1
|
Pavan F, Lacoste E, Castric V, Legrand S. Scenarios for the emergence of new microRNA genes in the plant Arabidopsis halleri. PLANT & CELL PHYSIOLOGY 2025; 66:542-553. [PMID: 39820477 DOI: 10.1093/pcp/pcaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/08/2024] [Accepted: 01/11/2025] [Indexed: 01/19/2025]
Abstract
MicroRNAs (miRNAs) are central players in the regulation of gene expression in eukaryotes. The repertoires of miRNA genes vary drastically even among closely related species, indicating that they are evolutionarily labile. However, the processes by which they originate over the course of evolution and the nature of their progenitors across the genome remain poorly understood. Here, we analyzed miRNA genes in Arabidopsis halleri, a plant species where we recently documented a large number of species-specific miRNA genes, likely to represent recent events of emergence. Analysis of sequence homology across the genome indicates that a diversity of sources contributes to the emergence of new miRNA genes, including inverted duplications from protein-coding genes, rearrangements of transposable element (TE) sequences, and duplications of preexisting miRNA genes. Our observations indicate that the origin from protein-coding genes was less common than was previously considered. In contrast, we estimate that almost half of the new miRNA genes likely emerged from TEs. Miniature inverted-repeat TEs (MITEs) seem to be particularly important contributors to new miRNA genes, with the Harbinger and Mariner TE superfamilies representing disproportionate sources for their emergence. We further analyzed the recent expansion of a miRNA family derived from MuDR elements and the duplication of miRNA genes formed by two hAT transposons. Overall, our results illustrate the rapid pace at which new regulatory elements can arise from the modification of preexisting sequences in a genome and highlight the central role of certain categories of TEs in this process.
Collapse
Affiliation(s)
- Flavia Pavan
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Eléanore Lacoste
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Vincent Castric
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Sylvain Legrand
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
2
|
Catto MA, Ghosh S, Pandey S, Mondal B, Simmons A, Hunt BG, Srinivasan R. A plant virus differentially alters DNA methylation in two cryptic species of a hemipteran vector. NPJ VIRUSES 2024; 2:35. [PMID: 40295854 PMCID: PMC11721087 DOI: 10.1038/s44298-024-00044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/27/2024] [Indexed: 04/30/2025]
Abstract
Epigenetic patterns including DNA methylation are known to vary between distantly related species, but it is not clear how these patterns differ at an intraspecific level. The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Aleyrodidae; Hemiptera), encompasses several cryptic species. These cryptic species possess highly similar genomes but exhibit substantial biological and physiological differences. B. tabaci cryptic species are invasive, highly polyphagous, and transmit an array of plant infecting single stranded DNA viruses (ssDNA) -begomoviruses. In this study, DNA methylation patterns around genes and genomic features of two prominent B. tabaci cryptic species were investigated following acquisition of a monopartite ssDNA virus -tomato yellow curl virus. The cryptic species investigated included: B (also known as Middle East Asia Minor 1) and Q (also known as Mediterranean). Genomic features, such as promoters, gene bodies, and transposable elements were assessed for methylation levels in both B and Q cryptic species. Despite overall similar trends, both cryptic species showed differences in methylation levels between these genomic features. Virus induced differentially methylated regions were associated with predominantly distinct genes in B and Q cryptic species. All differentially methylated regions were assessed for differential gene expression and alternative splicing events with and without virus acquisition. DNA methylation levels were found to have a negative correlation with differential gene expression in both B and Q cryptic species. The differentially expressed genes were further grouped into hyper- and hypomethylated clusters. These clusters included genes with implications for virus-vector interactions including immune functions and xenobiotics' detoxification. The observed DNA methylation pattern differences within each cryptic species could, in part, explain some of the biological and physiological differences between them.
Collapse
Affiliation(s)
- Michael A Catto
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Saptarshi Ghosh
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Sudeep Pandey
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Banani Mondal
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | | | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA, USA.
| | | |
Collapse
|
3
|
Prabaharan C, Figiel M, Szczepanowski RH, Skowronek K, Zajko W, Thangaraj V, Chamera S, Nowak E, Nowotny M. Structural and biochemical characterization of cauliflower mosaic virus reverse transcriptase. J Biol Chem 2024; 300:107555. [PMID: 39002684 PMCID: PMC11363490 DOI: 10.1016/j.jbc.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Reverse transcriptases (RTs) are enzymes with DNA polymerase and RNase H activities. They convert ssRNA into dsDNA and are key enzymes for the replication of retroviruses and retroelements. Caulimoviridae is a major family of plant-infecting viruses. Caulimoviruses have a circular dsDNA genome that is replicated by reverse transcription, but in contrast to retroviruses, they lack integrase. Caulimoviruses are related to Ty3 retroelements. Ty3 RT has been extensively studied structurally and biochemically, but corresponding information for caulimoviral RTs is unavailable. In the present study, we report the first crystal structure of cauliflower mosaic virus (CaMV) RT in complex with a duplex made of RNA and DNA strands (RNA/DNA hybrid). CaMV RT forms a monomeric complex with the hybrid, unlike Ty3 RT, which does so as a dimer. Results of the RNA-dependent DNA polymerase and DNA-dependent DNA polymerase activity assays showed that individual CaMV RT molecules are able to perform full polymerase functions. However, our analyses showed that an additional CaMV RT molecule needs to transiently associate with a polymerase-competent RT molecule to execute RNase H cuts of the RNA strand. Collectively, our results provide details into the structure and function of CaMV RT and describe how the enzyme compares to other related RTs.
Collapse
Affiliation(s)
- Chandrasekaran Prabaharan
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Roman H Szczepanowski
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Vinuchakkaravarthy Thangaraj
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Maiwald S, Mann L, Garcia S, Heitkam T. Evolving Together: Cassandra Retrotransposons Gradually Mirror Promoter Mutations of the 5S rRNA Genes. Mol Biol Evol 2024; 41:msae010. [PMID: 38262464 PMCID: PMC10853983 DOI: 10.1093/molbev/msae010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
The 5S rRNA genes are among the most conserved nucleotide sequences across all species. Similar to the 5S preservation we observe the occurrence of 5S-related nonautonomous retrotransposons, so-called Cassandras. Cassandras harbor highly conserved 5S rDNA-related sequences within their long terminal repeats, advantageously providing them with the 5S internal promoter. However, the dynamics of Cassandra retrotransposon evolution in the context of 5S rRNA gene sequence information and structural arrangement are still unclear, especially: (1) do we observe repeated or gradual domestication of the highly conserved 5S promoter by Cassandras and (2) do changes in 5S organization such as in the linked 35S-5S rDNA arrangements impact Cassandra evolution? Here, we show evidence for gradual co-evolution of Cassandra sequences with their corresponding 5S rDNAs. To follow the impact of 5S rDNA variability on Cassandra TEs, we investigate the Asteraceae family where highly variable 5S rDNAs, including 5S promoter shifts and both linked and separated 35S-5S rDNA arrangements have been reported. Cassandras within the Asteraceae mirror 5S rDNA promoter mutations of their host genome, likely as an adaptation to the host's specific 5S transcription factors and hence compensating for evolutionary changes in the 5S rDNA sequence. Changes in the 5S rDNA sequence and in Cassandras seem uncorrelated with linked/separated rDNA arrangements. We place all these observations into the context of angiosperm 5S rDNA-Cassandra evolution, discuss Cassandra's origin hypotheses (single or multiple) and Cassandra's possible impact on rDNA and plant genome organization, giving new insights into the interplay of ribosomal genes and transposable elements.
Collapse
Affiliation(s)
- Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC-MCNB), 08038 Barcelona, Catalonia, Spain
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, 8010 Graz, Austria
| |
Collapse
|
5
|
Koonin EV, Kuhn JH, Dolja VV, Krupovic M. Megataxonomy and global ecology of the virosphere. THE ISME JOURNAL 2024; 18:wrad042. [PMID: 38365236 PMCID: PMC10848233 DOI: 10.1093/ismejo/wrad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
Nearly all organisms are hosts to multiple viruses that collectively appear to be the most abundant biological entities in the biosphere. With recent advances in metagenomics and metatranscriptomics, the known diversity of viruses substantially expanded. Comparative analysis of these viruses using advanced computational methods culminated in the reconstruction of the evolution of major groups of viruses and enabled the construction of a virus megataxonomy, which has been formally adopted by the International Committee on Taxonomy of Viruses. This comprehensive taxonomy consists of six virus realms, which are aspired to be monophyletic and assembled based on the conservation of hallmark proteins involved in capsid structure formation or genome replication. The viruses in different major taxa substantially differ in host range and accordingly in ecological niches. In this review article, we outline the latest developments in virus megataxonomy and the recent discoveries that will likely lead to reassessment of some major taxa, in particular, split of three of the current six realms into two or more independent realms. We then discuss the correspondence between virus taxonomy and the distribution of viruses among hosts and ecological niches, as well as the abundance of viruses versus cells in different habitats. The distribution of viruses across environments appears to be primarily determined by the host ranges, i.e. the virome is shaped by the composition of the biome in a given habitat, which itself is affected by abiotic factors.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, United States
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 75015 Paris, France
| |
Collapse
|
6
|
Biryukov M, Ustyantsev K. Origin and Evolution of Plant Long Terminal Repeat Retrotransposons with Additional Ribonuclease H. Genome Biol Evol 2023; 15:evad161. [PMID: 37697050 PMCID: PMC10508981 DOI: 10.1093/gbe/evad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Retroviruses originated from long terminal repeat retrotransposons (LTR-RTs) through several structural adaptations. One such modification was the arrangement of an additional ribonuclease H (aRH) domain next to native RH, followed by degradation and subfunctionalization of the latter. We previously showed that this retrovirus-like structure independently evolved in Tat LTR-RTs in flowering plants, proposing its origin from sequential rearrangements of ancestral Tat structures identified in lycophytes and conifers. However, most nonflowering plant genome assemblies were not available at that time, therefore masking the history of aRH acquisition by Tat and challenging our hypothesis. Here, we revisited Tat's evolution scenario upon the aRH acquisition by covering most of the extant plant phyla. We show that Tat evolved and obtained aRH in an ancestor of land plants. Importantly, we found the retrovirus-like structure in clubmosses, hornworts, ferns, and gymnosperms, suggesting its ancient origin, broad propagation, and yet-to-be-understood benefit for the LTR-RTs' adaptation.
Collapse
Affiliation(s)
- Mikhail Biryukov
- Sector of Molecular and Genetic Mechanisms of Regeneration, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Kirill Ustyantsev
- Sector of Molecular and Genetic Mechanisms of Regeneration, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
7
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Dazenière J, Bousios A, Eyre-Walker A. Patterns of selection in the evolution of a transposable element. G3 GENES|GENOMES|GENETICS 2022; 12:6545286. [PMID: 35262706 PMCID: PMC9073684 DOI: 10.1093/g3journal/jkac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022]
Abstract
Transposable elements are a major component of most eukaryotic genomes. Here, we present a new approach which allows us to study patterns of natural selection in the evolution of transposable elements over short time scales. The method uses the alignment of all elements with intact gag/pol genes of a transposable element family from a single genome. We predict that the ratio of nonsynonymous to synonymous variants in the alignment should decrease as a function of the frequency of the variants, because elements with nonsynonymous variants that reduce transposition will have fewer progeny. We apply our method to Sirevirus long-terminal repeat retrotransposons that are abundant in maize and other plant species and show that nonsynonymous to synonymous variants declines as variant frequency increases, indicating that negative selection is acting strongly on the Sirevirus genome. The asymptotic value of nonsynonymous to synonymous variants suggests that at least 85% of all nonsynonymous mutations in the transposable element reduce transposition. Crucially, these patterns in nonsynonymous to synonymous variants are only predicted to occur if the gene products from a particular transposable element insertion preferentially promote the transposition of the same insertion. Overall, by using large numbers of intact elements, this study sheds new light on the selective processes that act on transposable elements.
Collapse
Affiliation(s)
- Julie Dazenière
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Alexandros Bousios
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| |
Collapse
|
9
|
Abstract
The origin and deep evolution of retroviruses remain largely unclear. It has been proposed that retroviruses might have originated from a Ty3/Gypsy retrotransposon, but all known Ty3/Gypsy retrotransposons are only distantly related to retroviruses. Retroviruses and some plant Athila/Tat elements (within Ty3/Gypsy retrotransposons) independently evolved a dual RNase H domain and an env/env-like gene. Here, we reported the discovery of a novel lineage of retrotransposons, designated Odin retrotransposons, in the genomes of eight sea anemones (order Actinaria) within the Cnidaria phylum. Odin retrotransposons exhibited unique genome features, encoding a dual RNase H domain (like retroviruses) but no env gene (like most Ty3/Gypsy retrotransposons). Phylogenetic analyses based on reverse transcriptase showed that Odin retrotransposons formed a sister group to lokiretroviruses, and lokiretroviruses and Odin retrotransposons together were sister to canonical retroviruses. Moreover, phylogenetic analyses based on RNase H and integrase also supported the hypothesis that Odin retrotransposons were sisters to lokiretroviruses. Lokiretroviruses and canonical retroviruses did not form a monophyletic group, indicating that lokiretroviruses and canonical retroviruses might represent two distinct virus families. Taken together, the discovery of Odin retrotransposons narrowed down the evolutionary gaps between retrotransposons and canonical retroviruses and lokiretroviruses.
Collapse
|
10
|
DARTS: An Algorithm for Domain-Associated Retrotransposon Search in Genome Assemblies. Genes (Basel) 2021; 13:genes13010009. [PMID: 35052350 PMCID: PMC8775202 DOI: 10.3390/genes13010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023] Open
Abstract
Retrotransposons comprise a substantial fraction of eukaryotic genomes, reaching the highest proportions in plants. Therefore, identification and annotation of retrotransposons is an important task in studying the regulation and evolution of plant genomes. The majority of computational tools for mining transposable elements (TEs) are designed for subsequent genome repeat masking, often leaving aside the element lineage classification and its protein domain composition. Additionally, studies focused on the diversity and evolution of a particular group of retrotransposons often require substantial customization efforts from researchers to adapt existing software to their needs. Here, we developed a computational pipeline to mine sequences of protein-coding retrotransposons based on the sequences of their conserved protein domains—DARTS (Domain-Associated Retrotransposon Search). Using the most abundant group of TEs in plants—long terminal repeat (LTR) retrotransposons (LTR-RTs)—we show that DARTS has radically higher sensitivity for LTR-RT identification compared to the widely accepted tool LTRharvest. DARTS can be easily customized for specific user needs. As a result, DARTS returns a set of structurally annotated nucleotide and amino acid sequences which can be readily used in subsequent comparative and phylogenetic analyses. DARTS may facilitate researchers interested in the discovery and detailed analysis of the diversity and evolution of retrotransposons, LTR-RTs, and other protein-coding TEs.
Collapse
|
11
|
Ilina TV, Brosenitsch T, Sluis-Cremer N, Ishima R. Retroviral RNase H: Structure, mechanism, and inhibition. Enzymes 2021; 50:227-247. [PMID: 34861939 DOI: 10.1016/bs.enz.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All retroviruses encode the enzyme, reverse transcriptase (RT), which is involved in the conversion of the single-stranded viral RNA genome into double-stranded DNA. RT is a multifunctional enzyme and exhibits DNA polymerase and ribonuclease H (RNH) activities, both of which are essential to the reverse-transcription process. Despite the successful development of polymerase-targeting antiviral drugs over the last three decades, no bona fide inhibitor against the RNH activity of HIV-1 RT has progressed to clinical evaluation. In this review article, we describe the retroviral RNH function and inhibition, with primary consideration of the structural aspects of inhibition.
Collapse
Affiliation(s)
- Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Teresa Brosenitsch
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
12
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
13
|
Abstract
Reverse transcriptases (RTs) use their DNA polymerase and RNase H activities to catalyze the conversion of single-stranded RNA to double-stranded DNA (dsDNA), a crucial process for the replication of retroviruses. Foamy viruses (FVs) possess a unique RT, which is a fusion with the protease (PR) domain. The mechanism of substrate binding by this enzyme has been unknown. Here, we report a crystal structure of monomeric full-length marmoset FV (MFV) PR-RT in complex with an RNA/DNA hybrid substrate. We also describe a structure of MFV PR-RT with an RNase H deletion in complex with a dsDNA substrate in which the enzyme forms an asymmetric homodimer. Cryo-electron microscopy reconstruction of the full-length MFV PR-RT–dsDNA complex confirmed the dimeric architecture. These findings represent the first structural description of nucleic acid binding by a foamy viral RT and demonstrate its ability to change its oligomeric state depending on the type of bound nucleic acid. IMPORTANCE Reverse transcriptases (RTs) are intriguing enzymes converting single-stranded RNA to dsDNA. Their activity is essential for retroviruses, which are divided into two subfamilies differing significantly in their life cycles: Orthoretrovirinae and Spumaretrovirinae. The latter family is much more ancient and comprises five genera. A unique feature of foamy viral RTs is that they contain N-terminal protease (PR) domains, which are not present in orthoretroviral enzymes. So far, no structural information for full-length foamy viral PR-RT interacting with nucleic substrates has been reported. Here, we present crystal and cryo-electron microscopy structures of marmoset foamy virus (MFV) PR-RT. These structures revealed the mode of binding of RNA/DNA and dsDNA substrates. Moreover, unexpectedly, the structures and biochemical data showed that foamy viral PR-RT can adopt both a monomeric configuration, which is observed in our structures in the presence of an RNA/DNA hybrid, and an asymmetric dimer arrangement, which we observed in the presence of dsDNA.
Collapse
|
14
|
Yedavalli VRK, Patil A, Parrish J, Kozak CA. A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis. Retrovirology 2021; 18:20. [PMID: 34261506 PMCID: PMC8278194 DOI: 10.1186/s12977-021-00564-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.
Collapse
Affiliation(s)
- Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Akash Patil
- Department of Biomedical Engineering, John Hopkins University, Baltimore, MD, 21205, USA
| | - Janay Parrish
- Internal Medicine, Northwell Health, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Wang J, Han GZ. A Sister Lineage of Sampled Retroviruses Corroborates the Complex Evolution of Retroviruses. Mol Biol Evol 2021; 38:1031-1039. [PMID: 33249491 PMCID: PMC7947760 DOI: 10.1093/molbev/msaa272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The origin and deep history of retroviruses remain mysterious and contentious, largely because the diversity of retroviruses is incompletely understood. Here, we report the discovery of lokiretroviruses, a novel major lineage of retroviruses, within the genomes of a wide range of vertebrates (at least 137 species), including lampreys, ray-finned fishes, lobe-finned fishes, amphibians, and reptiles. Lokiretroviruses share a similar genome architecture with known retroviruses, but display some unique features. Interestingly, lokiretrovirus Env proteins share detectable similarity with fusion glycoproteins of viruses within the Mononegavirales order, blurring the boundary between retroviruses and negative sense single-stranded RNA viruses. Phylogenetic analyses based on reverse transcriptase demonstrate that lokiretroviruses are sister to all the retroviruses sampled to date, providing a crucial nexus for studying the deep history of retroviruses. Comparing congruence between host and virus phylogenies suggests lokiretroviruses mainly underwent cross-species transmission. Moreover, we find that retroviruses replaced their ribonuclease H and integrase domains multiple times during their evolutionary course, revealing the importance of domain shuffling in the evolution of retroviruses. Overall, our findings greatly expand our views of the diversity of retroviruses, and provide novel insights into the origin and complex evolutionary history of retroviruses.
Collapse
Affiliation(s)
- Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA 2021; 12:2. [PMID: 33436076 PMCID: PMC7805219 DOI: 10.1186/s13100-020-00230-y] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/28/2020] [Indexed: 02/02/2023] Open
Abstract
Dfam is an open access database of repetitive DNA families, sequence models, and genome annotations. The 3.0-3.3 releases of Dfam ( https://dfam.org ) represent an evolution from a proof-of-principle collection of transposable element families in model organisms into a community resource for a broad range of species, and for both curated and uncurated datasets. In addition, releases since Dfam 3.0 provide auxiliary consensus sequence models, transposable element protein alignments, and a formalized classification system to support the growing diversity of organisms represented in the resource. The latest release includes 266,740 new de novo generated transposable element families from 336 species contributed by the EBI. This expansion demonstrates the utility of many of Dfam's new features and provides insight into the long term challenges ahead for improving de novo generated transposable element datasets.
Collapse
Affiliation(s)
| | - Robert Hubley
- Institute for Systems Biology, Seattle, WA, 98109, USA.
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Arian F Smit
- Institute for Systems Biology, Seattle, WA, 98109, USA.
| |
Collapse
|
17
|
Cisneros-Martínez AM, Becerra A, Lazcano A. Ancient gene duplications in RNA viruses revealed by protein tertiary structure comparisons. Virus Evol 2021; 7:veab019. [PMID: 33758672 PMCID: PMC7967035 DOI: 10.1093/ve/veab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To date only a handful of duplicated genes have been described in RNA viruses. This shortage can be attributed to different factors, including the RNA viruses with high mutation rate that would make a large genome more prone to acquire deleterious mutations. This may explain why sequence-based approaches have only found duplications in their most recent evolutionary history. To detect earlier duplications, we performed protein tertiary structure comparisons for every RNA virus family represented in the Protein Data Bank. We present a list of thirty pairs of possible paralogs with <30 per cent sequence identity. It is argued that these pairs are the outcome of six duplication events. These include the α and β subunits of the fungal toxin KP6 present in the dsRNA Ustilago maydis virus (family Totiviridae), the SARS-CoV (Coronaviridae) nsp3 domains SUD-N, SUD-M and X-domain, the Picornavirales (families Picornaviridae, Dicistroviridae, Iflaviridae and Secoviridae) capsid proteins VP1, VP2 and VP3, and the Enterovirus (family Picornaviridae) 3C and 2A cysteine-proteases. Protein tertiary structure comparisons may reveal more duplication events as more three-dimensional protein structures are determined and suggests that, although still rare, gene duplications may be more frequent in RNA viruses than previously thought. Keywords: gene duplications; RNA viruses.
Collapse
Affiliation(s)
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, Mexico City, Mexico
| |
Collapse
|
18
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
19
|
Gazda LD, Joóné Matúz K, Nagy T, Mótyán JA, Tőzsér J. Biochemical characterization of Ty1 retrotransposon protease. PLoS One 2020; 15:e0227062. [PMID: 31917798 PMCID: PMC6952103 DOI: 10.1371/journal.pone.0227062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023] Open
Abstract
Ty1 is one of the many transposons in the budding yeast Saccharomyces cerevisiae. The life-cycle of Ty1 shows numerous similarities with that of retroviruses, e.g. the initially synthesized polyprotein precursor undergoes proteolytic processing by the protease. The retroviral proteases have become important targets of current antiretroviral therapies due to the critical role of the limited proteolysis of Gag-Pol polyprotein in the replication cycle and they therefore belong to the most well-studied enzymes. Comparative analyses of retroviral and retroviral-like proteases can help to explore the key similarities and differences which may help understanding how resistance is developed against protease inhibitors, but the available information about the structural and biochemical characteristics of retroviral-like, and especially retrotransposon, proteases is limited. To investigate the main characteristics of Ty1 retrotransposon protease of Saccharomyces cerevisiae, untagged and His6-tagged forms of Ty1 protease were expressed in E. coli. After purification of the recombinant proteins, activity measurements were performed using synthetic oligopeptide and fluorescent recombinant protein substrates, which represented the wild-type and the modified forms of naturally occurring cleavage sites of the protease. We investigated the dependence of enzyme activity on different reaction conditions (pH, temperature, ionic strength, and urea concentration), and determined enzyme kinetic parameters for the studied substrates. Inhibitory potentials of 10 different protease inhibitors were also tested. Ty1 protease was not inhibited by the inhibitors which have been designed against human immunodeficiency virus type 1 protease and are approved as antiretroviral therapeutics. A quaternary structure of homodimeric Ty1 protease was proposed based on homology modeling, and this structure was used to support interpretation of experimental results and to correlate some structural and biochemical characteristics with that of other retroviral proteases.
Collapse
Affiliation(s)
- Lívia Diána Gazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Joóné Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (JAM); (JT)
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (JAM); (JT)
| |
Collapse
|
20
|
Im J, Kim HS. Genetic features of Haliotis discus hannai by infection of vibrio and virus. Genes Genomics 2019; 42:117-125. [PMID: 31776802 DOI: 10.1007/s13258-019-00892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Haliotis discus hannai more commonly referred to as the Pacific Abalone is of significant commercial and economical value in South Korea, with it being the second largest producer in the world. Despite this significance there is a lack of genetic studies with regards to the species. Most existing studies focused mainly on environmental factors. OBJECTIVE To provide a comprehensive review describing the genetic feature of Haliotis discus hannai by infection of vibrio and virus. METHODS This review summarized the immune response in the Haliotis spp. with regards to immunological genes such as Cathepsin B, C-type lectin and Toll-like receptors. Genetic studies with regards to transposable elements and miRNAs are few and far between. A study identified LTR retrotransposon Ty3/gypsy in the species. As to miRNA, a single study identified numerous miRNAs in the Haliotis discus hannai. CONCLUSION This paper sought to provide an overview of genetic perspective with regards to immune response genes, transposable elements and miRNAs.
Collapse
Affiliation(s)
- Jennifer Im
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea. .,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
21
|
Luchetti A, Lomiento M, Mantovani B. Riding the Wave: The SINE-Specific V Highly-Conserved Domain Spread into Mammalian Genomes Exploiting the Replication Burst of the MER6 DNA Transposon. Int J Mol Sci 2019; 20:ijms20225607. [PMID: 31717545 PMCID: PMC6887750 DOI: 10.3390/ijms20225607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Transposable elements are widely distributed within genomes where they may significantly impact their evolution and cell functions. Short interspersed elements (SINEs) are non-autonomous, fast-evolving elements, but some of them carry a highly conserved domain (HCD), whose sequence remained substantially unchanged throughout the metazoan evolution. SINEs carrying the HCD called V are absent in amniote genomes, but V-like sequences were found within the miniature inverted-repeat transposable element (MITE) MER6 in Homo sapiens. In the present work, the genomic distribution and evolution of MER6 are investigated, in order to reconstruct the origin of human V domain and to envisage its possible functional role. The analysis of 85 tetrapod genomes revealed that MER6 and its variant MER6A are found in primates, while only the MER6A variant was found in bats and eulipotyphlans. These MITEs appeared no longer active, in line with literature data on mammalian DNA transposons. Moreover, they appeared to have originated from a Mariner element found in turtles and from a V-SINE from bony fishes. MER6 insertions were found within genes and conserved in mRNAs: in line with previous hypothesis on functional role of HCDs, the MER6 V domain may be important for cell function also in mammals.
Collapse
Affiliation(s)
- Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-209-4165
| | - Mariana Lomiento
- Sant’Orsola Malpighi Hospital, University of Bologna, 40138 Bologna Italy;
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
22
|
Ribeiro YC, Robe LJ, Veluza DS, Dos Santos CMB, Lopes ALK, Krieger MA, Ludwig A. Study of VIPER and TATE in kinetoplastids and the evolution of tyrosine recombinase retrotransposons. Mob DNA 2019; 10:34. [PMID: 31391870 PMCID: PMC6681497 DOI: 10.1186/s13100-019-0175-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Background Kinetoplastids are a flagellated group of protists, including some parasites, such as Trypanosoma and Leishmania species, that can cause diseases in humans and other animals. The genomes of these species enclose a fraction of retrotransposons including VIPER and TATE, two poorly studied transposable elements that encode a tyrosine recombinase (YR) and were previously classified as DIRS elements. This study investigated the distribution and evolution of VIPER and TATE in kinetoplastids to understand the relationships of these elements with other retrotransposons. Results We observed that VIPER and TATE have a discontinuous distribution among Trypanosomatidae, with several events of loss and degeneration occurring during a vertical transfer evolution. We were able to identify the terminal repeats of these elements for the first time, and we showed that these elements are potentially active in some species, including T. cruzi copies of VIPER. We found that VIPER and TATE are strictly related elements, which were named in this study as VIPER-like. The reverse transcriptase (RT) tree presented a low resolution, and the origin and relationships among YR groups remain uncertain. Conversely, for RH, VIPER-like grouped with Hepadnavirus, whereas for YR, VIPER-like sequences constituted two different clades that are closely allied to Crypton. Distinct topologies among RT, RH and YR trees suggest ancient rearrangements/exchanges in domains and a modular pattern of evolution with putative independent origins for each ORF. Conclusions Due to the presence of both elements in Bodo saltans, a nontrypanosomatid species, we suggested that VIPER and TATE have survived and remained active for more than 400 million years or were reactivated during the evolution of the host species. We did not find clear evidence of independent origins of VIPER-like from the other YR retroelements, supporting the maintenance of the DIRS group of retrotransposons. Nevertheless, according to phylogenetic findings and sequence structure obtained by this study and other works, we proposed separating DIRS elements into four subgroups: DIRS-like, PAT-like, Ngaro-like, and VIPER-like. Electronic supplementary material The online version of this article (10.1186/s13100-019-0175-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasmin Carla Ribeiro
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Lizandra Jaqueline Robe
- 2Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | | | | | - Ana Luisa Kalb Lopes
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | | | - Adriana Ludwig
- 4Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR Brazil
| |
Collapse
|
23
|
Hyjek M, Figiel M, Nowotny M. RNases H: Structure and mechanism. DNA Repair (Amst) 2019; 84:102672. [PMID: 31371183 DOI: 10.1016/j.dnarep.2019.102672] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
RNases H are a family of endonucleases that hydrolyze RNA residues in various nucleic acids. These enzymes are present in all branches of life, and their counterpart domains are also found in reverse transcriptases (RTs) from retroviruses and retroelements. RNases H are divided into two main classes (RNases H1 and H2 or type 1 and type 2 enzymes) with common structural features of the catalytic domain but different range of substrates for enzymatic cleavage. Additionally, a third class is found in some Archaea and bacteria. Besides distinct cellular functions specific for each type of RNases H, this family of proteins is generally involved in the maintenance of genome stability with overlapping and cooperative role in removal of R-loops thus preventing their accumulation. Extensive biochemical and structural studies of RNases H provided not only a comprehensive and complete picture of their mechanism but also revealed key basic principles of nucleic acid recognition and processing. RNase H1 is present in prokaryotes and eukaryotes and cleaves RNA in RNA/DNA hybrids. Its main function is hybrid removal, notably in the context of R-loops. RNase H2, which is also present in all branches of life, can play a similar role but it also has a specialized function in the cleavage of single ribonucleotides embedded in the DNA. RNase H3 is present in Archaea and bacteria and is closely related to RNase H2 in sequence and structure but has RNase H1-like biochemical properties. This review summarizes the mechanisms of substrate recognition and enzymatic cleavage by different classes of RNases H with particular insights into structural features of nucleic acid binding, specificity towards RNA and/or DNA strands and catalysis.
Collapse
Affiliation(s)
- Malwina Hyjek
- ProBiostructures, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland.
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland.
| | - Marcin Nowotny
- ProBiostructures, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland; Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland.
| |
Collapse
|
24
|
Choi J, Hwang SY, Ahn K. Interplay between RNASEH2 and MOV10 controls LINE-1 retrotransposition. Nucleic Acids Res 2019; 46:1912-1926. [PMID: 29315404 PMCID: PMC5829647 DOI: 10.1093/nar/gkx1312] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/23/2017] [Indexed: 01/22/2023] Open
Abstract
Long interspersed nuclear element 1 is an autonomous non-long terminal repeat retrotransposon that comprises ∼17% of the human genome. Its spontaneous retrotransposition and the accumulation of heritable L1 insertions can potentially result in genome instability and sporadic disorders. Moloney leukemia virus 10 homolog (MOV10), a putative RNA helicase, has been implicated in inhibiting L1 replication, although its underlying mechanism of action remains obscure. Moreover, the physiological relevance of MOV10-mediated L1 regulation in human disease has not yet been examined. Using a proteomic approach, we identified RNASEH2 as a binding partner of MOV10. We show that MOV10 interacts with RNASEH2, and their interplay is crucial for restricting L1 retrotransposition. RNASEH2 and MOV10 co-localize in the nucleus, and RNASEH2 binds to L1 RNAs in a MOV10-dependent manner. Small hairpin RNA-mediated depletion of either RNASEH2A or MOV10 results in an accumulation of L1-specific RNA-DNA hybrids, suggesting they contribute to prevent formation of vital L1 heteroduplexes during retrotransposition. Furthermore, we show that RNASEH2-MOV10-mediated L1 restriction downregulates expression of the rheumatoid arthritis-associated inflammatory cytokines and matrix-degrading proteinases in synovial cells, implicating a potential causal relationship between them and disease development in terms of disease predisposition.
Collapse
Affiliation(s)
- Jongsu Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Yeon Hwang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Moelling K, Broecker F. Viruses and Evolution - Viruses First? A Personal Perspective. Front Microbiol 2019; 10:523. [PMID: 30941110 PMCID: PMC6433886 DOI: 10.3389/fmicb.2019.00523] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
The discovery of exoplanets within putative habitable zones revolutionized astrobiology in recent years. It stimulated interest in the question about the origin of life and its evolution. Here, we discuss what the roles of viruses might have been at the beginning of life and during evolution. Viruses are the most abundant biological entities on Earth. They are present everywhere, in our surrounding, the oceans, the soil and in every living being. Retroviruses contributed to about half of our genomic sequences and to the evolution of the mammalian placenta. Contemporary viruses reflect evolution ranging from the RNA world to the DNA-protein world. How far back can we trace their contribution? Earliest replicating and evolving entities are the ribozymes or viroids fulfilling several criteria of life. RNA can perform many aspects of life and influences our gene expression until today. The simplest structures with non-protein-coding information may represent models of life built on structural, not genetic information. Viruses today are obligatory parasites depending on host cells. Examples of how an independent lifestyle might have been lost include mitochondria, chloroplasts, Rickettsia and others, which used to be autonomous bacteria and became intracellular parasites or endosymbionts, thereby losing most of their genes. Even in vitro the loss of genes can be recapitulated all the way from coding to non-coding RNA. Furthermore, the giant viruses may indicate that there is no sharp border between living and non-living entities but an evolutionary continuum. Here, it is discussed how viruses can lose and gain genes, and that they are essential drivers of evolution. This discussion may stimulate the thinking about viruses as early possible forms of life. Apart from our view “viruses first”, there are others such as “proteins first” and “metabolism first.”
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 2019; 10:1. [PMID: 30622655 PMCID: PMC6317226 DOI: 10.1186/s13100-018-0144-1] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plant LTR-retrotransposons are classified into two superfamilies, Ty1/copia and Ty3/gypsy. They are further divided into an enormous number of families which are, due to the high diversity of their nucleotide sequences, usually specific to a single or a group of closely related species. Previous attempts to group these families into broader categories reflecting their phylogenetic relationships were limited either to analyzing a narrow range of plant species or to analyzing a small numbers of elements. Furthermore, there is no reference database that allows for similarity based classification of LTR-retrotransposons. RESULTS We have assembled a database of retrotransposon encoded polyprotein domains sequences extracted from 5410 Ty1/copia elements and 8453 Ty3/gypsy elements sampled from 80 species representing major groups of green plants (Viridiplantae). Phylogenetic analysis of the three most conserved polyprotein domains (RT, RH and INT) led to dividing Ty1/copia and Ty3/gypsy retrotransposons into 16 and 14 lineages respectively. We also characterized various features of LTR-retrotransposon sequences including additional polyprotein domains, extra open reading frames and primer binding sites, and found that the occurrence and/or type of these features correlates with phylogenies inferred from the three protein domains. CONCLUSIONS We have established an improved classification system applicable to LTR-retrotransposons from a wide range of plant species. This system reflects phylogenetic relationships as well as distinct sequence and structural features of the elements. A comprehensive database of retrotransposon protein domains (REXdb) that reflects this classification provides a reference for efficient and unified annotation of LTR-retrotransposons in plant genomes. Access to REXdb related tools is implemented in the RepeatExplorer web server (https://repeatexplorer-elixir.cerit-sc.cz/) or using a standalone version of REXdb that can be downloaded seaparately from RepeatExplorer web page (http://repeatexplorer.org/).
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Nina Hoštáková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| |
Collapse
|
27
|
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten things you should know about transposable elements. Genome Biol 2018; 19:199. [PMID: 30454069 PMCID: PMC6240941 DOI: 10.1186/s13059-018-1577-z] [Citation(s) in RCA: 762] [Impact Index Per Article: 108.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes. However, the extent of their impact on genome evolution, function, and disease remain a matter of intense interrogation. The rise of genomics and large-scale functional assays has shed new light on the multi-faceted activities of TEs and implies that they should no longer be marginalized. Here, we introduce the fundamental properties of TEs and their complex interactions with their cellular environment, which are crucial to understanding their impact and manifold consequences for organismal biology. While we draw examples primarily from mammalian systems, the core concepts outlined here are relevant to a broad range of organisms.
Collapse
Affiliation(s)
- Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, Québec, H3A 0G1, Canada.
- Canadian Center for Computational Genomics, McGill University, Montréal, Québec, H3A 0G1, Canada.
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Michaël Imbeault
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Henry L Levin
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of BC, Vancouver, BC, V5Z1L3, Canada
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
28
|
Distinguishing friends, foes, and freeloaders in giant genomes. Curr Opin Genet Dev 2018; 49:49-55. [DOI: 10.1016/j.gde.2018.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
|
29
|
van Onselen R, Downing T. BMAA-protein interactions: A possible new mechanism of toxicity. Toxicon 2018; 143:74-80. [DOI: 10.1016/j.toxicon.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
|
30
|
Kielpinski LJ, Hagedorn PH, Lindow M, Vinther J. RNase H sequence preferences influence antisense oligonucleotide efficiency. Nucleic Acids Res 2018; 45:12932-12944. [PMID: 29126318 PMCID: PMC5728404 DOI: 10.1093/nar/gkx1073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022] Open
Abstract
RNase H cleaves RNA in RNA-DNA duplexes. It is present in all domains of life as well as in multiple viruses and is essential for mammalian development and for human immunodeficiency virus replication. Here, we developed a sequencing-based method to measure the cleavage of thousands of different RNA-DNA duplexes and thereby comprehensively characterized the sequence preferences of HIV-1, human and Escherichia coli RNase H enzymes. We find that the catalytic domains of E. coli and human RNase H have nearly identical sequence preferences, which correlate with the efficiency of RNase H-recruiting antisense oligonucleotides. The sequences preferred by HIV-1 RNase H are distributed in the HIV genome in a way suggesting selection for efficient RNA cleavage during replication. Our findings can be used to improve the design of RNase H-recruiting antisense oligonucleotides and show that sequence preferences of HIV-1 RNase H may have shaped evolution of the viral genome and contributed to the use of tRNA-Lys3 as primer during viral replication.
Collapse
Affiliation(s)
- Lukasz J Kielpinski
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Fremtidsvej 3, DK-2970 Hørsholm, Denmark
| | - Peter H Hagedorn
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Fremtidsvej 3, DK-2970 Hørsholm, Denmark
| | - Morten Lindow
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Fremtidsvej 3, DK-2970 Hørsholm, Denmark
| | - Jeppe Vinther
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
31
|
Arkhipova IR, Yushenova IA, Rodriguez F. Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres. Mol Biol Evol 2017; 34:2245-2257. [PMID: 28575409 PMCID: PMC5850863 DOI: 10.1093/molbev/msx159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here, we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3′-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple cooriented ORFs, including DEDDy 3′-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of interfamily variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| | - Irina A Yushenova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| | - Fernando Rodriguez
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| |
Collapse
|
32
|
Döring J, Hurek T. Arm-specific cleavage and mutation during reverse transcription of 2΄,5΄-branched RNA by Moloney murine leukemia virus reverse transcriptase. Nucleic Acids Res 2017; 45:3967-3984. [PMID: 28160599 PMCID: PMC5399748 DOI: 10.1093/nar/gkx073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 01/30/2017] [Indexed: 11/14/2022] Open
Abstract
Branchpoint nucleotides of intron lariats induce pausing of DNA synthesis by reverse transcriptases (RTs), but it is not known yet how they direct RT RNase H activity on branched RNA (bRNA). Here, we report the effects of the two arms of bRNA on branchpoint-directed RNA cleavage and mutation produced by Moloney murine leukemia virus (M-MLV) RT during DNA polymerization. We constructed a long-chained bRNA template by splinted-ligation. The bRNA oligonucleotide is chimeric and contains DNA to identify RNA cleavage products by probe hybridization. Unique sequences surrounding the branchpoint facilitate monitoring of bRNA purification by terminal-restriction fragment length polymorphism analysis. We evaluate the M-MLV RT-generated cleavage and mutational patterns. We find that cleavage of bRNA and misprocessing of the branched nucleotide proceed arm-specifically. Bypass of the branchpoint from the 2΄-arm causes single-mismatch errors, whereas bypass from the 3΄-arm leads to deletion mutations. The non-template arm is cleaved when reverse transcription is primed from the 3΄-arm but not from the 2΄-arm. This suggests that RTs flip ∼180° at branchpoints and RNases H cleave the non-template arm depending on its accessibility. Our observed interplay between M-MLV RT and bRNA would be compatible with a bRNA-mediated control of retroviral and related retrotransposon replication.
Collapse
Affiliation(s)
- Jessica Döring
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| |
Collapse
|
33
|
Moelling K, Broecker F, Russo G, Sunagawa S. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense. Front Microbiol 2017; 8:1745. [PMID: 28959243 PMCID: PMC5603734 DOI: 10.3389/fmicb.2017.01745] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Retroviral infections are 'mini-symbiotic' events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of ZurichZurich, Switzerland
- Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New YorkNY, United States
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH Zurich/University of ZurichZurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology, ETH ZurichZurich, Switzerland
| |
Collapse
|
34
|
Homologous Capsid Proteins Testify to the Common Ancestry of Retroviruses, Caulimoviruses, Pseudoviruses, and Metaviruses. J Virol 2017; 91:JVI.00210-17. [PMID: 28356531 DOI: 10.1128/jvi.00210-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Protein-Coding Genes' Retrocopies and Their Functions. Viruses 2017; 9:v9040080. [PMID: 28406439 PMCID: PMC5408686 DOI: 10.3390/v9040080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, which could be delivered by either non-long terminal repeat (non-LTR) or LTR transposons. The majority of these copies are in a state of “relaxed” selection and remain “dormant” because they are lacking regulatory regions; however, many become functional. In the course of evolution, they may undergo subfunctionalization, neofunctionalization, or replace their progenitors. Functional retrocopies (retrogenes) can encode proteins, novel or similar to those encoded by their progenitors, can be used as alternative exons or create chimeric transcripts, and can also be involved in transcriptional interference and participate in the epigenetic regulation of parental gene expression. They can also act in trans as natural antisense transcripts, microRNA (miRNA) sponges, or a source of various small RNAs. Moreover, many retrocopies of protein-coding genes are linked to human diseases, especially various types of cancer.
Collapse
|
36
|
Kim SH, Kong Y, Bae YA. Recurrent emergence of structural variants of LTR retrotransposon CsRn1 evolving novel expression strategy and their selective expansion in a carcinogenic liver fluke, Clonorchis sinensis. Mol Biochem Parasitol 2017; 214:14-26. [PMID: 28322871 DOI: 10.1016/j.molbiopara.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Autonomous retrotransposons, in which replication and transcription are coupled, encode the essential gag and pol genes as a fusion or separate overlapping form(s) that are expressed in single transcripts regulated by a common upstream promoter. The element-specific expression strategies have driven development of relevant translational recoding mechanisms including ribosomal frameshifting to satisfy the protein stoichiometry critical for the assembly of infectious virus-like particles. Retrotransposons with different recoding strategies exhibit a mosaic distribution pattern across the diverse families of reverse transcribing elements, even though their respective distributions are substantially skewed towards certain family groups. However, only a few investigations to date have focused on the emergence of retrotransposons evolving novel expression strategy and causal genetic drivers of the structural variants. In this study, the bulk of genomic and transcribed sequences of a Ty3/gypsy-like CsRn1 retrotransposon in Clonorchis sinensis were analyzed for the comprehensive examination of its expression strategy. Our results demonstrated that structural variants with single open reading frame (ORF) have recurrently emerged from precedential CsRn1 copies encoding overlapping gag-pol ORFs by a single-nucleotide insertion in an upstream region of gag stop codon. In the parasite genome, some of the newly evolved variants appeared to undergo proliferative burst as active master lineages together with their ancestral copies. The genetic event was similarly observed in Opisthorchis viverrini, the closest neighbor of C. sinensis, whereas the resulting structural variants might have failed to overcome purifying selection and comprised minor remnant copies in the Opisthorchis genome.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Microbiology, College of Medicine, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
37
|
Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3. Viruses 2017; 9:v9030044. [PMID: 28294975 PMCID: PMC5371799 DOI: 10.3390/v9030044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme. Although the recently-solved structure of Ty3 RT in the presence of an RNA/DNA hybrid adds little in terms of novelty to the mechanistic basis underlying DNA polymerase and ribonuclease H activity, it highlights quite remarkable topological differences between retroviral and LTR-retrotransposon RTs. The theme of overall similarity but distinct differences extends to the priming mechanisms used by Ty3 RT to initiate (−) and (+) strand DNA synthesis. The unique structural organization of the retrotransposon enzyme and interaction with its nucleic acid substrates, with emphasis on polypurine tract (PPT)-primed initiation of (+) strand synthesis, is the subject of this review.
Collapse
|
38
|
Ustyantsev K, Blinov A, Smyshlyaev G. Convergence of retrotransposons in oomycetes and plants. Mob DNA 2017; 8:4. [PMID: 28293305 PMCID: PMC5348765 DOI: 10.1186/s13100-017-0087-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/07/2017] [Indexed: 12/30/2022] Open
Abstract
Background Retrotransposons comprise a ubiquitous and abundant class of eukaryotic transposable elements. All members of this class rely on reverse transcriptase activity to produce a DNA copy of the element from the RNA template. However, other activities of the retrotransposon-encoded polyprotein may differ between diverse retrotransposons. The polyprotein domains corresponding to each of these activities may have their own evolutionary history independent from that of the reverse transcriptase, thus underlying the modular view on the evolution of retrotransposons. Furthermore, some transposable elements can independently evolve similar domain architectures by acquiring functionally similar but phylogenetically distinct modules. This convergent evolution of retrotransposons may ultimately suggest similar regulatory pathways underlying the lifecycle of the elements. Results Here, we provide new examples of the convergent evolution of retrotransposons of species from two unrelated taxa: green plants and parasitic protozoan oomycetes. In the present study we first analyzed the available genomic sequences of oomycete species and characterized two groups of Ty3/Gypsy long terminal repeat retrotransposons, namely Chronos and Archon, and a subgroup of L1 non-long terminal repeat retrotransposons. The results demonstrated that the retroelements from these three groups each have independently acquired plant-related ribonuclease H domains. This process closely resembles the evolution of retrotransposons in the genomes of green plants. In addition, we showed that Chronos elements captured a chromodomain, mimicking the process of chromodomain acquisition by Chromoviruses, another group of Ty3/Gypsy retrotransposons of plants, fungi, and vertebrates. Conclusions Repeated and strikingly similar acquisitions of ribonuclease H domains and chromodomains by different retrotransposon groups from unrelated taxa indicate similar selection pressure acting on these elements. Thus, there are some major trends in the evolution of the structural composition of retrotransposons, and characterizing these trends may enhance the current understanding of the retrotransposon life cycle. Electronic supplementary material The online version of this article (doi:10.1186/s13100-017-0087-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kirill Ustyantsev
- Institute of Cytology and Genetics, Laboratory of Molecular Genetic Systems, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Alexandr Blinov
- Institute of Cytology and Genetics, Laboratory of Molecular Genetic Systems, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Georgy Smyshlyaev
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
39
|
Spaller T, Kling E, Glöckner G, Hillmann F, Winckler T. Convergent evolution of tRNA gene targeting preferences in compact genomes. Mob DNA 2016; 7:17. [PMID: 27583033 PMCID: PMC5006619 DOI: 10.1186/s13100-016-0073-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background In gene-dense genomes, mobile elements are confronted with highly selective pressure to amplify without causing excessive damage to the host. The targeting of tRNA genes as potentially safe integration sites has been developed by retrotransposons in various organisms such as the social amoeba Dictyostelium discoideum and the yeast Saccharomyces cerevisiae. In D. discoideum, tRNA gene-targeting retrotransposons have expanded to approximately 3 % of the genome. Recently obtained genome sequences of species representing the evolutionary history of social amoebae enabled us to determine whether the targeting of tRNA genes is a generally successful strategy for mobile elements to colonize compact genomes. Results During the evolution of dictyostelids, different retrotransposon types independently developed the targeting of tRNA genes at least six times. DGLT-A elements are long terminal repeat (LTR) retrotransposons that display integration preferences ~15 bp upstream of tRNA gene-coding regions reminiscent of the yeast Ty3 element. Skipper elements are chromoviruses that have developed two subgroups: one has canonical chromo domains that may favor integration in centromeric regions, whereas the other has diverged chromo domains and is found ~100 bp downstream of tRNA genes. The integration of D. discoideum non-LTR retrotransposons ~50 bp upstream (TRE5 elements) and ~100 bp downstream (TRE3 elements) of tRNA genes, respectively, likely emerged at the root of dictyostelid evolution. We identified two novel non-LTR retrotransposons unrelated to TREs: one with a TRE5-like integration behavior and the other with preference ~4 bp upstream of tRNA genes. Conclusions Dictyostelid retrotransposons demonstrate convergent evolution of tRNA gene targeting as a probable means to colonize the compact genomes of their hosts without being excessively mutagenic. However, high copy numbers of tRNA gene-associated retrotransposons, such as those observed in D. discoideum, are an exception, suggesting that the targeting of tRNA genes does not necessarily favor the amplification of position-specific integrating elements to high copy numbers under the repressive conditions that prevail in most host cells. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0073-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Spaller
- Institute of Pharmacy, Department of Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, Jena, 07743 Germany
| | - Eva Kling
- Institute of Pharmacy, Department of Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, Jena, 07743 Germany
| | - Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Berlin, Germany ; Institute for Freshwater Ecology and Inland Fisheries, IGB, Berlin, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Thomas Winckler
- Institute of Pharmacy, Department of Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, Jena, 07743 Germany
| |
Collapse
|
40
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
41
|
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016; 7:9. [PMID: 27158268 PMCID: PMC4859970 DOI: 10.1186/s13100-016-0065-9] [Citation(s) in RCA: 453] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans.
Collapse
Affiliation(s)
- Dustin C. Hancks
- />Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Haig H. Kazazian
- />McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
42
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
43
|
Abstract
R2 elements are sequence specific non-LTR retrotransposons that exclusively insert in the 28S rRNA genes of animals. R2s encode an endonuclease that cleaves the insertion site and a reverse transcriptase that uses the cleaved DNA to prime reverse transcription of the R2 transcript, a process termed target primed reverse transcription. Additional unusual properties of the reverse transcriptase as well as DNA and RNA binding domains of the R2 encoded protein have been characterized. R2 expression is through co-transcription with the 28S gene and self-cleavage by a ribozyme encoded at the R2 5' end. Studies in laboratory stocks and natural populations of Drosophila suggest that R2 expression is tied to the distribution of R2-inserted units within the rDNA locus. Most individuals have no R2 expression because only a small fraction of their rRNA genes need to be active, and a contiguous region of the locus free of R2 insertions can be selected for activation. However, if the R2-free region is not large enough to produce sufficient rRNA, flanking units - including those inserted with R2 - must be activated. Finally, R2 copies rapidly turnover within the rDNA locus, yet R2 has been vertically maintained in animal lineages for hundreds of millions of years. The key to this stability is R2's ability to remain dormant in rDNA units outside the transcribed regions for generations until the stochastic nature of the crossovers that drive the concerted evolution of the rDNA locus inevitably reshuffle the inserted and uninserted units, resulting in transcription of the R2-inserted units.
Collapse
|
44
|
Abstract
Long terminal repeat (LTR) retrotransposons constitute significant fractions of many eukaryotic genomes. Two ancient families are Ty1/Copia (Pseudoviridae) and Ty3/Gypsy (Metaviridae). The Ty3/Gypsy family probably gave rise to retroviruses based on the domain order, similarity of sequences, and the envelopes encoded by some members. The Ty3 element of Saccharomyces cerevisiae is one of the most completely characterized elements at the molecular level. Ty3 is induced in mating cells by pheromone stimulation of the mitogen-activated protein kinase pathway as cells accumulate in G1. The two Ty3 open reading frames are translated into Gag3 and Gag3-Pol3 polyprotein precursors. In haploid mating cells Gag3 and Gag3-Pol3 are assembled together with Ty3 genomic RNA into immature virus-like particles in cellular foci containing RNA processing body proteins. Virus-like particle Gag3 is then processed by Ty3 protease into capsid, spacer, and nucleocapsid, and Gag3-Pol3 into those proteins and additionally, protease, reverse transcriptase, and integrase. After haploid cells mate and become diploid, genomic RNA is reverse transcribed into cDNA. Ty3 integration complexes interact with components of the RNA polymerase III transcription complex resulting in Ty3 integration precisely at the transcription start site. Ty3 activation during mating enables proliferation of Ty3 between genomes and has intriguing parallels with metazoan retrotransposon activation in germ cell lineages. Identification of nuclear pore, DNA replication, transcription, and repair host factors that affect retrotransposition has provided insights into how hosts and retrotransposons interact to balance genome stability and plasticity.
Collapse
|
45
|
Cao Y, Jiang Y, Ding M, He S, Zhang H, Lin L, Rong J. Molecular characterization of a transcriptionally active Ty1/copia-like retrotransposon in Gossypium. PLANT CELL REPORTS 2015; 34:1037-1047. [PMID: 25693493 DOI: 10.1007/s00299-015-1763-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
A transcriptionally active Ty1/copia -like retrotransposon was identified in the genome of Gossypium barbadense. The different heat activation of this element was observed in two tetraploid cotton species. Most retrotransposons from plants are transcriptionally silent, or activated under certain conditions. Only a small portion of elements are transcriptionally active under regular condition. A long terminal repeat (LTR) retrotransposon was isolated from the cultivated Sea Island cotton (H7124) genome during the investigation of the function of a homeodomain leucine zipper gene (HD1) in trichome growth. Insertion of this element in HD1 gene of At sub-genome was related to the trichomeless stem in Gossypium barbadense. The element, named as GBRE-1, had all features of a typical Ty1/copia retrotransposon and possessed high similarity to the members of ONSEN retrotransposon family. It was 4997 bp long, comprising a single 4110 bp open reading frame, which encoded 1369 amino acids including the conserved domains of gag and pol. The expression of GBRE-1 was detected under regular condition in G. barbadense and G. hirsutum, and its expression level was increased under heat-stress condition in G. hirsutum. Besides, its expression pattern was similar to that of the ONSEN retrotransposon. Abundant cis-regulatory motifs related to stress-response and transcriptional regulation were found in the LTR sequence. These results suggested that GBRE-1 was a transcriptionally active retrotransposon in Gossypium. To our knowledge, this is the first report of the isolation of a complete Ty1/copia-type retrotransposon with present-day transcriptional activity in cotton.
Collapse
Affiliation(s)
- Yuefen Cao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A & F University, Linan, Hangzhou, 311300, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Goodier JL, Pereira GC, Cheung LE, Rose RJ, Kazazian HH. The Broad-Spectrum Antiviral Protein ZAP Restricts Human Retrotransposition. PLoS Genet 2015; 11:e1005252. [PMID: 26001115 PMCID: PMC4441479 DOI: 10.1371/journal.pgen.1005252] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/29/2015] [Indexed: 12/13/2022] Open
Abstract
Intrinsic immunity describes the set of recently discovered but poorly understood cellular mechanisms that specifically target viral pathogens. Their discovery derives in large part from intensive studies of HIV and SIV that revealed restriction factors acting at various stages of the retroviral life cycle. Recent studies indicate that some factors restrict both retroviruses and retrotransposons but surprisingly in ways that may differ. We screened known interferon-stimulated antiviral proteins previously untested for their effects on cell culture retrotransposition. Several factors, including BST2, ISG20, MAVS, MX2, and ZAP, showed strong L1 inhibition. We focused on ZAP (PARP13/ZC3HAV1), a zinc-finger protein that targets viruses of several families, including Retroviridae, Tiloviridae, and Togaviridae, and show that ZAP expression also strongly restricts retrotransposition in cell culture through loss of L1 RNA and ribonucleoprotein particle integrity. Association of ZAP with the L1 ribonucleoprotein particle is supported by co-immunoprecipitation and co-localization with ORF1p in cytoplasmic stress granules. We also used mass spectrometry to determine the protein components of the ZAP interactome, and identified many proteins that directly interact and colocalize with ZAP, including MOV10, an RNA helicase previously shown to suppress retrotransposons. The detection of a chaperonin complex, RNA degradation proteins, helicases, post-translational modifiers, and components of chromatin modifying complexes suggest mechanisms of ZAP anti-retroelement activity that function in the cytoplasm and perhaps also in the nucleus. The association of the ZAP ribonucleoprotein particle with many interferon-stimulated gene products indicates it may be a key player in the interferon response.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gavin C. Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ling E. Cheung
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rebecca J. Rose
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Haig H. Kazazian
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
47
|
Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 2015; 78:278-303. [PMID: 24847023 DOI: 10.1128/mmbr.00049-13] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host.
Collapse
|
48
|
Villacreses J, Rojas-Herrera M, Sánchez C, Hewstone N, Undurraga SF, Alzate JF, Manque P, Maracaja-Coutinho V, Polanco V. Deep sequencing reveals the complete genome and evidence for transcriptional activity of the first virus-like sequences identified in Aristotelia chilensis (Maqui Berry). Viruses 2015; 7:1685-99. [PMID: 25855242 PMCID: PMC4411674 DOI: 10.3390/v7041685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 01/01/2023] Open
Abstract
Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant.
Collapse
Affiliation(s)
- Javier Villacreses
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile.
| | - Marcelo Rojas-Herrera
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile.
| | - Carolina Sánchez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile.
| | | | - Soledad F Undurraga
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile.
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica, Universidad de Antioquia, Medellín, Colombia.
| | - Patricio Manque
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile.
| | | | - Victor Polanco
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile.
| |
Collapse
|
49
|
Sun C, Mueller RL. Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders. Genome Biol Evol 2015; 6:1818-29. [PMID: 25115007 PMCID: PMC4122941 DOI: 10.1093/gbe/evu143] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among animals, genome sizes range from 20 Mb to 130 Gb, with 380-fold variation across vertebrates. Most of the largest vertebrate genomes are found in salamanders, an amphibian clade of 660 species. Thus, salamanders are an important system for studying causes and consequences of genomic gigantism. Previously, we showed that plethodontid salamander genomes accumulate higher levels of long terminal repeat (LTR) retrotransposons than do other vertebrates, although the evolutionary origins of such sequences remained unexplored. We also showed that some salamanders in the family Plethodontidae have relatively slow rates of DNA loss through small insertions and deletions. Here, we present new data from Cryptobranchus alleganiensis, the hellbender. Cryptobranchus and Plethodontidae span the basal phylogenetic split within salamanders; thus, analyses incorporating these taxa can shed light on the genome of the ancestral crown salamander lineage, which underwent expansion. We show that high levels of LTR retrotransposons likely characterize all crown salamanders, suggesting that disproportionate expansion of this transposable element (TE) class contributed to genomic expansion. Phylogenetic and age distribution analyses of salamander LTR retrotransposons indicate that salamanders' high TE levels reflect persistence and diversification of ancestral TEs rather than horizontal transfer events. Finally, we show that relatively slow DNA loss rates through small indels likely characterize all crown salamanders, suggesting that a decreased DNA loss rate contributed to genomic expansion at the clade's base. Our identification of shared genomic features across phylogenetically distant salamanders is a first step toward identifying the evolutionary processes underlying accumulation and persistence of high levels of repetitive sequence in salamander genomes.
Collapse
|
50
|
Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015; 479-480:2-25. [PMID: 25771806 PMCID: PMC5898234 DOI: 10.1016/j.virol.2015.02.039] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/04/2023]
Abstract
Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015, France.
| |
Collapse
|