1
|
Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. THE PLANT CELL 2009; 21:1912-28. [PMID: 19602626 PMCID: PMC2729604 DOI: 10.1105/tpc.108.060376] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/01/2009] [Accepted: 06/26/2009] [Indexed: 05/18/2023]
Abstract
Homoeologous regions of Brassica genomes were analyzed at the sequence level. These represent segments of the Brassica A genome as found in Brassica rapa and Brassica napus and the corresponding segments of the Brassica C genome as found in Brassica oleracea and B. napus. Analysis of synonymous base substitution rates within modeled genes revealed a relatively broad range of times (0.12 to 1.37 million years ago) since the divergence of orthologous genome segments as represented in B. napus and the diploid species. Similar, and consistent, ranges were also identified for single nucleotide polymorphism and insertion-deletion variation. Genes conserved across the Brassica genomes and the homoeologous segments of the genome of Arabidopsis thaliana showed almost perfect collinearity. Numerous examples of apparent transduplication of gene fragments, as previously reported in B. oleracea, were observed in B. rapa and B. napus, indicating that this phenomenon is widespread in Brassica species. In the majority of the regions studied, the C genome segments were expanded in size relative to their A genome counterparts. The considerable variation that we observed, even between the different versions of the same Brassica genome, for gene fragments and annotated putative genes suggest that the concept of the pan-genome might be particularly appropriate when considering Brassica genomes.
Collapse
Affiliation(s)
- Foo Cheung
- The J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Mahé L, Combes MC, Lashermes P. Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome. PLANT MOLECULAR BIOLOGY 2007; 64:699-711. [PMID: 17551672 DOI: 10.1007/s11103-007-9191-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 05/21/2007] [Indexed: 05/15/2023]
Abstract
The Arabidopsis thaliana genome sequence provides a catalogue of reference genes that can be used for comparative analysis of other species thereby facilitating map-based cloning in economically important crops. We made use of a coffee bacterial artificial chromosome (BAC) contig linked to the S(H)3 leaf rust resistance gene to assess microsynteny between coffee (Coffea arabica L.) and Arabidopsis. Microsynteny was revealed and the matching counterparts to C. arabica contigs were seen to be scattered throughout four different syntenic segments of Arabidopsis on chromosomes (Ath) I, III, IV and V. Coffee BAC filter hybridizations were performed using coffee putative conserved orthologous sequences to Arabidopsis predicted genes located on the different Arabidopsis syntenic regions. The coffee BAC contig related to the S(H)3 region was successfully consolidated and later on validated by fingerprinting. Furthermore, the anchoring markers appeared in same order on the coffee BAC contigs and in all Arabidopsis segments with the exception of a single inversion on AtIII and AtIV Arabidopsis segments. However, the S(H)3 coffee region appears to be closer to the ancestral genome segment (before the divergence of Arabidopsis and coffee) than any of the duplicated counterparts in the present-day Arabidopsis genome. The genome duplication events at the origin of its Arabidopsis counterparts occurred most probably after the separation (i.e. 94 million years ago) of Euasterid (Coffee) and Eurosid (Arabidopsis).
Collapse
Affiliation(s)
- Laetitia Mahé
- UMR RPB - GeneTrop, IRD - Institut de Recherche pour le Développement, 911, Av Agropolis, BP 64501, Montpellier Cedex 5, 34394, France
| | | | | |
Collapse
|
3
|
Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M. Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 114:81-91. [PMID: 17039346 DOI: 10.1007/s00122-006-0412-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 09/08/2006] [Indexed: 05/12/2023]
Abstract
A linkage map of Chinese cabbage (Brassica rapa) was constructed to localize the clubroot resistance (CR) gene, Crr3. Quantitative trait loci analysis using an F(3) population revealed a sharp peak in the logarithm of odds score around the sequence-tagged site (STS) marker, OPC11-2S. Therefore, this region contained Crr3. Nucleotide sequences of OPC11-2S and its proximal markers showed homology to sequences in the top arm of Arabidopsis chromosome 3, suggesting a synteny between the two species. For fine mapping of Crr3, a number of STS markers were developed based on genomic information from Arabidopsis. We obtained polymorphisms in 23 Arabidopsis-derived STS markers, 11 of which were closely linked to Crr3. The precise position of Crr3 was determined using a population of 888 F(2) plants. Eighty plants showing recombination around Crr3 locus were selected and used for the mapping. A fine map of 4.74 cM was obtained, in which two markers (BrSTS-41 and BrSTS-44) and three markers (OPC11-2S, BrSTS-54 and BrSTS-61) were cosegregated. Marker genotypes of the 21 selected F(2) families and CR tests of their progenies strongly suggested that the Crr3 gene is located in a 0.35 cM segment between the two markers, BrSTS-33 and BrSTS-78.
Collapse
Affiliation(s)
- M Saito
- Graduate School of Agriculture, Kyoto Prefectural University, Kyoto Prefectural Institute of Agricultural Biotechnology, 74 Oji, Kitainayazuma, Seika, Soraku, Kyoto, 619-0244, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M. Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 114:81-91. [PMID: 17039346 DOI: 10.4141/cjps10073] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 09/08/2006] [Indexed: 05/26/2023]
Abstract
A linkage map of Chinese cabbage (Brassica rapa) was constructed to localize the clubroot resistance (CR) gene, Crr3. Quantitative trait loci analysis using an F(3) population revealed a sharp peak in the logarithm of odds score around the sequence-tagged site (STS) marker, OPC11-2S. Therefore, this region contained Crr3. Nucleotide sequences of OPC11-2S and its proximal markers showed homology to sequences in the top arm of Arabidopsis chromosome 3, suggesting a synteny between the two species. For fine mapping of Crr3, a number of STS markers were developed based on genomic information from Arabidopsis. We obtained polymorphisms in 23 Arabidopsis-derived STS markers, 11 of which were closely linked to Crr3. The precise position of Crr3 was determined using a population of 888 F(2) plants. Eighty plants showing recombination around Crr3 locus were selected and used for the mapping. A fine map of 4.74 cM was obtained, in which two markers (BrSTS-41 and BrSTS-44) and three markers (OPC11-2S, BrSTS-54 and BrSTS-61) were cosegregated. Marker genotypes of the 21 selected F(2) families and CR tests of their progenies strongly suggested that the Crr3 gene is located in a 0.35 cM segment between the two markers, BrSTS-33 and BrSTS-78.
Collapse
Affiliation(s)
- M Saito
- Graduate School of Agriculture, Kyoto Prefectural University, Kyoto Prefectural Institute of Agricultural Biotechnology, 74 Oji, Kitainayazuma, Seika, Soraku, Kyoto, 619-0244, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. THE PLANT CELL 2006; 18:1348-59. [PMID: 16632643 PMCID: PMC1475499 DOI: 10.1105/tpc.106.041665] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/21/2006] [Accepted: 03/28/2006] [Indexed: 05/08/2023]
Abstract
We sequenced 2.2 Mb representing triplicated genome segments of Brassica oleracea, which are each paralogous with one another and homologous with a segmentally duplicated region of the Arabidopsis thaliana genome. Sequence annotation identified 177 conserved collinear genes in the B. oleracea genome segments. Analysis of synonymous base substitution rates indicated that the triplicated Brassica genome segments diverged from a common ancestor soon after divergence of the Arabidopsis and Brassica lineages. This conclusion was corroborated by phylogenetic analysis of protein families. Using A. thaliana as an outgroup, 35% of the genes inferred to be present when genome triplication occurred in the Brassica lineage have been lost, most likely via a deletion mechanism, in an interspersed pattern. Genes encoding proteins involved in signal transduction or transcription were not found to be significantly more extensively retained than those encoding proteins classified with other functions, but putative proteins predicted in the A. thaliana genome were underrepresented in B. oleracea. We identified one example of gene loss from the Arabidopsis lineage. We found evidence for the frequent insertion of gene fragments of nuclear genomic origin and identified four apparently intact genes in noncollinear positions in the B. oleracea and A. thaliana genomes.
Collapse
|
6
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 869] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vandepoele K, Simillion C, Van de Peer Y. Evidence that rice and other cereals are ancient aneuploids. THE PLANT CELL 2003; 15:2192-202. [PMID: 12953120 PMCID: PMC181340 DOI: 10.1105/tpc.014019] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Accepted: 06/26/2003] [Indexed: 05/18/2023]
Abstract
Detailed analyses of the genomes of several model organisms revealed that large-scale gene or even entire-genome duplications have played prominent roles in the evolutionary history of many eukaryotes. Recently, strong evidence has been presented that the genomic structure of the dicotyledonous model plant species Arabidopsis is the result of multiple rounds of entire-genome duplications. Here, we analyze the genome of the monocotyledonous model plant species rice, for which a draft of the genomic sequence was published recently. We show that a substantial fraction of all rice genes ( approximately 15%) are found in duplicated segments. Dating of these block duplications, their nonuniform distribution over the different rice chromosomes, and comparison with the duplication history of Arabidopsis suggest that rice is not an ancient polyploid, as suggested previously, but an ancient aneuploid that has experienced the duplication of one-or a large part of one-chromosome in its evolutionary past, approximately 70 million years ago. This date predates the divergence of most of the cereals, and relative dating by phylogenetic analysis shows that this duplication event is shared by most if not all of them.
Collapse
Affiliation(s)
- Klaas Vandepoele
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | |
Collapse
|
8
|
Hass BL, Pires JC, Porter R, Phillips RL, Jackson SA. Comparative genetics at the gene and chromosome levels between rice ( Oryza sativa) and wildrice ( Zizania palustris). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:773-782. [PMID: 12904864 DOI: 10.1007/s00122-003-1273-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Accepted: 02/20/2003] [Indexed: 05/24/2023]
Abstract
Using comparative genetics, genes, repetitive DNA sequences and chromosomes were studied in the Oryzeae in order to more fully exploit the rice genome sequence data. Of particular focus was Zizania palustris L., n = 15, commonly known as American wildrice. Previous work has shown that rice chromosomes 1, 4 and 9 are duplicated in wildrice. The Adh1 and Adh2 genes were sequenced and, based on phylogenetic analyses, found to be duplicated in wildrice. The majority of the sequence diversity in the Adh sequences was in intron 3, in which were found several MITE insertions. Cytological and molecular approaches were used to analyze the evolution of rDNA and centromeric repetitive sequences in the Oryzeae. In wildrice, copies of the 5S rDNA monomer were found at two loci on two different chromosomes near the centromeres, as in rice. One nucleolar organizer region (NOR) locus was found adjacent to the telomere, as in rice. RCS1, a middle repetitive sequence in rice, was present in all of the centromeres of wildrice. RCS2/CentO, the highly repetitive component of Oryza sativa L. centromeres, was conserved in eight of the Oryza species examined, but was not found in wildrice. Three other middle repetitive centromeric sequences (RCH1, RCH2/CentO and RCH3) were also examined and found to have variable evolutionary patterns between species of Oryza and Zizania.
Collapse
Affiliation(s)
- B L Hass
- Department of Agronomy, Purdue University, 915 W. State St., West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
9
|
Yan HH, Mudge J, Kim DJ, Larsen D, Shoemaker RC, Cook DR, Young ND. Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1256-65. [PMID: 12748777 DOI: 10.1007/s00122-002-1183-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2002] [Accepted: 10/28/2002] [Indexed: 05/24/2023]
Abstract
A growing body of research indicates that microsynteny is common among dicot genomes. However, most studies focus on just one or a few genomic regions, so the extent of microsynteny across entire genomes remains poorly characterized. To estimate the level of microsynteny between Medicago truncatula (Mt) and Glycine max (soybean), and also among homoeologous segments of soybean, we used a hybridization strategy involving bacterial artificial chromosome (BAC) contigs. A Mt BAC library consisting of 30,720 clones was screened with a total of 187 soybean BAC subclones and restriction fragment length polymorphism (RFLP) probes. These probes came from 50 soybean contig groups, defined as one or more related BAC contigs anchored by the same low-copy probe. In addition, 92 whole soybean BAC clones were hybridized to filters of HindIII-digested Mt BAC DNA to identify additional cases of cross-hybridization after removal of those soybean BACs found to be repetitive in Mt. Microsynteny was inferred when at least two low-copy probes from a single soybean contig hybridized to the same Mt BAC or when a soybean BAC clone hybridized to three or more low-copy fragments from a single Mt BAC. Of the 50 soybean contig groups examined, 54% showed microsynteny to Mt. The degree of conservation among 37 groups of soybean contigs was also investigated. The results indicated substantial conservation among soybean contigs in the same group, with 86.5% of the groups showing at least some level of microsynteny. One contig group was examined in detail by a combination of physical mapping and comparative sequencing of homoeologous segments. A TBLASTX similarity search was performed between 1,085 soybean sequences on the 50 BAC contig groups and the entire Arabidopsis genome. Based on a criterion of sequence homologues <100 kb apart, each with an expected value of < or =1e-07, seven of the 50 soybean contig groups (14%) exhibited microsynteny with Arabidopsis.
Collapse
Affiliation(s)
- H H Yan
- Department of Plant Pathology, 495 Borlaug Hall, 1991 Upper Buford Circle, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhu H, Kim DJ, Baek JM, Choi HK, Ellis LC, Küester H, McCombie WR, Peng HM, Cook DR. Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. PLANT PHYSIOLOGY 2003; 131:1018-26. [PMID: 12644654 PMCID: PMC166867 DOI: 10.1104/pp.102.016436] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 11/24/2002] [Accepted: 12/21/2002] [Indexed: 05/19/2023]
Abstract
Arabidopsis and Medicago truncatula represent sister clades within the dicot subclass Rosidae. We used genetic map-based and bacterial artificial chromosome sequence-based approaches to estimate the level of synteny between the genomes of these model plant species. Mapping of 82 tentative orthologous gene pairs reveals a lack of extended macrosynteny between the two genomes, although marker collinearity is frequently observed over small genetic intervals. Divergence estimates based on non-synonymous nucleotide substitutions suggest that a majority of the genes under analysis have experienced duplication in Arabidopsis subsequent to divergence of the two genomes, potentially confounding synteny analysis. Moreover, in cases of localized synteny, genetically linked loci in M. truncatula often share multiple points of synteny with Arabidopsis; this latter observation is consistent with the large number of segmental duplications that compose the Arabidopsis genome. More detailed analysis, based on complete sequencing and annotation of three M. truncatula bacterial artificial chromosome contigs suggests that the two genomes are related by networks of microsynteny that are often highly degenerate. In some cases, the erosion of microsynteny could be ascribed to the selective gene loss from duplicated loci, whereas in other cases, it is due to the absence of close homologs of M. truncatula genes in Arabidopsis.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
van Leeuwen H, Monfort A, Zhang HB, Puigdomènech P. Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2003; 51:703-18. [PMID: 12678558 DOI: 10.1023/a:1022573230486] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A bacterial artificial chromosome (BAC) library from the dihaploid melon line 'PIT92' was constructed with a 6 times coverage of the haploid melon genome. A contig of four BACs around the MRGH63 resistance gene homologue fragment was created. The complete sequence of a 117-kb BAC clone allowed to determine two clearly defined regions, the first one containing a cluster of three resistance gene homologues. Separated by a retrotransposon, that contains large long terminal repeats, the second region presents a group of genes with a conserved distribution in two regions of the Arabidopsis genome. The detailed analysis of this region provides a description of the gene structure and the presence of repetitive sequences in a defined fragment of the genome of Cucumis melo.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Base Sequence
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Plant/genetics
- Cloning, Molecular
- Cucumis/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genes, Plant/genetics
- Genome, Plant
- Genomic Library
- Immunity, Innate/genetics
- Molecular Sequence Data
- Multigene Family/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Synteny
Collapse
Affiliation(s)
- Hans van Leeuwen
- Department de Genètica Molecular, Institut de Biologia Molecular de Barcelona, CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | | | | | | |
Collapse
|