1
|
Fabre MA, Vassiliou GS. The lifelong natural history of clonal hematopoiesis and its links to myeloid neoplasia. Blood 2024; 143:573-581. [PMID: 37992214 DOI: 10.1182/blood.2023019964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT The study of somatic mutations and the associated clonal mosaicism across the human body has transformed our understanding of aging and its links to cancer. In proliferative human tissues, stem cells compete for dominance, and those with an advantage expand clonally to outgrow their peers. In the hematopoietic system, such expansion is termed clonal hematopoiesis (CH). The forces driving competition, namely heterogeneity of the hematopoietic stem cell (HSC) pool and attrition of their environment, become increasingly prominent with age. As a result, CH becomes progressively more common through life to the point of becoming essentially ubiquitous. We are beginning to unravel the specific intracellular and extracellular factors underpinning clonal behavior, with somatic mutations in specific driver genes, inflammation, telomere maintenance, extraneous exposures, and inherited genetic variation among the important players. The inevitability of CH with age combined with its unequivocal links to myeloid cancers poses a scientific and clinical challenge. Specifically, we need to decipher the factors determining clonal behavior and develop prognostic tools to identify those at high risk of malignant progression, for whom preventive interventions may be warranted. Here, we discuss how recent advances in our understanding of the natural history of CH have provided important insights into these processes and helped define future avenues of investigation.
Collapse
Affiliation(s)
- Margarete A Fabre
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research & Development, AstraZeneca, Cambridge, United Kingdom
| | - George S Vassiliou
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Wang H, Zhao L, Yang L, Ge M, Yang X, Gao Z, Cun Y, Xiao F, Kong Q. Scrutiny of genome-wide somatic mutation profiles in centenarians identifies the key genomic regions for human longevity. Aging Cell 2024; 23:e13916. [PMID: 37400997 PMCID: PMC10776117 DOI: 10.1111/acel.13916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Somatic mutations accumulate with age and are associated closely with human health, their characterization in longevity cohorts remains largely unknown. Here, by analyzing whole genome somatic mutation profiles in 73 centenarians and 51 younger controls in China, we found that centenarian genomes are characterized by a markedly skewed distribution of somatic mutations, with many genomic regions being specifically conserved but displaying a high function potential. This, together with the observed more efficient DNA repair ability in the long-lived individuals, supports the existence of key genomic regions for human survival during aging, with their integrity being of essential to human longevity.
Collapse
Affiliation(s)
- Hao‐Tian Wang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Long Zhao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Li‐Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Ming‐Xia Ge
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Xing‐Li Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Zong‐Liang Gao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Yu‐Peng Cun
- Pediatric Research Institute/Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Fu‐Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Qing‐Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- CAS Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
3
|
Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. Blood 2023; 142:2235-2246. [PMID: 37931207 PMCID: PMC10862247 DOI: 10.1182/blood.2023022222] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is described as the outsized contribution of expanded clones of hematopoietic stem and progenitor cells (HSPCs) to blood cell production. The prevalence of CH increases dramatically with age. CH can be caused by somatic mutations in individual genes or by gains and/or losses of larger chromosomal segments. CH is a premalignant state; the somatic mutations detected in CH are the initiating mutations for hematologic malignancies, and CH is a strong predictor of the development of blood cancers. Moreover, CH is associated with nonmalignant disorders and increased overall mortality. The somatic mutations that drive clonal expansion of HSPCs can alter the function of terminally differentiated blood cells, including the release of elevated levels of inflammatory cytokines. These cytokines may then contribute to a broad range of inflammatory disorders that increase in prevalence with age. Specific somatic mutations in the peripheral blood in coordination with blood count parameters can powerfully predict the development of hematologic malignancies and overall mortality in CH. In this review, we summarize the current understanding of CH nosology and origins. We provide an overview of available tools for risk stratification and discuss management strategies for patients with CH presenting to hematology clinics.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
4
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
5
|
Farahzadi R, Valipour B, Montazersaheb S, Fathi E. Targeting the stem cell niche micro-environment as therapeutic strategies in aging. Front Cell Dev Biol 2023; 11:1162136. [PMID: 37274742 PMCID: PMC10235764 DOI: 10.3389/fcell.2023.1162136] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Adult stem cells (ASCs) reside throughout the body and support various tissue. Owing to their self-renewal capacity and differentiation potential, ASCs have the potential to be used in regenerative medicine. Their survival, quiescence, and activation are influenced by specific signals within their microenvironment or niche. In better words, the stem cell function is significantly influenced by various extrinsic signals derived from the niche. The stem cell niche is a complex and dynamic network surrounding stem cells that plays a crucial role in maintaining stemness. Studies on stem cell niche have suggested that aged niche contributes to the decline in stem cell function. Notably, functional loss of stem cells is highly associated with aging and age-related disorders. The stem cell niche is comprised of complex interactions between multiple cell types. Over the years, essential aspects of the stem cell niche have been revealed, including cell-cell contact, extracellular matrix interaction, soluble signaling factors, and biochemical and biophysical signals. Any alteration in the stem cell niche causes cell damage and affects the regenerative properties of the stem cells. A pristine stem cell niche might be essential for the proper functioning of stem cells and the maintenance of tissue homeostasis. In this regard, niche-targeted interventions may alleviate problems associated with aging in stem cell behavior. The purpose of this perspective is to discuss recent findings in the field of stem cell aging, heterogeneity of stem cell niches, and impact of age-related changes on stem cell behavior. We further focused on how the niche affects stem cells in homeostasis, aging, and the progression of malignant diseases. Finally, we detail the therapeutic strategies for tissue repair, with a particular emphasis on aging.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Burchert A. [Clonal hematopoiesis: causes and clinical implications]. Z Gerontol Geriatr 2023; 56:65-72. [PMID: 36662242 DOI: 10.1007/s00391-023-02162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to hematopoiesis from stem cells with mutations in leukemia-associated driver genes. These confer increased stress tolerance and expansive potential to stem cell clones. Patients with CHIP are hematologically healthy. The main risk factor for the development of CHIP is age or chronic inflammatory processes associated with aging, so-called "inflammaging". Therefore, the correlation of age-associated comorbidities with the detection of CHIP is not coincidental. CHIP is associated with, among other things, a significantly increased risk of cardiovascular disease and increased all-cause mortality. From a pathomechanistic perspective, CHIP leads to increased secretion of proinflammatory cytokines. It is also associated with a significantly increased risk of developing hematologic neoplasms. Thus, the treatment of CHIP could suppress the occurrence of hematologic neoplasms and prevent age-associated diseases.
Collapse
Affiliation(s)
- Andreas Burchert
- Universitätsklinikum Gießen und Marburg, Campus Marburg, Klinik für Hämatologie, Onkologie und Immunologie, Carreras Leukemia Center, Philipps-Universität Marburg, Baldingerstr., 35043, Marburg, Deutschland.
| |
Collapse
|
7
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Skulimowska I, Sosniak J, Gonka M, Szade A, Jozkowicz A, Szade K. The biology of hematopoietic stem cells and its clinical implications. FEBS J 2022; 289:7740-7759. [PMID: 34496144 DOI: 10.1111/febs.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023]
Abstract
Hematopoietic stem cells (HSCs) give rise to all types of blood cells and self-renew their own population. The regeneration potential of HSCs has already been successfully translated into clinical applications. However, recent studies on the biology of HSCs may further extend their clinical use in future. The roles of HSCs in native hematopoiesis and in transplantation settings may differ. Furthermore, the heterogenic pool of HSCs dynamically changes during aging. These changes also involve the complex interactions of HSCs with the bone marrow niche. Here, we review the opportunities and challenges of these findings to improve the clinical use of HSCs. We describe new methods of HSCs mobilization and conditioning for the transplantation of HSCs. Finally, we highlight the research findings that may lead to overcoming the current limitations of HSC transplantation and broaden the patient group that can benefit from the clinical potential of HSCs.
Collapse
Affiliation(s)
- Izabella Skulimowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Sosniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gonka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Burchert A. [Clonal hematopoiesis: causes and clinical implications]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:1051-1058. [PMID: 35969263 DOI: 10.1007/s00108-022-01388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to hematopoiesis from stem cells with mutations in leukemia-associated driver genes. These confer increased stress tolerance and expansive potential to stem cell clones. Patients with CHIP are hematologically healthy. The main risk factor for the development of CHIP is age or chronic inflammatory processes associated with aging, so-called "inflammaging". Therefore, the correlation of age-associated comorbidities with the detection of CHIP is not coincidental. CHIP is associated with, among other things, a significantly increased risk of cardiovascular disease and increased all-cause mortality. From a pathomechanistic perspective, CHIP leads to increased secretion of proinflammatory cytokines. It is also associated with a significantly increased risk of developing hematologic neoplasms. Thus, the treatment of CHIP could suppress the occurrence of hematologic neoplasms and prevent age-associated diseases.
Collapse
Affiliation(s)
- Andreas Burchert
- Universitätsklinikum Gießen und Marburg, Campus Marburg, Klinik für Hämatologie, Onkologie und Immunologie, Carreras Leukemia Center, Philipps-Universität Marburg, Baldingerstr., 35043, Marburg, Deutschland.
| |
Collapse
|
10
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Kandarakov O, Belyavsky A, Semenova E. Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms23084462. [PMID: 35457280 PMCID: PMC9032554 DOI: 10.3390/ijms23084462] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian hematopoietic system is remarkably efficient in meeting an organism’s vital needs, yet is highly sensitive and exquisitely regulated. Much of the organismal control over hematopoiesis comes from the regulation of hematopoietic stem cells (HSCs) by specific microenvironments called niches in bone marrow (BM), where HSCs reside. The experimental studies of the last two decades using the most sophisticated and advanced techniques have provided important data on the identity of the niche cells controlling HSCs functions and some mechanisms underlying niche-HSC interactions. In this review we discuss various aspects of organization and functioning of the HSC cell niche in bone marrow. In particular, we review the anatomy of BM niches, various cell types composing the niche, niches for more differentiated cells, metabolism of HSCs in relation to the niche, niche aging, leukemic transformation of the niche, and the current state of HSC niche modeling in vitro.
Collapse
|
12
|
Sikora KA, Wells KV, Bolek EC, Jones AI, Grayson PC. Somatic Mutations in Rheumatologic Diseases: VEXAS Syndrome and Beyond. Rheumatology (Oxford) 2021; 61:3149-3160. [PMID: 34888629 DOI: 10.1093/rheumatology/keab868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 11/15/2022] Open
Abstract
Discovery of the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome demonstrates that somatic mutations in hematologic precursor cells can cause adult-onset, complex inflammatory disease. Unlike germline mutations, somatic mutations occur throughout the lifespan, are restricted to specific tissue types, and may play a causal role in non-heritable rheumatologic diseases, especially conditions that start in later life. Improvements in sequencing technology have enabled researchers and clinicians to detect somatic mutations in various tissue types, especially blood. Understanding the relationships between cell-specific acquired mutations and inflammation is likely to yield key insights into causal factors that underlie many rheumatologic diseases. The objective of this review is to detail how somatic mutations are likely to be relevant to clinicians who care for patients with rheumatologic diseases, with particular focus on the pathogenetic mechanisms of the VEXAS syndrome.
Collapse
Affiliation(s)
- Keith A Sikora
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristina V Wells
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ertugrul Cagri Bolek
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Adrianna I Jones
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter C Grayson
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Beauchamp EM, Leventhal M, Bernard E, Hoppe ER, Todisco G, Creignou M, Gallì A, Castellano CA, McConkey M, Tarun A, Wong W, Schenone M, Stanclift C, Tanenbaum B, Malolepsza E, Nilsson B, Bick AG, Weinstock JS, Miller M, Niroula A, Dunford A, Taylor-Weiner A, Wood T, Barbera A, Anand S, Psaty BM, Desai P, Cho MH, Johnson AD, Loos R, MacArthur DG, Lek M, Neuberg DS, Lage K, Carr SA, Hellstrom-Lindberg E, Malcovati L, Papaemmanuil E, Stewart C, Getz G, Bradley RK, Jaiswal S, Ebert BL. ZBTB33 is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing. Blood Cancer Discov 2021; 2:500-517. [PMID: 34568833 PMCID: PMC8462124 DOI: 10.1158/2643-3230.bcd-20-0224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Clonal hematopoiesis results from somatic mutations in cancer driver genes in hematopoietic stem cells. We sought to identify novel drivers of clonal expansion using an unbiased analysis of sequencing data from 84,683 persons and identified common mutations in the 5-methylcytosine reader, ZBTB33, as well as in YLPM1, SRCAP, and ZNF318. We also identified these mutations at low frequency in myelodysplastic syndrome patients. Zbtb33 edited mouse hematopoietic stem and progenitor cells exhibited a competitive advantage in vivo and increased genome-wide intron retention. ZBTB33 mutations potentially link DNA methylation and RNA splicing, the two most commonly mutated pathways in clonal hematopoiesis and MDS.
Collapse
Affiliation(s)
- Ellen M Beauchamp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Matthew Leventhal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emma R Hoppe
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Gabriele Todisco
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Creignou
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gallì
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cecilia A Castellano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Akansha Tarun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Waihay Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Monica Schenone
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Caroline Stanclift
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Benjamin Tanenbaum
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Edyta Malolepsza
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Björn Nilsson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander G Bick
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Mendy Miller
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Abhishek Niroula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Andrew Dunford
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Amaro Taylor-Weiner
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Timothy Wood
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Alex Barbera
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York
| | - Michael H Cho
- Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute Center for Population Studies, the Framingham Heart Study, Framingham, Massachusetts
| | - Ruth Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel G MacArthur
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Monkol Lek
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kasper Lage
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Eva Hellstrom-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chip Stewart
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
14
|
Belyavsky A, Petinati N, Drize N. Hematopoiesis during Ontogenesis, Adult Life, and Aging. Int J Mol Sci 2021; 22:ijms22179231. [PMID: 34502137 PMCID: PMC8430730 DOI: 10.3390/ijms22179231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.
Collapse
Affiliation(s)
- Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Nina Drize
- National Research Center for Hematology, 125167 Moscow, Russia;
- Correspondence:
| |
Collapse
|
15
|
Hormaechea-Agulla D, Matatall KA, Le DT, Kain B, Long X, Kus P, Jaksik R, Challen GA, Kimmel M, King KY. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 2021; 28:1428-1442.e6. [PMID: 33743191 PMCID: PMC8349829 DOI: 10.1016/j.stem.2021.03.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Age-related clonal hematopoiesis (CH) is a risk factor for malignancy, cardiovascular disease, and all-cause mortality. Somatic mutations in DNMT3A are drivers of CH, but decades may elapse between the acquisition of a mutation and CH, suggesting that environmental factors contribute to clonal expansion. We tested whether infection provides selective pressure favoring the expansion of Dnmt3a mutant hematopoietic stem cells (HSCs) in mouse chimeras. We created Dnmt3a-mosaic mice by transplanting Dnmt3a-/- and WT HSCs into WT mice and observed the substantial expansion of Dnmt3a-/- HSCs during chronic mycobacterial infection. Injection of recombinant IFNγ alone was sufficient to phenocopy CH by Dnmt3a-/- HSCs upon infection. Transcriptional and epigenetic profiling and functional studies indicate reduced differentiation associated with widespread methylation alterations, and reduced secondary stress-induced apoptosis accounts for Dnmt3a-/- clonal expansion during infection. DNMT3A mutant human HSCs similarly exhibit defective IFNγ-induced differentiation. We thus demonstrate that IFNγ signaling induced during chronic infection can drive DNMT3A-loss-of-function CH.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katie A Matatall
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Duy T Le
- Program in Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bailee Kain
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaochen Long
- Department of Statistics, Rice University, Houston, TX 77030, USA
| | - Pawel Kus
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Grant A Challen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX 77030, USA; Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katherine Y King
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA; Program in Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Genetics of autosomal mosaic chromosomal alteration (mCA). J Hum Genet 2021; 66:879-885. [PMID: 34321609 DOI: 10.1038/s10038-021-00964-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022]
Abstract
Mosaic chromosomal alterations (mCAs) are frequently observed in cancer cells and are regarded as one of the common features of cancers. Strikingly, accumulating studies demonstrated that mCAs are also prevalent in elderly individuals without cancer, implying mCA could be a feature of aging and not necessarily a cancerous state. However, the genetic basis of mCA has been mostly unknown. Recent studies of autosomal mCA based on biobank-scale datasets, including UK Biobank and Biobank Japan, provided a glimpse into the underlying genetic mechanism. In this concise review, we briefly introduced mCA, its link with cancer and aging, and the emerging genetic mechanisms of this phenomenon. We highlighted the following aspects: (1) the interplay between somatic and inherited germline mutations in generating mosaicism; (2) monogenic and polygenic architectures of mCA; and (3) population-specific profiles of mCA. We provided a future perspective emphasizing the need to understand the connection between mCA and other characteristics of aging, in particular, the epigenetic and immunologic features.
Collapse
|
17
|
Dai X, Guo X. Decoding and rejuvenating human ageing genomes: Lessons from mosaic chromosomal alterations. Ageing Res Rev 2021; 68:101342. [PMID: 33866012 DOI: 10.1016/j.arr.2021.101342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023]
Abstract
One of the most curious findings emerged from genome-wide studies over the last decade was that genetic mosaicism is a dominant feature of human ageing genomes. The clonal dominance of genetic mosaicism occurs preceding the physiological and physical ageing and associates with propensity for diseases including cancer, Alzheimer's disease, cardiovascular disease and diabetes. These findings are revolutionizing the ways biologists thinking about health and disease pathogenesis. Among all mosaic mutations in ageing genomes, mosaic chromosomal alterations (mCAs) have the most significant functional consequences because they can produce intercellular genomic variations simultaneously involving dozens to hundreds or even thousands genes, and therefore have most profound effects in human ageing and disease etiology. Here, we provide a comprehensive picture of the landscapes, causes, consequences and rejuvenation of mCAs at multiple scales, from cell to human population, by reviewing data from cytogenetic, genetic and genomic studies in cells, animal models (fly and mouse) and, more frequently, large-cohort populations. A detailed decoding of ageing genomes with a focus on mCAs may yield important insights into the genomic architecture of human ageing, accelerate the risk stratification of age-related diseases (particularly cancers) and development of novel targets and strategies for delaying or rejuvenating human (genome) ageing.
Collapse
Affiliation(s)
- Xueqin Dai
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Xihan Guo
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China; The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| |
Collapse
|
18
|
Understanding Normal and Pathological Hematopoietic Stem Cell Biology Using Mathematical Modelling. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
To portray clonal evolution in blood cancer, count your stem cells. Blood 2021; 137:1862-1870. [PMID: 33512426 DOI: 10.1182/blood.2020008407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Clonal evolution, the process of expansion and diversification of mutated cells, plays an important role in cancer development, resistance, and relapse. Although clonal evolution is most often conceived of as driven by natural selection, recent studies uncovered that neutral evolution shapes clonal evolution in a significant proportion of solid cancers. In hematological malignancies, the interplay between neutral evolution and natural selection is also disputed. Because natural selection selects cells with a greater fitness, providing a growth advantage to some cells relative to others, the architecture of clonal evolution serves as indirect evidence to distinguish natural selection from neutral evolution and has been associated with different prognoses for the patient. Linear architecture, when the new mutant clone grows within the previous one, is characteristic of hematological malignancies and is typically interpreted as being driven by natural selection. Here, we discuss the role of natural selection and neutral evolution in the production of linear clonal architectures in hematological malignancies. Although it is tempting to attribute linear evolution to natural selection, we argue that a lower number of contributing stem cells accompanied by genetic drift can also result in a linear pattern of evolution, as illustrated by simulations of clonal evolution in hematopoietic stem cells. The number of stem cells contributing to long-term clonal evolution is not known in the pathological context, and we advocate that estimating these numbers in the context of cancer and aging is crucial to parsing out neutral evolution from natural selection, 2 processes that require different therapeutic strategies.
Collapse
|
20
|
Dynamic clonal hematopoiesis and functional T-cell immunity in a supercentenarian. Leukemia 2020; 35:2125-2129. [PMID: 33184493 PMCID: PMC8257492 DOI: 10.1038/s41375-020-01086-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/03/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
21
|
Linthorst J, Meert W, Hestand MS, Korlach J, Vermeesch JR, Reinders MJT, Holstege H. Extreme enrichment of VNTR-associated polymorphicity in human subtelomeres: genes with most VNTRs are predominantly expressed in the brain. Transl Psychiatry 2020; 10:369. [PMID: 33139705 PMCID: PMC7608644 DOI: 10.1038/s41398-020-01060-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome harbors numerous structural variants (SVs) which, due to their repetitive nature, are currently underexplored in short-read whole-genome sequencing approaches. Using single-molecule, real-time (SMRT) long-read sequencing technology in combination with FALCON-Unzip, we generated a de novo assembly of the diploid genome of a 115-year-old Dutch cognitively healthy woman. We combined this assembly with two previously published haploid assemblies (CHM1 and CHM13) and the GRCh38 reference genome to create a compendium of SVs that occur across five independent human haplotypes using the graph-based multi-genome aligner REVEAL. Across these five haplotypes, we detected 31,680 euchromatic SVs (>50 bp). Of these, ~62% were comprised of repetitive sequences with 'variable number tandem repeats' (VNTRs), ~10% were mobile elements (Alu, L1, and SVA), while the remaining variants were inversions and indels. We observed that VNTRs with GC-content >60% and repeat patterns longer than 15 bp were 21-fold enriched in the subtelomeric regions (within 5 Mb of the ends of chromosome arms). VNTR lengths can expand to exceed a critical length which is associated with impaired gene transcription. The genes that contained most VNTRs, of which PTPRN2 and DLGAP2 are the most prominent examples, were found to be predominantly expressed in the brain and associated with a wide variety of neurological disorders. Repeat-induced variation represents a sizeable fraction of the genetic variation in human genomes and should be included in investigations of genetic factors associated with phenotypic traits, specifically those associated with neurological disorders. We make available the long and short-read sequence data of the supercentenarian genome, and a compendium of SVs as identified across 5 human haplotypes.
Collapse
Affiliation(s)
- Jasper Linthorst
- grid.484519.5Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands ,grid.5292.c0000 0001 2097 4740Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Wim Meert
- grid.5596.f0000 0001 0668 7884Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Matthew S. Hestand
- grid.5596.f0000 0001 0668 7884Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jonas Korlach
- grid.423340.20000 0004 0640 9878Pacific Biosciences, Menlo Park, CA USA
| | | | - Marcel J. T. Reinders
- grid.5292.c0000 0001 2097 4740Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Henne Holstege
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands. .,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands. .,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Al Zouabi L, Bardin AJ. Stem Cell DNA Damage and Genome Mutation in the Context of Aging and Cancer Initiation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036210. [PMID: 31932318 DOI: 10.1101/cshperspect.a036210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adult stem cells fuel tissue homeostasis and regeneration through their unique ability to self-renew and differentiate into specialized cells. Thus, their DNA provides instructions that impact the tissue as a whole. Since DNA is not an inert molecule, but rather dynamic, interacting with a myriad of chemical and physical factors, it encounters damage from both endogenous and exogenous sources. Damage to DNA introduces deviations from its normal intact structure and, if left unrepaired, may result in a genetic mutation. In turn, mutant genomes of stem and progenitor cells are inherited in cells of the lineage, thus eroding the genetic information that maintains homeostasis of the somatic cell population. Errors arising in stem and progenitor cells will have a substantially larger impact on the tissue in which they reside than errors occurring in postmitotic differentiated cells. Therefore, maintaining the integrity of genomic DNA within our stem cells is essential to protect the instructions necessary for rebuilding healthy tissues during homeostatic renewal. In this review, we will first discuss DNA damage arising in stem cells and cell- and tissue-intrinsic mechanisms that protect against harmful effects of this damage. Secondly, we will examine how erroneous DNA repair and persistent DNA damage in stem and progenitor cells impact stem cells and tissues in the context of cancer initiation and aging. Finally, we will discuss the use of invertebrate and vertebrate model systems to address unanswered questions on the role that DNA damage and mutation may play in aging and precancerous conditions.
Collapse
Affiliation(s)
- Lara Al Zouabi
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| |
Collapse
|
23
|
Gutman D, Lidzbarsky G, Milman S, Gao T, Sin-Chan P, Gonzaga‐Jauregui C, Deelen J, Shuldiner AR, Barzilai N, Atzmon G. Similar burden of pathogenic coding variants in exceptionally long-lived individuals and individuals without exceptional longevity. Aging Cell 2020; 19:e13216. [PMID: 32860726 PMCID: PMC7576295 DOI: 10.1111/acel.13216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/22/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022] Open
Abstract
Centenarians (exceptionally long‐lived individuals—ELLI) are a unique segment of the population, exhibiting long human lifespan and healthspan, despite generally practicing similar lifestyle habits as their peers. We tested disease‐associated mutation burden in ELLI genomes by determining the burden of pathogenic variants reported in the ClinVar and HGMD databases using data from whole exome sequencing (WES) conducted in a cohort of ELLI, their offspring, and control individuals without antecedents of familial longevity (n = 1879), all descendent from the founder population of Ashkenazi Jews. The burden of pathogenic variants did not differ between the three groups. Additional analyses of variants subtypes and variant effect predictor (VEP) biotype frequencies did not reveal a decrease of pathogenic or loss‐of‐function (LoF) variants in ELLI and offspring compared to the control group. Case–control pathogenic variants enrichment analyses conducted in ELLI and controls also did not identify significant differences in any of the variants between the groups and polygenic risk scores failed to provide a predictive model. Interestingly, cancer and Alzheimer's disease‐associated variants were significantly depleted in ELLI compared to controls, suggesting slower accumulation of mutation. That said, polygenic risk score analysis failed to find any predictive variants among the functional variants tested. The high similarity in the burden of pathogenic variation between ELLI and individuals without familial longevity supports the notion that extension of lifespan and healthspan in ELLI is not a consequence of pathogenic variant depletion but rather a result of other genomic, epigenomic, or potentially nongenomic properties.
Collapse
Affiliation(s)
- Danielle Gutman
- Faculty of Natural Sciences University of Haifa Haifa Israel
| | | | - Sofiya Milman
- Department of Medicine Albert Einstein College of Medicine Bronx New York USA
| | - Tina Gao
- Department of Medicine Albert Einstein College of Medicine Bronx New York USA
| | | | | | - Joris Deelen
- Max Planck Institute for Biology of Ageing Cologne Germany
- Molecular Epidemiology Department of Biochemical Data Sciences Leiden University Medical Center Leiden The Netherlands
| | | | - Nir Barzilai
- Department of Medicine Albert Einstein College of Medicine Bronx New York USA
- Genetic, Institute for Aging Research and the Diabetes Research Center Albert Einstein College of Medicine Bronx New York USA
| | - Gil Atzmon
- Faculty of Natural Sciences University of Haifa Haifa Israel
- Department of Medicine Albert Einstein College of Medicine Bronx New York USA
- Genetic, Institute for Aging Research and the Diabetes Research Center Albert Einstein College of Medicine Bronx New York USA
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSC) are functionally heterogeneous in a clone-specific manner. The complexity of that heterogeneous mix of cells is progressively lost with age as a myeloid-dominant hematopoietic system is established. Yet, the function of this diversity, as well as the consequences of its loss, remains unknown. This review will bring together recent advances in HSC diversity and novel insights into myeloid heterogeneity and specification in order to bring focus on how this may affect the ageing individual. RECENT FINDINGS The ageing haematopoietic system is dominated by a low number of active HSC clones that produce an excess of myeloid cells. In addition, individual myeloid progenitors and their mature progeny are proving to be more functionally restricted than previously recognized. The presence or absence of a particular type of myeloid cell can greatly affect the outcome of various pathological processes. SUMMARY Myeloid cells are important drivers of many ageing-associated diseases. The loss of HSC heterogeneity, with a possible concomitant restriction of myeloid cell diversity, could significantly impact health during ageing.
Collapse
|
25
|
MosaicBase: A Knowledgebase of Postzygotic Mosaic Variants in Noncancer Disease-related and Healthy Human Individuals. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:140-149. [PMID: 32911083 PMCID: PMC7646124 DOI: 10.1016/j.gpb.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/18/2020] [Accepted: 05/31/2020] [Indexed: 12/14/2022]
Abstract
Mosaic variants resulting from postzygotic mutations are prevalent in the human genome and play important roles in human diseases. However, except for cancer-related variants, there is no collection of postzygotic mosaic variants in noncancer disease-related and healthy individuals. Here, we present MosaicBase, a comprehensive database that includes 6698 mosaic variants related to 266 noncancer diseases and 27,991 mosaic variants identified in 422 healthy individuals. Genomic and phenotypic information of each variant was manually extracted and curated from 383 publications. MosaicBase supports the query of variants with Online Mendelian Inheritance in Man (OMIM) entries, genomic coordinates, gene symbols, or Entrez IDs. We also provide an integrated genome browser for users to easily access mosaic variants and their related annotations for any genomic region. By analyzing the variants collected in MosaicBase, we find that mosaic variants that directly contribute to disease phenotype show features distinct from those of variants in individuals with mild or no phenotypes, in terms of their genomic distribution, mutation signatures, and fraction of mutant cells. MosaicBase will not only assist clinicians in genetic counseling and diagnosis but also provide a useful resource to understand the genomic baseline of postzygotic mutations in the general human population. MosaicBase is publicly available at http://mosaicbase.com/ or http://49.4.21.8:8000.
Collapse
|
26
|
Holstege H, Hulsman M, van der Lee SJ, van den Akker EB. The Role of Age-Related Clonal Hematopoiesis in Genetic Sequencing Studies. Am J Hum Genet 2020; 107:575-576. [PMID: 32888507 PMCID: PMC7477003 DOI: 10.1016/j.ajhg.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Henne Holstege
- Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Pattern Recognition & Bioinformatics, Delft University of Technology, Delft 2628CD, the Netherlands.
| | - Marc Hulsman
- Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Pattern Recognition & Bioinformatics, Delft University of Technology, Delft 2628CD, the Netherlands
| | - Sven J van der Lee
- Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Pattern Recognition & Bioinformatics, Delft University of Technology, Delft 2628CD, the Netherlands
| | - Erik B van den Akker
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft 2628CD, the Netherlands; Leiden Computational Biology Center, Leiden University Medical Center, Leiden 2300RC, the Netherlands; Section of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300RC, the Netherlands
| |
Collapse
|
27
|
Sun L, Babushok DV. Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria. Blood 2020; 136:36-49. [PMID: 32430502 PMCID: PMC7332901 DOI: 10.1182/blood.2019000940] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Acquired aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH) are pathogenically related nonmalignant bone marrow failure disorders linked to T-cell-mediated autoimmunity; they are associated with an increased risk of secondary myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Approximately 15% to 20% of AA patients and 2% to 6% of PNH patients go on to develop secondary MDS/AML by 10 years of follow-up. Factors determining an individual patient's risk of malignant transformation remain poorly defined. Recent studies identified nearly ubiquitous clonal hematopoiesis (CH) in AA patients. Similarly, CH with additional, non-PIGA, somatic alterations occurs in the majority of patients with PNH. Factors associated with progression to secondary MDS/AML include longer duration of disease, increased telomere attrition, presence of adverse prognostic mutations, and multiple mutations, particularly when occurring early in the disease course and at a high allelic burden. Here, we will review the prevalence and characteristics of somatic alterations in AA and PNH and will explore their prognostic significance and mechanisms of clonal selection. We will then discuss the available data on post-AA and post-PNH progression to secondary MDS/AML and provide practical guidance for approaching patients with PNH and AA who have CH.
Collapse
MESH Headings
- Age of Onset
- Anemia, Aplastic/drug therapy
- Anemia, Aplastic/genetics
- Anemia, Aplastic/pathology
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Benzoates/adverse effects
- Benzoates/therapeutic use
- Bone Marrow/pathology
- Chromosome Aberrations
- Chromosomes, Human, Pair 7/genetics
- Clonal Evolution/drug effects
- Clone Cells/drug effects
- Clone Cells/pathology
- Disease Progression
- Granulocyte Colony-Stimulating Factor/adverse effects
- Granulocyte Colony-Stimulating Factor/therapeutic use
- Hemoglobinuria, Paroxysmal/drug therapy
- Hemoglobinuria, Paroxysmal/genetics
- Hemoglobinuria, Paroxysmal/pathology
- Humans
- Hydrazines/adverse effects
- Hydrazines/therapeutic use
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Models, Biological
- Monosomy
- Mutation
- Myelodysplastic Syndromes/epidemiology
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Oncogene Proteins, Fusion/genetics
- Pyrazoles/adverse effects
- Pyrazoles/therapeutic use
- Selection, Genetic
- Telomere Shortening
Collapse
Affiliation(s)
- Lova Sun
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Daria V Babushok
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
28
|
Terradas-Terradas M, Robertson NA, Chandra T, Kirschner K. Clonality in haematopoietic stem cell ageing. Mech Ageing Dev 2020; 189:111279. [PMID: 32526214 PMCID: PMC7347006 DOI: 10.1016/j.mad.2020.111279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Somatic driver mutations lead to clonal haematopoiesis of indeterminate potential (CHIP) in aged haematopoietic stem cells. CHIP is associated with a variety of age-related multimorbidities. How environmental and cell-intrinsic factors contribute to CHIP and development of multimorbidities is poorly understood. Increased inflammatory signalling with age might be one mechanism driving age-related disease and favouring outgrowth of HSCs carrying specific driver mutations.
Clonal haematopoiesis of indeterminate potential (CHIP) is widespread in the elderly. CHIP is driven by somatic mutations in leukaemia driver genes, such as Janus Kinase 2 (JAK2), Tet methylcytosine dioxygenase 2 (TET2), ASXL Transcriptional Regulator 1 (ASXL1) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A), leading to reduced diversity of the blood pool. CHIP carries an increased risk for leukaemia and cardiovascular disease. Apart from mutations driving CHIP, environmental factors such as chemokines and cytokines have been implicated in age-dependent multimorbidities associated with CHIP. However, the mechanism of CHIP onset and the relationship with environmental and cell-intrinsic factors remain poorly understood. Here we contrast cell-intrinsic and environmental factors involved in CHIP development and disease propagation.
Collapse
Affiliation(s)
| | - Neil A Robertson
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Tamir Chandra
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Kristina Kirschner
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK.
| |
Collapse
|
29
|
Wang L, Yekula A, Muralidharan K, Small JL, Rosh ZS, Kang KM, Carter BS, Balaj L. Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma. Cancers (Basel) 2020; 12:cancers12051219. [PMID: 32414213 PMCID: PMC7281415 DOI: 10.3390/cancers12051219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
Sequencing studies have provided novel insights into the heterogeneous molecular landscape of glioblastoma (GBM), unveiling a subset of patients with gene fusions. Tissue biopsy is highly invasive, limited by sampling frequency and incompletely representative of intra-tumor heterogeneity. Extracellular vesicle-based liquid biopsy provides a minimally invasive alternative to diagnose and monitor tumor-specific molecular aberrations in patient biofluids. Here, we used targeted RNA sequencing to screen GBM tissue and the matched plasma of patients (n = 9) for RNA fusion transcripts. We identified two novel fusion transcripts in GBM tissue and five novel fusions in the matched plasma of GBM patients. The fusion transcripts FGFR3-TACC3 and VTI1A-TCF7L2 were detected in both tissue and matched plasma. A longitudinal follow-up of a GBM patient with a FGFR3-TACC3 positive glioma revealed the potential of monitoring RNA fusions in plasma. In summary, we report a sensitive RNA-seq-based liquid biopsy strategy to detect RNA level fusion status in the plasma of GBM patients.
Collapse
Affiliation(s)
- Lan Wang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Zachary S. Rosh
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Keiko M. Kang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- School of Medicine, University of California San Diego, San Diego, CA 92092, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- Correspondence: (B.S.C.); (L.B.)
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- Correspondence: (B.S.C.); (L.B.)
| |
Collapse
|
30
|
Helgadottir HT, Lundin P, Wallén Arzt E, Lindström AK, Graff C, Eriksson M. Somatic mutation that affects transcription factor binding upstream of CD55 in the temporal cortex of a late-onset Alzheimer disease patient. Hum Mol Genet 2020; 28:2675-2685. [PMID: 31216356 PMCID: PMC6688063 DOI: 10.1093/hmg/ddz085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/20/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Familial cases suggest genetic components; however, monogenetic causes are few, and the vast majority of incidences have unknown cause. Sequencing efforts have focused on germline mutations, but improved technology has opened up for studies on somatic mutations in affected brain tissue samples. Here we use ultra-deep sequencing on brain and blood from early-onset AD (EOAD) and late-onset AD (LOAD) patients and non-AD individuals (n = 16). In total, 2.86 Mb of genomic regions, previously associated with AD, were targeted included 28 genes and upstream and downstream regulatory regions. Tailored downstream bioinformatics filtering identified 11 somatic single nucleotide variants in the temporal cortex in AD patients and none in the controls. One variant was validated to be present at 0.4% allele frequency in temporal cortex of a LOAD patient. This variant was predicted to affect transcription factor binding sites upstream of the CD55 gene, contributing to AD pathogenesis by affecting the complement system. Our results suggest that future studies targeting larger portions of the genome for somatic mutation analysis are important to obtain an increased understanding for the molecular basis of both EOAD and LOAD.
Collapse
Affiliation(s)
- Hafdis T Helgadottir
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Pär Lundin
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emelie Wallén Arzt
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna-Karin Lindström
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institutet, Solna, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institutet, Solna, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
31
|
Kudryashova KS, Burka K, Kulaga AY, Vorobyeva NS, Kennedy BK. Aging Biomarkers: From Functional Tests to Multi‐Omics Approaches. Proteomics 2020; 20:e1900408. [DOI: 10.1002/pmic.201900408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
| | - Ksenia Burka
- Centaura AG Bleicherweg 10 Zurich 8002 Switzerland
| | - Anton Y. Kulaga
- Centaura AG Bleicherweg 10 Zurich 8002 Switzerland
- Systems Biology of Aging GroupInstitute of Biochemistry of the Romanian Academy Splaiul Independentei 296 Bucharest 060031 Romania
| | | | - Brian K. Kennedy
- Departments of Biochemistry and Physiology Yong Loo Lin School of MedicineNational University of Singapore 8 Medical Drive, MD7, 117596 Singapore
- Singapore Institute for Clinical Sciences (SICS)Agency for Science and Technology (A*STAR)Brenner Centre for Molecular Medicine 30 Medical Drive Singapore 117609 Singapore
- Buck Institute for Research on Aging 8001 Redwood Blvd. Novato CA 94945‐1400 USA
| |
Collapse
|
32
|
Robin-Champigneul F. Jeanne Calment's Unique 122-Year Life Span: Facts and Factors; Longevity History in Her Genealogical Tree. Rejuvenation Res 2020; 23:19-47. [PMID: 31928146 DOI: 10.1089/rej.2019.2298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Jeanne Calment's (JC) still unmatched validated human life span of 122 years and 164 days, over 3 years longer than any other, surprises many. While her case is broadly accepted as a golden standard of validation, her record age still raises skepticism among some. The probability of such a record to be achieved by someone born in the second half of the 19th century, in the world population documentarily eligible to age validation, and also in the G7 countries, can be calculated by applying some logistic and Gompertz mortality models to these populations, taken, respectively, from the age of 117 and of 100. This probability appears substantial, respectively, 7.1% and 4.7%, when using a four-parameter logistic model, which I validated on the observed survivals of centenarians until the age of 118. A 3-year interval with the second oldest is then expected. The known facts and documents constitute consistent evidence that JC died at 122: regular official records during her life, her verified memories from her 19th century life, her usage of specialized terms and of an abbreviation system specific to this period of time, photographs, her signature and handwriting, testimonies from numerous witnesses of her life, plus the expertise of gerontologists. Meanwhile, nothing contradicts her record: the daughter/mother identity swap hypothesis appears unrealistic and not supported by any evidence; especially no plausible motive can be found, on the contrary. The latest article, which defends this hypothesis, "Bayesian assessment of the longevity of JC," contains major errors, making its result subjective and invalid. The study of JC's genealogical tree on six generations, using longevity performance and total immediate ancestor longevity indicators, shows how, in two centuries, her ancestors have been living 10% longer on average at each generation, increasingly overperforming their French 25-year-old contemporaries, from around 7% in the early 18th century to 43% for her parents, and up to 56% for her older brother and 80% for herself, which suggests a progressive concentration of longevity factors. In addition to the hereditary factors, JC's personal overperformance suggests also some environmental factors, and indeed many are known. Further knowledge could be obtained by studying JC's existing blood and DNA samples: those could not only provide an additional proof of her authenticity, but more importantly could be of immense contribution for understanding deeper the factors and patterns of her longevity, and more generally the longevity and aging processes in humans in general as well.
Collapse
|
33
|
Young R. If Jeanne Calment Were 122, That Is All the More Reason for Biosampling. Rejuvenation Res 2020; 23:48-64. [PMID: 31928204 DOI: 10.1089/rej.2020.2303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article discusses the need for biosampling as a way to test "super-duper" centenarians (persons aged >120 years) to identify biological pathways for Homo sapiens to live to their fullest biological lifespan potential (estimated by extreme value theory to be currently between 123 years and 128 years) and, by extension, the possibility of biosampling leading to the identification through scientific research testing and data analysis areas of potential life extension. Studies of twins have shown that the proportion of longevity attributed to heredity (genetic potential) versus environment increases substantially the higher the age group being tested, especially after age 75 years. Even among the oldest-old, the proportion attributed to biological factors continues increasing the higher the age category, which is a selective process as the genetically weaker of the remaining survivors continue to die off first, leaving a more and more highly selected remaining population. This self-selection process means that the very oldest individuals are already the "genetic lottery winners" who have the biological potential to come close to the maximum human lifespan. Testing of these persons may result in faster breakthroughs in the attempt to extend the human lifespan through biological testing and analysis. Indeed, it is possible that, just as some human lifespans are shortened due to random genetic mutations unique to the individual (such as persons with progeria), it is possible that there could be some humans whose maximum genetic potential was due in part to a genetic mutation unique to that particular individual. This remains an area of potential research that has not yet been thoroughly biotested-but one that could change soon, and biotesting a 122-year-old woman's biosamples would be a prime opportunity for such a test: Jeanne Calment. Because only one 122-year-old woman has been validated in recorded scientific history, the uniqueness of the case makes it a unique opportunity that should not be passed by. Herewith, I take a closer look at the Jeanne Calment case and the conclusion is the same as the start: Jeanne Calment was 122 years, her age is relatively unique but not impossible to repeat in the future; however, her samples may be available right now, and thus remains the only current opportunity to study a >120-year-old person from a biological perspective.
Collapse
Affiliation(s)
- Robert Young
- Senior Consultant for Gerontology, Guinness World Records, Gerontology Research Group, Sandy Springs, Georgia.,GRG Supercentenarian Research and Database Division, Gerontology Research Group, Sandy Springs, Georgia
| |
Collapse
|
34
|
Thun GA, Derdak S, Castro-Giner F, Apunte-Ramos K, Águeda L, Wjst M, Boland A, Deleuze JF, Kolsum U, Heiss-Neumann MS, Nowinski A, Gorecka D, Hohlfeld JM, Welte T, Brightling CE, Parr DG, Prasse A, Müller-Quernheim J, Greulich T, Stendardo M, Boschetto P, Barta I, Döme B, Gut M, Singh D, Ziegler-Heitbrock L, Gut IG. High degree of polyclonality hinders somatic mutation calling in lung brush samples of COPD cases and controls. Sci Rep 2019; 9:20158. [PMID: 31882973 PMCID: PMC6934450 DOI: 10.1038/s41598-019-56618-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is induced by cigarette smoking and characterized by inflammation of airway tissue. Since smokers with COPD have a higher risk of developing lung cancer than those without, we hypothesized that they carry more mutations in affected tissue. We called somatic mutations in airway brush samples from medium-coverage whole genome sequencing data from healthy never and ex-smokers (n = 8), as well as from ex-smokers with variable degrees of COPD (n = 4). Owing to the limited concordance of resulting calls between the applied tools we built a consensus, a strategy that was validated with high accuracy for cancer data. However, consensus calls showed little promise of representing true positives due to low mappability of corresponding sequence reads and high overlap with positions harbouring known genetic polymorphisms. A targeted re-sequencing approach suggested that only few mutations would survive stringent verification testing and that our data did not allow the inference of any difference in the mutational load of bronchial brush samples between former smoking COPD cases and controls. High polyclonality in airway brush samples renders medium-depth sequencing insufficient to provide the resolution to detect somatic mutations. Deep sequencing data of airway biopsies are needed to tackle the question.
Collapse
Affiliation(s)
- Gian-Andri Thun
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francesc Castro-Giner
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Katherine Apunte-Ramos
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lidia Águeda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Matthias Wjst
- Helmholtz-Zentrum München, National Research Centre for Environmental Health, Institute of Lung Biology and Disease, Neuherberg, Germany
- Institute of Medical Statistics, Epidemiology and Medical Informatics, Technical University Munich, Munich, Germany
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Umme Kolsum
- University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Adam Nowinski
- 2nd Department of Respiratory Medicine, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Dorota Gorecka
- 2nd Department of Respiratory Medicine, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center of Lung Research, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
| | - Christopher E Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - David G Parr
- Department of Respiratory Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
- Department of Pneumology, University Medical Center, Freiburg, Germany
| | | | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, Marburg, Germany
| | - Mariarita Stendardo
- Department of Medical Sciences, University of Ferrara and University-Hospital of Ferrara, Ferrara, Italy
| | - Piera Boschetto
- Department of Medical Sciences, University of Ferrara and University-Hospital of Ferrara, Ferrara, Italy
| | - Imre Barta
- Department of Pathophysiology, National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Balázs Döme
- Department of Tumorbiology, National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Dave Singh
- University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Ivo G Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
35
|
Salazar-Bañuelos A. A mathematical solution to Peto's paradox using Polya's urn model: implications for the aetiology of cancer in general. Theory Biosci 2019; 138:241-250. [PMID: 30771154 PMCID: PMC6800849 DOI: 10.1007/s12064-019-00290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Ageing is the leading risk factor for the emergence of cancer in humans. Accumulation of pro-carcinogenic events throughout life is believed to explain this observation; however, the lack of direct correlation between the number of cells in an organism and cancer incidence, known as Peto's Paradox, is at odds with this assumption. Finding the events responsible for this discrepancy can unveil mechanisms with potential uses in prevention and treatment of cancer in humans. On the other hand, the immune system is important in preventing the development of clinically relevant tumours by maintaining a fine equilibrium between reactive and suppressive lymphocyte clones. It is suggested here that the loss of this equilibrium is what ultimately leads to increased risk of cancer and to propose a mechanism for the changes in clonal proportions based on decreased proliferative capacity of lymphocyte clones as a natural phenomenon of ageing. This mechanism, being a function of the number of cells, provides an explanation for Peto's Paradox.
Collapse
Affiliation(s)
- Anastasio Salazar-Bañuelos
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 1403 - 29 street NW, Calgary, AB, Canada.
| |
Collapse
|
36
|
Van Horebeek L, Dubois B, Goris A. Somatic Variants: New Kids on the Block in Human Immunogenetics. Trends Genet 2019; 35:935-947. [PMID: 31668909 DOI: 10.1016/j.tig.2019.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 01/21/2023]
Abstract
Somatic variants are not inherited but acquired during an individual's lifetime, and individuals are increasingly considered as complex mosaics of genetically distinct cells. Whereas this concept is long-recognized in cancer, this review focuses on the growing role of somatic variants in immune cells in nonmalignant immune-related disorders, such as primary immunodeficiency and autoimmune diseases. Older case reports described somatic variants early in development, leading to large numbers of affected cells and severe phenotypes. Thanks to technological evolution, it is now feasible to detect somatic variants occurring later in life and affecting fewer cells. Hence, only recently is the scale at which somatic variants contribute to monogenic diseases being uncovered and is their contribution to complex diseases being explored systematically.
Collapse
Affiliation(s)
- L Van Horebeek
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute, 3000 Leuven, Belgium
| | - B Dubois
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute, 3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - A Goris
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
37
|
Bigildeev AE, Petinati NA, Drize NJ. How Methods of Molecular Biology Shape Our Understanding of the Hematopoietic System. Mol Biol 2019. [DOI: 10.1134/s0026893319050029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Wodarz D, Newell AC, Komarova NL. Passenger mutations can accelerate tumour suppressor gene inactivation in cancer evolution. J R Soc Interface 2019; 15:rsif.2017.0967. [PMID: 29875280 DOI: 10.1098/rsif.2017.0967] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/08/2018] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is an evolutionary process whereby cells accumulate multiple mutations. Besides the 'driver mutations' that cause the disease, cells also accumulate a number of other mutations with seemingly no direct role in this evolutionary process. They are called passenger mutations. While it has been argued that passenger mutations render tumours more fragile due to reduced fitness, the role of passenger mutations remains understudied. Using evolutionary computational models, we demonstrate that in the context of tumour suppressor gene inactivation (and hence fitness valley crossing), the presence of passenger mutations can accelerate the rate of evolution by reducing overall population fitness and increasing the relative fitness of intermediate mutants in the fitness valley crossing pathway. Hence, the baseline rate of tumour suppressor gene inactivation might be faster than previously thought. Conceptually, parallels are found in the field of turbulence and pattern formation, where instabilities can be driven by perturbations that are damped (disadvantageous), but provide a richer set of pathways such that a system can achieve some desired goal more readily. This highlights, through a number of novel parallels, the relevance of physical sciences in oncology.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92697, USA .,Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA
| | - Alan C Newell
- Department of Mathematics, The University of Arizona, 617 N. Santa Rita Ave, Tucson, AZ 85721, USA
| | - Natalia L Komarova
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA
| |
Collapse
|
39
|
Rogozin IB, Pavlov YI, Goncearenco A, De S, Lada AG, Poliakov E, Panchenko AR, Cooper DN. Mutational signatures and mutable motifs in cancer genomes. Brief Bioinform 2019; 19:1085-1101. [PMID: 28498882 DOI: 10.1093/bib/bbx049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer is a genetic disorder, meaning that a plethora of different mutations, whether somatic or germ line, underlie the etiology of the 'Emperor of Maladies'. Point mutations, chromosomal rearrangements and copy number changes, whether they have occurred spontaneously in predisposed individuals or have been induced by intrinsic or extrinsic (environmental) mutagens, lead to the activation of oncogenes and inactivation of tumor suppressor genes, thereby promoting malignancy. This scenario has now been recognized and experimentally confirmed in a wide range of different contexts. Over the past decade, a surge in available sequencing technologies has allowed the sequencing of whole genomes from liquid malignancies and solid tumors belonging to different types and stages of cancer, giving birth to the new field of cancer genomics. One of the most striking discoveries has been that cancer genomes are highly enriched with mutations of specific kinds. It has been suggested that these mutations can be classified into 'families' based on their mutational signatures. A mutational signature may be regarded as a type of base substitution (e.g. C:G to T:A) within a particular context of neighboring nucleotide sequence (the bases upstream and/or downstream of the mutation). These mutational signatures, supplemented by mutable motifs (a wider mutational context), promise to help us to understand the nature of the mutational processes that operate during tumor evolution because they represent the footprints of interactions between DNA, mutagens and the enzymes of the repair/replication/modification pathways.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Youri I Pavlov
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, USA
| | | | | | - Artem G Lada
- Department Microbiology and Molecular Genetics, University of California, Davis, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Institutes of Health, USA
| | | |
Collapse
|
40
|
Fuster JJ, Walsh K. Somatic Mutations and Clonal Hematopoiesis: Unexpected Potential New Drivers of Age-Related Cardiovascular Disease. Circ Res 2019; 122:523-532. [PMID: 29420212 DOI: 10.1161/circresaha.117.312115] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increasing evidence shows that conventional cardiovascular risk factors are incompletely predictive of cardiovascular disease, particularly in elderly individuals, suggesting that there may still be unidentified causal risk factors. Although the accumulation of somatic DNA mutations is a hallmark of aging, its relevance in cardiovascular disease or other age-related conditions has been, with the exception of cancer, largely unexplored. Here, we review recent clinical and preclinical studies that have identified acquired mutations in hematopoietic stem cells and subsequent clonal hematopoiesis as a new cardiovascular risk factor and a potential major driver of atherosclerosis. Understanding the mechanisms underlying the connection between somatic mutation-driven clonal hematopoiesis and cardiovascular disease will be highly relevant in the context of personalized medicine, as it may provide key information for the design of diagnostic, preventive, or therapeutic strategies tailored to the effects of specific somatic mutations.
Collapse
Affiliation(s)
- José J Fuster
- From the Molecular Cardiology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA.
| | - Kenneth Walsh
- From the Molecular Cardiology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA.
| |
Collapse
|
41
|
Rožman P. How Could We Slow or Reverse the Human Aging Process and Extend the Healthy Life Span with Heterochronous Autologous Hematopoietic Stem Cell Transplantation. Rejuvenation Res 2019; 23:159-170. [PMID: 31203790 DOI: 10.1089/rej.2018.2164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The senescence of the immune system contributes considerably to the age-related diseases that are the main causes of death after the age of 65. In this study, we present an appealing option for the prevention of immune senescence and slowing or reversing the aging process, which can be achieved by heterochronous autologous hematopoietic stem cell transplantation (haHSCT), where healthy autologous bone marrow stem cells are collected from donors while young, cryopreserved and stored for a long period, and reinfused at a later time when indicated. After reinfusion and homing, these young HSCs could participate in normal hemato- and immunopoiesis and improve several immune functions by expanding the immune- as well as hematopoietic cell repertoire. Several animal studies have already confirmed the feasibility of this procedure, which extended the longevity of the treated animals. If translated to human medicine, haHSCT could prevent or mitigate age-related immune defects and extend the healthy life span. In this review, we describe the concept of haHSCT, recent studies that confirm its feasibility, and discuss the further research needed to translate this heterochronous methodology.
Collapse
Affiliation(s)
- Primož Rožman
- Immunohaematology Department, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
42
|
Loss of hematopoietic diversity with age. Blood 2019; 133:1921-1922. [PMID: 31048301 DOI: 10.1182/blood-2019-03-900902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
|
44
|
Hoffman CM, Han J, Calvi LM. Impact of aging on bone, marrow and their interactions. Bone 2019; 119:1-7. [PMID: 30010082 DOI: 10.1016/j.bone.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Hematopoiesis in land dwelling vertebrates and marine mammals occurs within the bone marrow, continually providing mature progeny over the course of an organism's lifetime. This conserved dependency highlights the critical relationship between these two organs, yet the skeletal and hematopoietic systems are often thought of as separate. In fact, data are beginning to show that skeletal disease pathogenesis influences hematopoiesis and viceversa, offering novel opportunities to approach disease affecting bone and blood. With a growing global population of aged individuals, interest has focused on cell autonomous changes in hematopoietic and skeletal systems that result in dysfunction. The purpose of this review is to summarize the literature on aging effects in both fields, and provide critical examples of organ cross-talk in the aging process.
Collapse
Affiliation(s)
- Corey M Hoffman
- University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jimin Han
- University of Rochester Medical Center, Rochester, NY, United States of America
| | - Laura M Calvi
- University of Rochester Medical Center, Rochester, NY, United States of America.
| |
Collapse
|
45
|
Powell TR, De Jong S, Breen G, Lewis CM, Dima D. Telomere length as a predictor of emotional processing in the brain. Hum Brain Mapp 2018; 40:1750-1759. [PMID: 30511786 PMCID: PMC6492163 DOI: 10.1002/hbm.24487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 12/24/2022] Open
Abstract
Shorter telomere length (TL) has been associated with the development of mood disorders as well as abnormalities in brain morphology. However, so far, no studies have considered the role TL may have on brain function during tasks relevant to mood disorders. In this study, we examine the relationship between TL and functional brain activation and connectivity, while participants (n = 112) perform a functional magnetic resonance imaging (fMRI) facial affect recognition task. Additionally, because variation in TL has a substantial genetic component we calculated polygenic risk scores for TL to test if they predict face‐related functional brain activation. First, our results showed that TL was positively associated with increased activation in the amygdala and cuneus, as well as increased connectivity from posterior regions of the face network to the ventral prefrontal cortex. Second, polygenic risk scores for TL show a positive association with medial prefrontal cortex activation. The data support the view that TL and genetic loading for shorter telomeres, influence the function of brain regions known to be involved in emotional processing.
Collapse
Affiliation(s)
- Timothy R Powell
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Simone De Jong
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience at the Maudsley Hospital and King's College London, London, United Kingdom
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience at the Maudsley Hospital and King's College London, London, United Kingdom
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience at the Maudsley Hospital and King's College London, London, United Kingdom.,Department of Medical and Molecular Genetics, Guy's Hospital, King's College London, London, United Kingdom
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
46
|
Brody Y, Kimmerling RJ, Maruvka YE, Benjamin D, Elacqua JJ, Haradhvala NJ, Kim J, Mouw KW, Frangaj K, Koren A, Getz G, Manalis SR, Blainey PC. Quantification of somatic mutation flow across individual cell division events by lineage sequencing. Genome Res 2018; 28:1901-1918. [PMID: 30459213 PMCID: PMC6280753 DOI: 10.1101/gr.238543.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023]
Abstract
Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon (POLE) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.
Collapse
Affiliation(s)
- Yehuda Brody
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Robert J Kimmerling
- MIT Department of Biological Engineering, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| | - Yosef E Maruvka
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- MGH Cancer Center and Department of Pathology, Boston, Massachusetts 02114, USA
| | - David Benjamin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Joshua J Elacqua
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- MIT Department of Biological Engineering, Cambridge, Massachusetts 02139, USA
| | - Nicholas J Haradhvala
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- MGH Cancer Center and Department of Pathology, Boston, Massachusetts 02114, USA
| | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kent W Mouw
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Kristjana Frangaj
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Gad Getz
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- MGH Cancer Center and Department of Pathology, Boston, Massachusetts 02114, USA
| | - Scott R Manalis
- MIT Department of Biological Engineering, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- MIT Department of Biological Engineering, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
47
|
Maher GJ, Ralph HK, Ding Z, Koelling N, Mlcochova H, Giannoulatou E, Dhami P, Paul DS, Stricker SH, Beck S, McVean G, Wilkie AOM, Goriely A. Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes. Genome Res 2018; 28:1779-1790. [PMID: 30355600 PMCID: PMC6280762 DOI: 10.1101/gr.239186.118] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
Mosaic mutations present in the germline have important implications for reproductive risk and disease transmission. We previously demonstrated a phenomenon occurring in the male germline, whereby specific mutations arising spontaneously in stem cells (spermatogonia) lead to clonal expansion, resulting in elevated mutation levels in sperm over time. This process, termed "selfish spermatogonial selection," explains the high spontaneous birth prevalence and strong paternal age-effect of disorders such as achondroplasia and Apert, Noonan and Costello syndromes, with direct experimental evidence currently available for specific positions of six genes (FGFR2, FGFR3, RET, PTPN11, HRAS, and KRAS). We present a discovery screen to identify novel mutations and genes showing evidence of positive selection in the male germline, by performing massively parallel simplex PCR using RainDance technology to interrogate mutational hotspots in 67 genes (51.5 kb in total) in 276 biopsies of testes from five men (median age, 83 yr). Following ultradeep sequencing (about 16,000×), development of a low-frequency variant prioritization strategy, and targeted validation, we identified 61 distinct variants present at frequencies as low as 0.06%, including 54 variants not previously directly associated with selfish selection. The majority (80%) of variants identified have previously been implicated in developmental disorders and/or oncogenesis and include mutations in six newly associated genes (BRAF, CBL, MAP2K1, MAP2K2, RAF1, and SOS1), all of which encode components of the RAS-MAPK pathway and activate signaling. Our findings extend the link between mutations dysregulating the RAS-MAPK pathway and selfish selection, and show that the aging male germline is a repository for such deleterious mutations.
Collapse
Affiliation(s)
- Geoffrey J Maher
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Hannah K Ralph
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Zhihao Ding
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Nils Koelling
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Hana Mlcochova
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Eleni Giannoulatou
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Pawan Dhami
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Dirk S Paul
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Stefan H Stricker
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Gilean McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Anne Goriely
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
48
|
Ouwens KG, Jansen R, Tolhuis B, Slagboom PE, Penninx BW, Boomsma DI. A characterization of postzygotic mutations identified in monozygotic twins. Hum Mutat 2018; 39:1393-1401. [PMID: 29980163 PMCID: PMC6175188 DOI: 10.1002/humu.23586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Abstract
Postzygotic mutations are DNA changes acquired from the zygote stage onwards throughout the lifespan. These changes lead to differences in DNA sequence among cells of an individual, potentially contributing to the etiology of complex disorders. Here we compared whole genome DNA sequence data of two monozygotic twin pairs, 40 and 100 years old, to detect somatic mosaicism. DNA samples were sequenced twice on two Illumina platforms (13X and 40X read depth) for increased specificity. Using differences in allelic ratios resulted in sets of 1,720 and 1,739 putative postzygotic mutations in the 40-year-old twin pair and 100-year-old twin pair, respectively, for subsequent enrichment analysis. This set of putative mutations was strongly (p < 4.37e-91) enriched in both twin pairs for regulatory elements. The corresponding genes were significantly enriched for genes that are alternatively spliced, and for genes involved in GTPase activity. This research shows that somatic mosaicism can be detected in monozygotic twin pairs by using allelic ratios calculated from DNA sequence data and that the mutations which are found by this approach are not randomly distributed throughout the genome.
Collapse
Affiliation(s)
- Klaasjan G. Ouwens
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Genalice Core BVNijkerkThe Netherlands
| | - Rick Jansen
- Department of PsychiatryVU University Medical CenterAmsterdamThe Netherlands
| | | | - P. Eline Slagboom
- Department of Molecular EpidemiologyLeids Universitair Medisch CentrumLeidenThe Netherlands
| | | | - Dorret I. Boomsma
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
49
|
Abstract
Purpose of Review Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-associated condition characterized by the acquisition of somatic mutations. This concise review explores our current understanding of the mechanisms that influence the development of clonality with aging and its potential malignant and non-malignant clinical implications. Recent Findings Aging of the hematopoietic system results in phenotypic changes that favor clonal dominance. Cell-extrinsic factors provide additional selective pressures that further shape clonal architecture. Even so, small clones with candidate driver mutations appear to be ubiquitous with age and largely benign in the absence of strong selective pressures. Benign clonal expansion may compensate for the loss of regenerative HSC capacity as we age. Summary CHIP is a marker of aging that reflects the biologic interplay between HSC aging and cell-extrinsic factors. The clinical significance of CHIP is highly variable and dependent on clinical context. Distinguishing the causal relationships and confounding factors that regulate clonal behavior will be essential to define the mechanistic role of CHIP in aging and potentially mitigate its clinical consequences.
Collapse
Affiliation(s)
- Soo J Park
- Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Rafael Bejar
- Moores Cancer Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
50
|
Rožman P. The potential of non-myeloablative heterochronous autologous hematopoietic stem cell transplantation for extending a healthy life span. GeroScience 2018; 40:221-242. [PMID: 29948868 PMCID: PMC6060192 DOI: 10.1007/s11357-018-0027-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is a complex multifactorial process, a prominent component being the senescence of the immune system. Consequently, immune-related diseases develop, including atherosclerosis, cancer, and life-threatening infections, which impact on health and longevity. Rejuvenating the aged immune system could mitigate these diseases, thereby contributing to longevity and health. Currently, an appealing option for rejuvenating the immune system is heterochronous autologous hematopoietic stem cell transplantation (haHSCT), where healthy autologous bone marrow/peripheral blood stem cells are collected during the youth of an individual, cryopreserved, and re-infused when he or she has reached an older age. After infusion, young hematopoietic stem cells can reconstitute the compromised immune system and improve immune function. Several studies using animal models have achieved substantial extension of the life span of animals treated with haHSCT. Therefore, haHSCT could be regarded as a potential procedure for preventing age-related immune defects and extending healthy longevity. In this review, the pros, cons, and future feasibility of this approach are discussed.
Collapse
Affiliation(s)
- Primož Rožman
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000, Ljubljana, Slovenia.
| |
Collapse
|