findings about the impact of ADAR-mediated activity on the miRNA pathway in terms of biogenesis, target recognition, and gene expression regulation.
Collapse
|
43
|
Nishikura K, Sakurai M, Ariyoshi K, Ota H. Antagonistic and stimulative roles of ADAR1 in RNA silencing. RNA Biol 2013; 10:1240-7. [PMID: 23949595 DOI: 10.4161/rna.25947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are involved in RNA editing that converts adenosine residues to inosine specifically in double-stranded RNAs (dsRNA). This A-to-I RNA editing pathway and the RNA interference (RNAi) pathway seem to interact antagonistically by competing for their common dsRNA substrates. For instance, A-to-I editing of certain microRNA (miRNA) precursors by ADAR1 and ADAR2 inhibits their processing to mature miRNAs. Recent studies unexpectedly revealed the presence of a completely different type of interaction between the RNA editing mechanism and the RNAi machinery. ADAR1 forms a complex via direct protein-protein interaction with Dicer, an RNase III gene family member involved in the RNAi mechanism. ADAR1 in the Dicer complex promotes pre-miRNA cleavage by Dicer and facilitates loading of miRNA onto RNA-induced silencing complexes, giving rise to an unsuspected stimulative function of ADAR1 on miRNA processing and RNAi mechanisms. ADAR1 differentiates its functions in RNA editing and RNAi by formation of either ADAR1-ADAR1 homodimer or Dicer-ADAR1 heterodimer complexes. Expression of miRNAs is globally inhibited in ADAR1-null mouse embryos, which, in turn, alters expression of their target genes and may contribute to their embryonic lethal phenotype.
Collapse
|
44
|
Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco JJ, Yates JR, Bartel DP, Madhani HD. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 2013; 152:957-68. [PMID: 23415457 DOI: 10.1016/j.cell.2013.01.046] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/13/2012] [Accepted: 01/17/2013] [Indexed: 11/29/2022]
Abstract
Using the yeast Cryptococcus neoformans, we describe a mechanism by which transposons are initially targeted for RNAi-mediated genome defense. We show that intron-containing mRNA precursors template siRNA synthesis. We identify a Spliceosome-Coupled And Nuclear RNAi (SCANR) complex required for siRNA synthesis and demonstrate that it physically associates with the spliceosome. We find that RNAi target transcripts are distinguished by suboptimal introns and abnormally high occupancy on spliceosomes. Functional investigations demonstrate that the stalling of mRNA precursors on spliceosomes is required for siRNA accumulation. Lariat debranching enzyme is also necessary for siRNA production, suggesting a requirement for processing of stalled splicing intermediates. We propose that recognition of mRNA precursors by the SCANR complex is in kinetic competition with splicing, thereby promoting siRNA production from transposon transcripts stalled on spliceosomes. Disparity in the strength of expression signals encoded by transposons versus host genes offers an avenue for the evolution of genome defense.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The significance of noncoding RNAs in animal biology is being increasingly recognized. The nematode Caenorhabditis elegans has an extensive system of short RNAs that includes microRNAs, piRNAs, and endogenous siRNAs, which regulate development, control life span, provide resistance to viruses and transposons, and monitor gene duplications. Progress in our understanding of short RNAs was stimulated by the discovery of RNA interference, a phenomenon of sequence-specific gene silencing induced by exogenous double-stranded RNA, at the turn of the twenty-first century. This chapter provides a broad overview of the exogenous and endogenous RNAi processes in C. elegans and describes recent advances in genetic, genomic, and molecular analyses of nematode's short RNAs and proteins involved in the RNAi-related pathways.
Collapse
Affiliation(s)
- Alla Grishok
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) function as 21-24 nucleotide guide RNAs that use partial base-pairing to recognize target messenger RNAs and repress their expression. As a large fraction of protein-coding genes are under miRNA control, production of the appropriate level of specific miRNAs at the right time and in the right place is integral to most gene regulatory pathways. MiRNA biogenesis initiates with transcription, followed by multiple processing steps to produce the mature miRNA. Every step of miRNA production is subject to regulation and disruption of these control mechanisms has been linked to numerous human diseases, where the balance between the expression of miRNAs and their targets becomes distorted. Here we review the basic steps of miRNA biogenesis and describe the various factors that control miRNA transcription, processing, and stability in animal cells. The tremendous effort put into producing the appropriate type and level of specific miRNAs underscores the critical role of these small RNAs in gene regulation.
Collapse
Affiliation(s)
- Emily F Finnegan
- Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
47
|
Abstract
Adenosine deaminases that act on RNA (ADARs) deaminate adenosines in dsRNA to produce inosines. ADARs are essential in mammals and are particularly important in the nervous system. Altered levels of adenosine-to-inosine (A-to-I) editing are observed in several diseases. The extent to which an adenosine is edited depends on sequence context. Human ADAR2 (hADAR2) has 5' and 3' neighbor preferences, but which amino acids mediate these preferences, and by what mechanism, is unknown. We performed a screen in yeast to identify mutations in the hADAR2 catalytic domain that allow editing of an adenosine within a disfavored triplet. Binding affinity, catalytic rate, base flipping, and preferences were monitored to understand the effects of the mutations on ADAR reactivity. Our data provide information on the amino acids that affect preferences and point to a conserved loop as being of key importance. Unexpectedly, our data suggest that hADAR2's preferences derive from differential base flipping rather than from direct recognition of neighboring bases. Our studies set the stage for understanding the basis of altered editing levels in disease and for developing therapeutic reagents.
Collapse
|