1
|
Wilhoit K, Yamanouchi S, Chen BJ, Yamasaki YY, Ishikawa A, Inoue J, Iwasaki W, Kitano J. Convergent Evolution and Predictability of Gene Copy Numbers Associated with Diets in Mammals. Genome Biol Evol 2025; 17:evaf008. [PMID: 39849899 PMCID: PMC11797053 DOI: 10.1093/gbe/evaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
Convergent evolution, the evolution of the same or similar phenotypes in phylogenetically independent lineages, is a widespread phenomenon in nature. If the genetic basis for convergent evolution is predictable to some extent, it may be possible to infer organismic phenotypes and the capability of organisms to utilize new ecological resources based on genome sequence data. While repeated amino acid changes have been studied in association with convergent evolution, relatively little is known about the potential contribution of repeated gene copy number changes. In this study, we explore whether gene copy number changes of particular gene families are linked to diet shifts in mammals and assess whether trophic ecology can be inferred from the copy numbers of a specific set of gene families. Using 86 mammalian genome sequences, we identified 24 gene families with a trend toward higher copy numbers in herbivores, carnivores, and omnivores, even after phylogenetic corrections. We were able to confirm previous findings on genes such as amylase, olfactory receptors, and xenobiotic metabolism genes, and identify novel gene families whose copy numbers correlate with dietary patterns. For example, omnivores exhibited higher copy numbers of genes encoding regulators of translation. We also established a discriminant function based on the copy numbers of 13 gene families that can help predict trophic ecology to some extent. These findings highlight a possible association between convergent evolution and repeated copy number changes in specific gene families, suggesting the potential to develop a method for predicting animal ecology from genome sequence data.
Collapse
Affiliation(s)
- Kayla Wilhoit
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Biomedical Sciences Program, Texas A&M University, College Station, TX, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Shun Yamanouchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Bo-Jyun Chen
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Genetics Course, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Genetics Course, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Asano Ishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Jun Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Genetics Course, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
2
|
Zhao Q, Shim WJ, Sun Y, Sinniah E, Shen S, Boden M, Palpant NJ. TRIAGE: an R package for regulatory gene analysis. Brief Bioinform 2025; 26:bbaf004. [PMID: 39800877 PMCID: PMC11725390 DOI: 10.1093/bib/bbaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Regulatory genes are critical determinants of cellular responses in development and disease, but standard RNA sequencing (RNA-seq) analysis workflows, such as differential expression analysis, have significant limitations in revealing the regulatory basis of cell identity and function. To address this challenge, we present the TRIAGE R package, a toolkit specifically designed to analyze regulatory elements in both bulk and single-cell RNA-seq datasets. The package is built upon TRIAGE methods, which leverage consortium-level H3K27me3 data to enrich for cell-type-specific regulatory regions. It facilitates the construction of efficient and adaptable pipelines for transcriptomic data analysis and visualization, with a focus on revealing regulatory gene networks. We demonstrate the utility of the TRIAGE R package using three independent transcriptomic datasets, showcasing its integration into standard analysis workflows for examining regulatory mechanisms across diverse biological contexts. The TRIAGE R package is available on GitHub at https://github.com/palpant-comp/TRIAGE_R_Package.
Collapse
Affiliation(s)
- Qiongyi Zhao
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - Mikael Boden
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Rd, St Lucia, Brisbane, QLD 4072, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Li J, Li Q, Wang W, Zhang X, Chu C, Tang X, Zhu B, Xiong L, Zhao Y, Zhou D. DELLA-mediated gene repression is maintained by chromatin modification in rice. EMBO J 2023; 42:e114220. [PMID: 37691541 PMCID: PMC10620761 DOI: 10.15252/embj.2023114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.
Collapse
Affiliation(s)
- Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Chen Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xintian Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Dao‐Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Institute of Plant Science Paris‐Saclay (IPS2), CNRS, INRAEUniversity Paris‐SaclayOrsayFrance
| |
Collapse
|
4
|
Fraimovitch E, Hagai T. Promoter evolution of mammalian gene duplicates. BMC Biol 2023; 21:80. [PMID: 37055747 PMCID: PMC10100218 DOI: 10.1186/s12915-023-01590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Gene duplication is thought to be a central process in evolution to gain new functions. The factors that dictate gene retention following duplication as well paralog gene divergence in sequence, expression and function have been extensively studied. However, relatively little is known about the evolution of promoter regions of gene duplicates and how they influence gene duplicate divergence. Here, we focus on promoters of paralog genes, comparing their similarity in sequence, in the sets of transcription factors (TFs) that bind them, and in their overall promoter architecture. RESULTS We observe that promoters of recent duplications display higher sequence similarity between them and that sequence similarity rapidly declines between promoters of more ancient paralogs. In contrast, similarity in cis-regulation, as measured by the set of TFs that bind promoters of both paralogs, does not simply decrease with time from duplication and is instead related to promoter architecture-paralogs with CpG Islands (CGIs) in their promoters share a greater fraction of TFs, while CGI-less paralogs are more divergent in their TF binding set. Focusing on recent duplication events and partitioning them by their duplication mechanism enables us to uncover promoter properties associated with gene retention, as well as to characterize the evolution of promoters of newly born genes: In recent retrotransposition-mediated duplications, we observe asymmetry in cis-regulation of paralog pairs: Retrocopy genes are lowly expressed and their promoters are bound by fewer TFs and are depleted of CGIs, in comparison with the original gene copy. Furthermore, looking at recent segmental duplication regions in primates enable us to compare successful retentions versus loss of duplicates, showing that duplicate retention is associated with fewer TFs and with CGI-less promoter architecture. CONCLUSIONS In this work, we profiled promoters of gene duplicates and their inter-paralog divergence. We also studied how their characteristics are associated with duplication time and duplication mechanism, as well as with the fate of these duplicates. These results underline the importance of cis-regulatory mechanisms in shaping the evolution of new genes and their fate following duplication.
Collapse
Affiliation(s)
- Evgeny Fraimovitch
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
5
|
Krinsky BH, Arthur RK, Xia S, Sosa D, Arsala D, White KP, Long M. Rapid Cis-Trans Coevolution Driven by a Novel Gene Retroposed from a Eukaryotic Conserved CCR4-NOT Component in Drosophila. Genes (Basel) 2021; 13:57. [PMID: 35052398 PMCID: PMC8774992 DOI: 10.3390/genes13010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Young, or newly evolved, genes arise ubiquitously across the tree of life, and they can rapidly acquire novel functions that influence a diverse array of biological processes. Previous work identified a young regulatory duplicate gene in Drosophila, Zeus that unexpectedly diverged rapidly from its parent, Caf40, an extremely conserved component in the CCR4-NOT machinery in post-transcriptional and post-translational regulation of eukaryotic cells, and took on roles in the male reproductive system. This neofunctionalization was accompanied by differential binding of the Zeus protein to loci throughout the Drosophila melanogaster genome. However, the way in which new DNA-binding proteins acquire and coevolve with their targets in the genome is not understood. Here, by comparing Zeus ChIP-Seq data from D. melanogaster and D. simulans to the ancestral Caf40 binding events from D. yakuba, a species that diverged before the duplication event, we found a dynamic pattern in which Zeus binding rapidly coevolved with a previously unknown DNA motif, which we term Caf40 and Zeus-Associated Motif (CAZAM), under the influence of positive selection. Interestingly, while both copies of Zeus acquired targets at male-biased and testis-specific genes, D. melanogaster and D. simulans proteins have specialized binding on different chromosomes, a pattern echoed in the evolution of the associated motif. Using CRISPR-Cas9-mediated gene knockout of Zeus and RNA-Seq, we found that Zeus regulated the expression of 661 differentially expressed genes (DEGs). Our results suggest that the evolution of young regulatory genes can be coupled to substantial rewiring of the transcriptional networks into which they integrate, even over short evolutionary timescales. Our results thus uncover dynamic genome-wide evolutionary processes associated with new genes.
Collapse
Affiliation(s)
- Benjamin H. Krinsky
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA;
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Robert K. Arthur
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Dylan Sosa
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Deanna Arsala
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Kevin P. White
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA
| | - Manyuan Long
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA;
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| |
Collapse
|
6
|
Zhang JY, Zhou Q. On the Regulatory Evolution of New Genes Throughout Their Life History. Mol Biol Evol 2019; 36:15-27. [PMID: 30395322 DOI: 10.1093/molbev/msy206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Every gene has a birthplace and an age, that is, a cis-regulatory environment and an evolution lifespan since its origination, yet how the two shape the evolution trajectories of genes remains unclear. Here, we address this basic question by comparing phylogenetically dated new genes in the context of both their ages and origination mechanisms. In both Drosophila and vertebrates, we confirm a clear "out of the testis" transition from the specifically expressed young genes to the broadly expressed old housekeeping genes, observed only in testis but not in other tissues. Many new genes have gained important functions during embryogenesis, manifested as either specific activation at maternal-zygotic transition, or different spatiotemporal expressions from their parental genes. These expression patterns are largely driven by an age-dependent evolution of cis-regulatory environment. We discover that retrogenes are more frequently born in a pre-existing repressive regulatory domain, and are more diverged in their enhancer repertoire than the DNA-based gene duplications. During evolution, new gene duplications gradually gain active histone modifications and undergo more enhancer turnovers when becoming older, but exhibit complex trends of gaining or losing repressive histone modifications in Drosophila or vertebrates, respectively. Interestingly, vertebrate new genes exhibit an "into the testis" epigenetic transition that older genes become more likely to be co-occupied by both active and repressive ("bivalent") histone modifications specifically in testis. Our results uncover the regulatory mechanisms underpinning the stepwise acquisition of novel and complex functions by new genes, and illuminate the general evolution trajectory of genes throughout their life history.
Collapse
Affiliation(s)
- Jia-Yu Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qi Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Hamdan FH, Johnsen SA. Perturbing Enhancer Activity in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11050634. [PMID: 31067678 PMCID: PMC6563029 DOI: 10.3390/cancers11050634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
Tight regulation of gene transcription is essential for normal development, tissue homeostasis, and disease-free survival. Enhancers are distal regulatory elements in the genome that provide specificity to gene expression programs and are frequently misregulated in cancer. Recent studies examined various enhancer-driven malignant dependencies and identified different approaches to specifically target these programs. In this review, we describe numerous features that make enhancers good transcriptional targets in cancer therapy and discuss different approaches to overcome enhancer perturbation. Interestingly, a number of approved therapeutic agents, such as cyclosporine, steroid hormones, and thiazolidinediones, actually function by affecting enhancer landscapes by directly targeting very specific transcription factor programs. More recently, a broader approach to targeting deregulated enhancer programs has been achieved via Bromodomain and Extraterminal (BET) inhibition or perturbation of transcription-related cyclin-dependent kinases (CDK). One challenge to enhancer-targeted therapy is proper patient stratification. We suggest that monitoring of enhancer RNA (eRNA) expression may serve as a unique biomarker of enhancer activity that can help to predict and monitor responsiveness to enhancer-targeted therapies. A more thorough investigation of cancer-specific enhancers and the underlying mechanisms of deregulation will pave the road for an effective utilization of enhancer modulators in a precision oncology approach to cancer treatment.
Collapse
Affiliation(s)
- Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
8
|
Chica C, Louis A, Roest Crollius H, Colot V, Roudier F. Comparative epigenomics in the Brassicaceae reveals two evolutionarily conserved modes of PRC2-mediated gene regulation. Genome Biol 2017; 18:207. [PMID: 29084582 PMCID: PMC5663038 DOI: 10.1186/s13059-017-1333-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/03/2017] [Indexed: 01/05/2023] Open
Abstract
Background Polycomb Repressive Complexes 2 (PRC2) are multi-protein chromatin modifiers that are evolutionarily conserved among eukaryotes and play key roles in the regulation of gene expression, notably through the trimethylation of lysine 27 of histone H3 (H3K27me3). Although PRC2-mediated gene regulation has been studied in many organisms, few studies have explored in depth the evolutionary conservation of PRC2 targets. Results Here, we compare the H3K27me3 epigenomic profiles for the two closely related species Arabidopsis thaliana and Arabidopsis lyrata and the more distant species Arabis alpina, three Brassicaceae that diverged from each other within the past 24 million years. Using a robust set of gene orthologs present in the three species, we identify two classes of evolutionarily conserved PRC2 targets, which are characterized by either developmentally plastic or developmentally constrained H3K27me3 marking across species. Constrained H3K27me3 marking is associated with higher conservation of promoter sequence information content and higher nucleosome occupancy compared to plastic H3K27me3 marking. Moreover, gene orthologs with constrained H3K27me3 marking exhibit a higher degree of tissue specificity and tend to be involved in developmental functions, whereas gene orthologs with plastic H3K27me3 marking preferentially encode proteins associated with metabolism and stress responses. In addition, gene orthologs with constrained H3K27me3 marking are the predominant contributors to higher-order chromosome organization. Conclusions Our findings indicate that developmentally plastic and constrained H3K27me3 marking define two evolutionarily conserved modes of PRC2-mediated gene regulation that are associated with distinct selective pressures operating at multiple scales, from DNA sequence to gene function and chromosome architecture. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1333-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia Chica
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, F-75005, France.,Present address: Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Paris, France
| | - Alexandra Louis
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, F-75005, France
| | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, F-75005, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, F-75005, France.
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, F-75005, France. .,Present address: Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|
9
|
Dong SS, Guo Y, Yao S, Chen YX, He MN, Zhang YJ, Chen XF, Chen JB, Yang TL. Integrating regulatory features data for prediction of functional disease-associated SNPs. Brief Bioinform 2017; 20:26-32. [DOI: 10.1093/bib/bbx094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
| | - Shi Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
| | - Yi-Xiao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
| | - Mo-Nan He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
| | - Yu-Jie Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
| | - Jia-Bin Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
| |
Collapse
|
10
|
Chang AYF, Liao BY. Recruitment of histone modifications to assist mRNA dosage maintenance after degeneration of cytosine DNA methylation during animal evolution. Genome Res 2017; 27:1513-1524. [PMID: 28720579 PMCID: PMC5580711 DOI: 10.1101/gr.221739.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022]
Abstract
Following gene duplication, mRNA expression of the duplicated gene is reduced to maintain mRNA dosage. In mammals, this process is achieved with increased cytosine DNA methylation of the promoters of duplicated genes to suppress transcriptional initiation. However, not all animal species possess a full apparatus for cytosine DNA methylation. For such species, such as the roundworm (Caenorhabditis elegans, "worm" hereafter) or fruit fly (Drosophila melanogaster, "fly" hereafter), it is unclear how reduced expression of duplicated genes has been achieved evolutionarily. Here, we hypothesize that in the absence of a classical cytosine DNA methylation pathway, histone modifications play an increasing role in maintaining mRNA dosage following gene duplication. We initially verified that reduced gene expression of duplicated genes had occurred in the worm, fly, and mouse (Mus musculus). Next, several histone marks, with the capacity to control mRNA abundance in the models studied, were examined. In the worm and fly, but not in the mouse, multiple histone modifications were found to assist mRNA dosage maintenance following gene duplication events and the possible involvement of adenine DNA methylation in this process was excluded. Furthermore, the histone marks and acting regions that mediated the reduction in duplicated gene expression were found to be largely organism specific. Thus, it appears that many of the histone marks that maintain mRNA dosage were independently recruited during the evolution of worms and flies to compensate for the loss of cytosine DNA methylation machinery from their genomes.
Collapse
Affiliation(s)
- Andrew Ying-Fei Chang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan, Republic of China
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan, Republic of China
| |
Collapse
|
11
|
Yu D, Shi W, Zhang YE. Underrepresentation of active histone modification marks in evolutionarily young genes. INSECT SCIENCE 2017; 24:174-186. [PMID: 26607206 DOI: 10.1111/1744-7917.12299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
It is known that evolutionarily new genes can rapidly evolve essential roles in fundamental biological processes. Nevertheless, the underlying molecular mechanism of how they acquire their novel transcriptional pattern is less characterized except for the role of cis-regulatory evolution. Epigenetic modification offers an alternative possibility. Here, we examined how histone modifications have changed among different gene age groups in Drosophila melanogaster by integrative analyses of an updated new gene dataset and published epigenomic data. We found a robust pattern across various datasets where both the coverage and intensity of active histone modifications, histone 3 lysine 4 trimethylation and lysine 36 trimethylation, increased with evolutionary age. Such a temporal correlation is negative and much weaker for the repressive histone mark, lysine 9 trimethylation, which is expected given its major association with heterochromatin. By further comparison with neighboring old genes, the depletion of active marks of new genes could be only partially explained by the local epigenetic context. All these data are consistent with the observation that older genes bear relatively higher expression levels and suggest that the evolution of histone modifications could be implicated in transcriptional evolution after gene birth.
Collapse
Affiliation(s)
- Daqi Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenwen Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Abstract
Histone modifications alone or in combination are thought to modulate chromatin structure and function; a concept termed histone code. By combining evidence from several studies, we investigated if the histone code can play a role in higher-order folding of chromatin. Firstly using genomic data, we analyzed associations between histone modifications at the nucleosome level. We could dissect the composition of individual nucleosomes into five predicted clusters of histone modifications. Secondly, by assembling the raw reads of histone modifications at various length scales, we noticed that the histone mark relationships that exist at nucleosome level tend to be maintained at the higher orders of chromatin folding. Recently, a high-resolution imaging study showed that histone marks belonging to three of the five predicted clusters show structurally distinct and anti-correlated chromatin domains at the level of chromosomes. This made us think that the histone code can have a significant impact in the overall compaction of DNA: at the level of nucleosomes, at the level of genes, and finally at the level of chromosomes. As a result, in this article, we put forward a theory where the histone code drives not only the functionality but also the higher-order folding and compaction of chromatin.
Collapse
Affiliation(s)
- Kirti Prakash
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - David Fournier
- Faculty of Biology and Center for Computational Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
13
|
Lesch BJ, Silber SJ, McCarrey JR, Page DC. Parallel evolution of male germline epigenetic poising and somatic development in animals. Nat Genet 2016; 48:888-94. [PMID: 27294618 DOI: 10.1038/ng.3591] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Changes in gene regulation frequently underlie changes in morphology during evolution, and differences in chromatin state have been linked with changes in anatomical structure and gene expression across evolutionary time. Here we assess the relationship between evolution of chromatin state in germ cells and evolution of gene regulatory programs governing somatic development. We examined the poised (H3K4me3/H3K27me3 bivalent) epigenetic state in male germ cells from five mammalian and one avian species. We find that core genes poised in germ cells from multiple amniote species are ancient regulators of morphogenesis that sit at the top of transcriptional hierarchies controlling somatic tissue development, whereas genes that gain poising in germ cells from individual species act downstream of core poised genes during development in a species-specific fashion. We propose that critical regulators of animal development gained an epigenetically privileged state in germ cells, manifested in amniotes by H3K4me3/H3K27me3 poising, early in metazoan evolution.
Collapse
Affiliation(s)
| | - Sherman J Silber
- Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, Missouri, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Khan N, Lenz C, Binder L, Pantakani DVK, Asif AR. Active and Repressive Chromatin-Associated Proteome after MPA Treatment and the Role of Midkine in Epithelial Monolayer Permeability. Int J Mol Sci 2016; 17:E597. [PMID: 27104530 PMCID: PMC4849051 DOI: 10.3390/ijms17040597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 12/04/2022] Open
Abstract
UNLABELLED Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system. This study investigates whether MPA induces epigenetic changes which lead to GI complications, especially diarrhea. METHODS We employed a Chromatin Immunoprecipitation-O-Proteomics (ChIP-O-Proteomics) approach to identify proteins associated with active (H3K4me3) as well as repressive (H3K27me3) chromatin histone modifications in MPA-treated cells, and further characterized the role of midkine, a H3K4me3-associated protein, in the context of epithelial monolayer permeability. RESULTS We identified a total of 333 and 306 proteins associated with active and repressive histone modification marks, respectively. Among them, 241 proteins were common both in active and repressive chromatin, 92 proteins were associated exclusively with the active histone modification mark, while 65 proteins remained specific to repressive chromatin. Our results show that 45 proteins which bind to the active and seven proteins which bind to the repressive chromatin region exhibited significantly altered abundance in MPA-treated cells as compared to DMSO control cells. A number of novel proteins whose function is not known in bowel barrier regulation were among the identified proteins, including midkine. Our functional integrity assays on the Caco-2 cell monolayer showed that the inhibition of midkine expression prior to MPA treatment could completely block the MPA-mediated increase in barrier permeability. CONCLUSIONS The ChIP-O-Proteomics approach delivered a number of novel proteins with potential implications in MPA toxicity. Consequently, it can be proposed that midkine inhibition could be a potent therapeutic approach to prevent the MPA-mediated increase in TJ permeability and leak flux diarrhea in organ transplant patients.
Collapse
Affiliation(s)
- Niamat Khan
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
- Department of Biotechnology & Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Christof Lenz
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Lutz Binder
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | | - Abdul R Asif
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| |
Collapse
|
15
|
Sullivan CJ, Pendleton ED, Abrams RE, Valente DL, Alvarez ML, Griffey RH, Dresios J. Chromatin structure analysis enables detection of DNA insertions into the mammalian nuclear genome. Biochem Biophys Rep 2015; 2:143-152. [PMID: 29124156 PMCID: PMC5668663 DOI: 10.1016/j.bbrep.2015.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/28/2015] [Accepted: 06/08/2015] [Indexed: 01/03/2023] Open
Abstract
Background Genetically modified organisms (GMOs) have numerous biomedical, agricultural and environmental applications. Development of accurate methods for the detection of GMOs is a prerequisite for the identification and control of authorized and unauthorized release of these engineered organisms into the environment and into the food chain. Current detection methods are unable to detect uncharacterized GMOs, since either the DNA sequence of the transgene or the amino acid sequence of the protein must be known for DNA-based or immunological-based detection, respectively. Methods Here we describe the application of an epigenetics-based approach for the detection of mammalian GMOs via analysis of chromatin structural changes occurring in the host nucleus upon the insertion of foreign or endogenous DNA. Results Immunological methods combined with DNA next generation sequencing enabled direct interrogation of chromatin structure and identification of insertions of various size foreign (human or viral) DNA sequences, DNA sequences often used as genome modification tools (e.g. viral sequences, transposon elements), or endogenous DNA sequences into the nuclear genome of a model animal organism. Conclusions The results provide a proof-of-concept that epigenetic approaches can be used to detect the insertion of endogenous and exogenous sequences into the genome of higher organisms where the method of genetic modification, the sequence of inserted DNA, and the exact genomic insertion site(s) are unknown. General significance Measurement of chromatin dynamics as a sensor for detection of genomic manipulation and, more broadly, organism exposure to environmental or other factors affecting the epigenomic landscape are discussed. Insertion of DNA sequences into a host genome causes chromatin structure remodeling. ChIP-seq identifies molecular signatures of DNA insertion into the mammalian genome. Focus on epigenetic marks limits sequencing data amount required for GMO detection. Proof-of-concept for use of chromatin dynamics as a sensor of genomic manipulation.
Collapse
|
16
|
The Role of piRNA-Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in Drosophila melanogaster. PLoS Genet 2015; 11:e1005269. [PMID: 26042931 PMCID: PMC4456100 DOI: 10.1371/journal.pgen.1005269] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/10/2015] [Indexed: 01/23/2023] Open
Abstract
The piwi-interacting RNAs (piRNA) are small RNAs that target selfish transposable elements (TEs) in many animal genomes. Until now, piRNAs’ role in TE population dynamics has only been discussed in the context of their suppression of TE transposition, which alone is not sufficient to account for the skewed frequency spectrum and stable containment of TEs. On the other hand, euchromatic TEs can be epigenetically silenced via piRNA-dependent heterochromatin formation and, similar to the widely known “Position-effect variegation”, heterochromatin induced by TEs can “spread” into nearby genes. We hypothesized that the piRNA-mediated spread of heterochromatin from TEs into adjacent genes has deleterious functional effects and leads to selection against individual TEs. Unlike previously identified deleterious effects of TEs due to the physical disruption of DNA, the functional effect we investigated here is mediated through the epigenetic influences of TEs. We found that the repressive chromatin mark, H3K9me, is elevated in sequences adjacent to euchromatic TEs at multiple developmental stages in Drosophila melanogaster. Furthermore, the heterochromatic states of genes depend not only on the number of and distance from adjacent TEs, but also on the likelihood that their nearest TEs are targeted by piRNAs. These variations in chromatin status probably have functional consequences, causing genes near TEs to have lower expression. Importantly, we found stronger selection against TEs that lead to higher H3K9me enrichment of adjacent genes, demonstrating the pervasive evolutionary consequences of TE-induced epigenetic silencing. Because of the intrinsic biological mechanism of piRNA amplification, spread of TE heterochromatin could result in the theoretically required synergistic deleterious effects of TE insertions for stable containment of TE copy number. The indirect deleterious impact of piRNA-mediated epigenetic silencing of TEs is a previously unexplored, yet important, element for the evolutionary dynamics of TEs. The piwi-interacting RNAs (piRNAs) are small RNAs that can suppress the expression of selfish transposable elements (TEs) in many animal genomes. One mechanism by which piRNAs silence TEs is through the formation of heterochromatin, which is condensed chromatin and generally associated with repressed gene expression. Several functional studies have demonstrated that piRNA-mediated heterochromatin of TEs can spread to adjacent genes. We hypothesized that this spread of TE-induced heterochromatin influences the function of adjacent genes, ultimately resulting in selection against individual TEs. Consistent with our hypothesis, we found that sequences and genes adjacent to TEs are enriched in heterochromatic marks. We determine that this TE-induced variation in epigenetic status is probably piRNA-dependent and that this change in chromatin state influences the expression levels of adjacent genes. Importantly, TEs that lead to higher heterochromatin enrichment of adjacent genes are more strongly selected against, demonstrating the evolutionary consequences of TE-induced epigenetic silencing. In contrast to previously studied deleterious impacts of TEs, which depend on TEs’ physical disruptions of DNAs, our proposed functional effect of TEs is mediated through their epigenetic influence. Our study suggests that the piRNA-dependent epigenetic impact of TEs may play an important role in the evolutionary dynamics of TEs.
Collapse
|
17
|
|
18
|
Schuettengruber B, Oded Elkayam N, Sexton T, Entrevan M, Stern S, Thomas A, Yaffe E, Parrinello H, Tanay A, Cavalli G. Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila. Cell Rep 2014; 9:219-233. [PMID: 25284790 DOI: 10.1016/j.celrep.2014.08.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Metazoan genomes are partitioned into modular chromosomal domains containing active or repressive chromatin. In flies, Polycomb group (PcG) response elements (PREs) recruit PHO and other DNA-binding factors and act as nucleation sites for the formation of Polycomb repressive domains. The sequence specificity of PREs is not well understood. Here, we use comparative epigenomics and transgenic assays to show that Drosophila domain organization and PRE specification are evolutionarily conserved despite significant cis-element divergence within Polycomb domains, whereas cis-element evolution is strongly correlated with transcription factor binding divergence outside of Polycomb domains. Cooperative interactions of PcG complexes and their recruiting factor PHO stabilize PHO recruitment to low-specificity sequences. Consistently, PHO recruitment to sites within Polycomb domains is stabilized by PRC1. These data suggest that cooperative rather than hierarchical interactions among low-affinity sequences, DNA-binding factors, and the Polycomb machinery are giving rise to specific and strongly conserved 3D structures in Drosophila.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Noa Oded Elkayam
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tom Sexton
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Marianne Entrevan
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Shani Stern
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aubin Thomas
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Eitan Yaffe
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hugues Parrinello
- Montpellier GenomiX IBiSA, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Giacomo Cavalli
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|