1
|
Bhardwaj S, Badiyal A, Dhiman S, Bala J, Walia A. Exploring Halophiles for Reclamation of Saline Soils: Biotechnological Interventions for Sustainable Agriculture. J Basic Microbiol 2025:e70048. [PMID: 40357706 DOI: 10.1002/jobm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Soil salinization is a major constraint on agricultural productivity, particularly in arid and semi-arid regions where limited rainfall cannot wash salts from plant root zones. This leads to disruptions in water uptake, ion balance, photosynthesis, respiration, nutrient absorption, hormone regulation and rhizosphere microbiome disturbances in plants. Chemical and biological methods can help mitigate soil salinity, but biological approaches, like using halophytes and salt-tolerant microorganisms, are preferred for environmental sustainability. Halophytes, however, represent only about 1% of flora and are habitat specific, so halophilic plant growth-promoting (PGP) microbes have emerged as a key eco-friendly solution. Halophilic PGP bacteria have shown promise in remediating saline soils, enhancing fertility and boosting crop resilience by inducing salinity tolerance (IST) and promoting plant growth traits. In the era of modern agriculture where chemical inputs are at their peak of application rendering the soil infertile, halophilic PGP bacteria represent a promising, sustainable approach to support food security, aligning with Sustainable Development Goals for zero hunger.
Collapse
Affiliation(s)
- Shiwani Bhardwaj
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Anila Badiyal
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Shailja Dhiman
- Department of Plant Breeding and Genetics, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Jyoti Bala
- Department of Organic Agriculture and Natural Farming, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
2
|
Ren Q, Lim YY, Teo CH. Genome-wide identification and expression analysis of orphan genes in twelve Musa (sub)species. 3 Biotech 2025; 15:41. [PMID: 39822754 PMCID: PMC11732818 DOI: 10.1007/s13205-025-04213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Orphan genes (OGs), also known as lineage-specific genes, are species-specific genes that play a crucial role in species-specific adaptations to various stresses. Although OGs have been identified in several plant species, there is no information on OGs in banana genomes. This study aimed to systematically identify OGs in twelve banana (sub)species using comparative genomics. The results showed that OG content varied widely among these (sub)species, from 0.4% in Musa itinerans to 7.3% in Ensete glaucum. Genetic structure analysis showed that banana OGs have significantly shorter protein lengths, smaller molecular weight, fewer exons, and shorter exon lengths than non-orphan genes (NOGs). Subcellular localization predictions showed that banana OGs are mainly found in the chloroplast, nucleus, and cytosol, and are evenly distributed across chromosomes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that OGs may be involved in cellular processes, metabolic processes, and molecular transport. The transcriptome analysis of 9 AAA cultivars against 4 M. acuminata subspecies genomes showed the OGs content. Analysis of gene expression in M. acuminata subsp. malaccensis showed 75 differentially expressed (DE) OGs in response to abiotic stresses and 46 DE OGs related to biotic stresses, indicating that these OGs might play important roles in response to abiotic and biotic stresses. This study provides a foundation for further in-depth research into the functions of OGs in bananas. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04213-9.
Collapse
Affiliation(s)
- Qingwen Ren
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Geraili Daronkola H, Moussa B, Millet Ó, Krenczyk O, Ortega‐Quintanilla G, Petersen PB, Vila Verde A. How sensitive are protein hydration shells to electrolyte concentration and protein composition? Protein Sci 2025; 34:e5241. [PMID: 39673467 PMCID: PMC11645670 DOI: 10.1002/pro.5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
Proteins of obligate halophilic organisms have an unusually high number of acidic amino acids, thought to enable them to function in multimolar KCl environments. Clarifying the molecular scale mechanisms by which this occurs is relevant for biotechnology, to enable enzymatic synthesis of economically important small molecules in salty environments and other environments with low water activity. Previous studies have suggested that acidic amino acids are necessary at high salt concentration to keep the proteins hydrated by competing with the ions in solution for available water (the "solvent-only" model). We use a combination of solvation shell spectroscopy and molecular dynamics simulations for in total 13 proteins, at high and low KCl concentration, to investigate this scenario. We show that the solvation shells of halophilic and mesophilic proteins of widely different amino acid compositions, net charges, sizes, and structure respond similarly, in terms of composition and of hydrogen bond network, to changes in KCl concentration. The results do not support the solvent-only model, and point to other mechanisms behind the acidity of halophilic proteins. Excess acidic amino acids may ensure protein solubility by the combined effects of having particularly favorable electrostatic interactions with the solvent, ensuring very short range protein-protein repulsion, and having smaller hydrophobic solvent accessible surface area than other charged amino acids. Also possible is that highly acidic proteins are well-tolerated-but not necessarily indispensable-in terms of stability and solubility.
Collapse
Affiliation(s)
| | - Bashar Moussa
- Faculty of Chemistry and BiochemistryRuhr‐University BochumBochumGermany
| | - Óscar Millet
- CIC bioGUNE, Asociación Centro de Investigación Cooperativa en BiocienciasDerioBizkaiaSpain
| | - Oktavian Krenczyk
- Faculty of Chemistry and BiochemistryRuhr‐University BochumBochumGermany
| | - Gabriel Ortega‐Quintanilla
- CIC bioGUNE, Asociación Centro de Investigación Cooperativa en BiocienciasDerioBizkaiaSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Poul B. Petersen
- Faculty of Chemistry and BiochemistryRuhr‐University BochumBochumGermany
| | - Ana Vila Verde
- Faculty of PhysicsUniversity of Duisburg‐EssenDuisburgGermany
| |
Collapse
|
4
|
Wang Y, Deng C, Wang X. Characterization of a novel salt- and solvent-tolerant esterase Dhs82 from soil metagenome capable of hydrolyzing estrogenic phthalate esters. Biophys Chem 2025; 316:107348. [PMID: 39531866 DOI: 10.1016/j.bpc.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Esterases that can function under extreme conditions are important for industrial processing and environmental remediation. Here, we report the identification of a salt- and solvent-tolerant esterase, Dhs82, from a soil metagenomic library. Dhs82 prefers short-chain p-nitrophenyl (p-NP) esters and exhibits enzymatic activity up to 1460 ± 61 U/mg towards p-NP butyrate. Meanwhile, Dhs82 can catalyze the hydrolysis of dialkyl phthalate esters, especially the widely-used diethyl phthalate (DEP), dipropyl phthalate (DPP) and di-n-butyl phthalate (DBP). Importantly, as an acidic protein with negative charges dominating its surface, Dhs82 is highly active and extraordinarily stable at high salinity. This property is quite rare among previously reported esterases/hydrolases capable of degrading phthalate esters (PAEs). In addition, Dhs82 activity can be significantly enhanced in the presence of solvents over a concentration range of 10-30 % (v/v). Notably, Dhs82 also showed high stability towards these solvents and solvent concentrations as high as 50-60 % (v/v) are required to inactivate Dhs82. Furthermore, molecular docking revealed the key residues, including the catalytic triad (Ser156, His281, and Asp251) and the surrounding Gly84 and Gly85, involved in the interaction of Dhs82 with DBP, depicting how Dhs82 degrades PAEs as a family IV esterase. Together, these diverse properties make Dhs82 a valuable candidate for both basic research and biotechnological applications.
Collapse
Affiliation(s)
- Yuanyan Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chunmei Deng
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xin Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
5
|
Soto L, DasSarma P, Anton BP, Vincze T, Verma I, Eralp B, Powers DW, Dozier BL, Roberts RJ, DasSarma S. Genome sequence of an extremely halophilic archaeon isolated from Permian Period halite, Salado Formation in New Mexico, USA: Halobacterium sp. strain NMX12-1. Microbiol Resour Announc 2024; 13:e0077824. [PMID: 39431873 PMCID: PMC11556058 DOI: 10.1128/mra.00778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Halobacterium sp. strain NMX12-1, an extremely halophilic Archaeon, was isolated from 250 million-year-old Salado Formation salt crystal in Carlsbad, New Mexico. Single-molecule real-time sequencing revealed a 3.2-Mbp genome with a 2.6-Mbp chromosome and five plasmids (234, 211, 119, 21, and 1.6-kbp). The GC-rich genome encodes an acidic proteome, characteristic of Haloarchaea.
Collapse
Affiliation(s)
- Leonardo Soto
- Marine Estuarine Environmental Sciences Program, University of Maryland, College Park, Maryland, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, Maryland, USA
| | - Priya DasSarma
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Tamas Vincze
- New England Biolabs, Ipswich, Massachusetts, USA
| | - Ishita Verma
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Bora Eralp
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Brian Lee Dozier
- WIPP Test Coordination Office, Los Alamos National Laboratory (LANL), Carlsbad, New Mexico, USA
| | | | - Shiladitya DasSarma
- Marine Estuarine Environmental Sciences Program, University of Maryland, College Park, Maryland, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Obayori OS, Salam LB, Ashade AO, Oseni TD, Kalu MD, Mustapha FM. An animal charcoal contaminated cottage industry soil highlighted by halophilic archaea dominance and decimation of bacteria. World J Microbiol Biotechnol 2024; 40:327. [PMID: 39299940 DOI: 10.1007/s11274-024-04136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
An animal charcoal contaminated cottage industry soil in Lagos, Nigeria (ACGT) was compared in an ex post facto study with a nearby unimpacted soil (ACGC). Hydrocarbon content was higher than regulatory limits in ACGT (180.2 mg/kg) but lower in ACGC (19.28 mg/kg). Heavy metals like nickel, cadmium, chromium and lead were below detection limit in ACGC. However, all these metals, except cadmium, were detected in ACGT, but at concentrations below regulatory limits. Furthermore, copper (253.205 mg/kg) and zinc (422.630 mg/kg) were above regulatory limits in ACGT. Next generation sequencing revealed that the procaryotic community was dominated by bacteria in ACGC (62%) while in ACGT archaea dominated (76%). Dominant phyla in ACGC were Euryarchaeota (37%), Pseudomonadota (16%) and Actinomycetota (12%). In ACGT it was Euryarchaeota (76%), Bacillota (9%), Pseudomonadota (7%) and Candidatus Nanohaloarchaeota (5%). Dominant Halobacteria genera in ACGT were Halobacterium (16%), Halorientalis (16%), unranked halophilic archaeon (13%) Salarchaeum (6%) and Candidatus Nanohalobium (5%), whereas ACGC showed greater diversity dominated by bacterial genera Salimicrobium (7%) and Halomonas (3%). Heavy metals homeostasis genes, especially for copper, were fairly represented in both soils but with bacterial taxonomic affiliations. Sites like ACGT, hitherto poorly studied and understood, could be sources of novel bioresources.
Collapse
Affiliation(s)
| | - Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria
| | - Ahmeed Olalekan Ashade
- Department of Microbiology, Faculty of Science, Lagos State University, Ojo, Lagos, Nigeria
| | | | - Mandy Divine Kalu
- Department of Microbiology, Faculty of Science, Lagos State University, Ojo, Lagos, Nigeria
| | | |
Collapse
|
7
|
Zhou S, Pan B, Kuang X, Chen S, Liu L, Song Y, Zhao Y, Xu X, Cheng X, Yang J. Characterization and mechanism investigation of salt-activated methionine sulfoxide reductase A from halophiles. iScience 2024; 27:110806. [PMID: 39297162 PMCID: PMC11408995 DOI: 10.1016/j.isci.2024.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Halophiles, thriving in harsh saline environments, capture scientific interest due to their remarkable ability to prosper under extreme salinity. This study unveils the distinct salt-induced activation of methionine sulfoxide reductases (MsrA) from Halobacterium hubeiense, showcasing a significant enhancement in enzymatic activity across various salt concentrations ranging from 0.5 to 3.5 M. This contrasts sharply with the activity profiles of non-halophilic counterparts. Through comprehensive molecular dynamics simulations, we demonstrate that salt ions stabilize and compact the enzyme's structure, notably enhancing its substrate affinity. Mutagenesis analysis further confirms the essential role of salt bridges formed by the basic Arg168 residue in salt-induced activation. Mutating Arg168 to an acidic or neutral residue disrupts salt-induced activation, substantially reducing the enzyme activity under salt conditions. Our research provides evidence of salt-activated MsrA activity in halophiles, elucidating the molecular basis of halophilic enzyme activity in response to salts.
Collapse
Affiliation(s)
- Shihuan Zhou
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Bochen Pan
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoxue Kuang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuhong Chen
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Lianghui Liu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yawen Song
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yuyan Zhao
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xianlin Xu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoling Cheng
- Department of Cell Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| |
Collapse
|
8
|
Yang H, Qian Z, Zhang S, Peng T, Li J, Meng S, Mao A, Hu Z. Efficient bioremediation of multiple steroid hormones by halotolerant 17β-hydroxysteroid dehydrogenase derived from moderately halophilic Pontibacillus chungwhensis HN14. World J Microbiol Biotechnol 2024; 40:296. [PMID: 39122994 DOI: 10.1007/s11274-024-04095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Steroid hormones exhibit potent endocrine disrupting activity and have been shown to disrupt the equilibrium of aquatic ecosystems and pose a threat to public health through their persistent and carcinogenic effects. Pontibacillus chungwhensis HN14, a moderately halophilic bacterium with the capacity to effectively degrade various polycyclic aromatic hydrocarbons and other organic pollutants, was previously isolated. Additionally, the strain HN14 showed strong environmental adaptability under various environmental stress conditions. In this study, the steroid degradation by strain HN14 was studied for the first time. We demonstrated that strain HN14 could degrade estradiol (E2) to maintain the growth of the strain and could convert E2 to estrone. Additionally, the efficient substrate degradation efficiency of P. chungwhensis HN14 under high salinity and high substrate concentration conditions was demonstrated. Furthermore, a 17β-hydroxysteroid dehydrogenase, 17β-HSD(HN14), was identified in strain HN14. Comparative analysis reveals that 17β-HSD(HN14) shares approximately 38% sequence identity with 17β-HSDx from Rhodococcus sp. P14. In addition, 100 µg of purified 17β-HSD(HN14) could effectively convert about 40% of 0.25 mM of E2 within 1 h period, with an enzyme activity of 17.5 U/mg, and catalyze the dehydrogenation of E2 and testosterone at the C-17 position. The characterization of purified enzyme properties reveals that 17β-HSD(HN14) exhibits exceptional structural robustness and enzymatic efficacy even under high salinity conditions of up to 20%. Overall, this study enhances our comprehension of steroid biodegradation in strain HN14 and contributes novel ideas and theoretical underpinnings for advancing bioremediation technologies targeting steroid pollution in high-saline environments.
Collapse
Affiliation(s)
- Haichen Yang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Jin Li
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Aihua Mao
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China.
- Guangdong Research Center of Offshore Environmental Pollution Control Engineering, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| |
Collapse
|
9
|
Galisteo C, de la Haba RR, Ventosa A, Sánchez-Porro C. The Hypersaline Soils of the Odiel Saltmarshes Natural Area as a Source for Uncovering a New Taxon: Pseudidiomarina terrestris sp. nov. Microorganisms 2024; 12:375. [PMID: 38399779 PMCID: PMC10893183 DOI: 10.3390/microorganisms12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The hypersaline soils of the Odiel Saltmarshes Natural Area are an extreme environment with high levels of some heavy metals; however, it is a relevant source of prokaryotic diversity that we aim to explore. In this study, six strains related to the halophilic genus Pseudidiomarina were isolated from this habitat. The phylogenetic study based on the 16S rRNA gene sequence and the fingerprinting analysis suggested that they constituted a single new species within the genus Pseudidiomarina. Comparative genomic analysis based on the OGRIs indices and the phylogeny inferred from the core genome were performed considering all the members of the family Idiomarinaceae. Additionally, a completed phenotypic characterization, as well as the fatty acid profile, were also carried out. Due to the characteristics of the habitat, genomic functions related to salinity and high heavy metal concentrations were studied, along with the global metabolism of the six isolates. Last, the ecological distribution of the isolates was studied in different hypersaline environments by genome recruitment. To sum up, the six strains constitute a new species within the genus Pseudidiomarina, for which the name Pseudidiomarina terrestris sp. nov. is proposed. The low abundance in all the studied hypersaline habitats indicates that it belongs to the rare biosphere in these habitats. In silico genome functional analysis suggests the presence of heavy metal transporters and pathways for nitrate reduction and nitrogen assimilation in low availability, among other metabolic traits.
Collapse
Affiliation(s)
| | | | | | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (C.G.); (R.R.d.l.H.); (A.V.)
| |
Collapse
|
10
|
Shen L, Liu Y, Chen L, Lei T, Ren P, Ji M, Song W, Lin H, Su W, Wang S, Rooman M, Pucci F. Genomic basis of environmental adaptation in the widespread poly-extremophilic Exiguobacterium group. THE ISME JOURNAL 2024; 18:wrad020. [PMID: 38365240 PMCID: PMC10837837 DOI: 10.1093/ismejo/wrad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024]
Abstract
Delineating cohesive ecological units and determining the genetic basis for their environmental adaptation are among the most important objectives in microbiology. In the last decade, many studies have been devoted to characterizing the genetic diversity in microbial populations to address these issues. However, the impact of extreme environmental conditions, such as temperature and salinity, on microbial ecology and evolution remains unclear so far. In order to better understand the mechanisms of adaptation, we studied the (pan)genome of Exiguobacterium, a poly-extremophile bacterium able to grow in a wide range of environments, from permafrost to hot springs. To have the genome for all known Exiguobacterium type strains, we first sequenced those that were not yet available. Using a reverse-ecology approach, we showed how the integration of phylogenomic information, genomic features, gene and pathway enrichment data, regulatory element analyses, protein amino acid composition, and protein structure analyses of the entire Exiguobacterium pangenome allows to sharply delineate ecological units consisting of mesophilic, psychrophilic, halophilic-mesophilic, and halophilic-thermophilic ecotypes. This in-depth study clarified the genetic basis of the defined ecotypes and identified some key mechanisms driving the environmental adaptation to extreme environments. Our study points the way to organizing the vast microbial diversity into meaningful ecologically units, which, in turn, provides insight into how microbial communities adapt and respond to different environmental conditions in a changing world.
Collapse
Affiliation(s)
- Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu 241000, China
| | - Yongqin Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Tingting Lei
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ping Ren
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Weizhi Song
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Su
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai 200030, China
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels 1050, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels 1050, Belgium
| |
Collapse
|
11
|
Gaonkar SK, Alvares JJ, Furtado IJ. Recent advances in the production, properties and applications of haloextremozymes protease and lipase from haloarchaea. World J Microbiol Biotechnol 2023; 39:322. [PMID: 37755613 DOI: 10.1007/s11274-023-03779-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Proteases and lipases are significant groups of enzymes for commercialization at the global level. Earlier, the industries depended on mesophilic proteases and lipases, which remain nonfunctional under extreme conditions. The discovery of extremophilic microorganisms, especially those belonging to haloarchaea, paved a new reserve of industrially competent extremozymes. Haloarchaea or halophilic archaea are polyextremophiles of domain Archaea that grow at high salinity, elevated temperature, pH range (pH 6-12), and low aw. Interestingly, haloarchaeal proteolytic and lipolytic enzymes also perform their catalytic function in the presence of 4-5 M NaCl in vivo and in vitro. Also, they are of great interest to study due to their capacity to function and are active at elevated temperatures, tolerance to pH extremes, and in non-aqueous media. In recent years, advances have been achieved in various aspects of genomic/molecular expression methods involving homologous and heterologous processes for the overproduction of these extremozymes and their characterization from haloarchaea. A few protease and lipase extremozymes have been successfully expressed in prokaryotic systems, especially E.coli, and enzyme modification techniques have improved the catalytic properties of the recombinant enzymes. Further, in-silico methods are currently applied to elucidate the structural and functional features of salt-stable protease and lipase in haloarchaea. In this review, the production and purification methods, catalytic and biochemical properties and biotechnological applications of haloextremozymes proteases and lipases are summarized along with recent advancements in overproduction and characterization of these enzymes, concluding with the directions for further in-depth research on proteases and lipases from haloarchaea.
Collapse
Affiliation(s)
- Sanket K Gaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
- Department of Microbiology, P.E.S's R.S.N College of Arts and Science, Farmagudi, Ponda-Goa, 403401, India.
| | - Jyothi Judith Alvares
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Irene J Furtado
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| |
Collapse
|
12
|
Geraili Daronkola H, Vila Verde A. Prevalence and mechanism of synergistic carboxylate-cation-water interactions in halophilic proteins. Biophys J 2023; 122:2577-2589. [PMID: 37179455 PMCID: PMC10323026 DOI: 10.1016/j.bpj.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
The cytoplasmic proteins of some halophilic organisms remain stable and functional at multimolar concentrations of KCl, i.e., under conditions that most mesophilic proteins cannot withstand. Their stability arises from their unusual amino acid composition. The most dramatic difference between halophilic and mesophilic proteins is that the former are rich in acidic amino acids. It has been proposed that one of the evolutionary driving forces for this difference is the occurrence of synergistic interactions between multiple acidic amino acids at the surface of the protein, the potassium cations in solution, and water. We investigate this possibility with molecular dynamics simulations, using high-quality force fields for the protein-water, protein-ion, and ion-ion interactions. We create a rigorous thermodynamic definition of interactions between acidic amino acids on proteins that can be used to distinguish between synergistic, noninteracting and interfering interactions. Our results demonstrate that synergistic interactions between neighboring acidic amino acids in halophilic proteins are frequent at multimolar KCl concentration. Synergistic interactions have an electrostatic origin, and are associated with stronger water-to-carboxylate hydrogen bonds than for acidic amino acids without synergistic interactions. Synergistic interactions are not observed in minimal systems of carboxylates, indicating that the protein environment is critical for their emergence. Our results demonstrate that synergistic interactions are neither associated with rigid amino acid orientations nor with highly structured and slow moving water networks, as had been originally proposed. Moreover, synergistic interactions can also be found in unfolded protein conformations. However, because these conformations are only a small subset of the unfolded state ensemble, synergistic interactions should contribute to the net stabilization of the folded state.
Collapse
Affiliation(s)
- Hosein Geraili Daronkola
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Potsdam, Germany
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Potsdam, Germany.
| |
Collapse
|
13
|
Nevers Y, Glover NM, Dessimoz C, Lecompte O. Protein length distribution is remarkably uniform across the tree of life. Genome Biol 2023; 24:135. [PMID: 37291671 PMCID: PMC10251718 DOI: 10.1186/s13059-023-02973-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND In every living species, the function of a protein depends on its organization of structural domains, and the length of a protein is a direct reflection of this. Because every species evolved under different evolutionary pressures, the protein length distribution, much like other genomic features, is expected to vary across species but has so far been scarcely studied. RESULTS Here we evaluate this diversity by comparing protein length distribution across 2326 species (1688 bacteria, 153 archaea, and 485 eukaryotes). We find that proteins tend to be on average slightly longer in eukaryotes than in bacteria or archaea, but that the variation of length distribution across species is low, especially compared to the variation of other genomic features (genome size, number of proteins, gene length, GC content, isoelectric points of proteins). Moreover, most cases of atypical protein length distribution appear to be due to artifactual gene annotation, suggesting the actual variation of protein length distribution across species is even smaller. CONCLUSIONS These results open the way for developing a genome annotation quality metric based on protein length distribution to complement conventional quality measures. Overall, our findings show that protein length distribution between living species is more uniform than previously thought. Furthermore, we also provide evidence for a universal selection on protein length, yet its mechanism and fitness effect remain intriguing open questions.
Collapse
Affiliation(s)
- Yannis Nevers
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute for Bioinformatics, University of Lausanne, Lausanne, Switzerland.
| | - Natasha M Glover
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute for Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute for Bioinformatics, University of Lausanne, Lausanne, Switzerland
- Department of Computer Science, University College London, London, UK
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Odile Lecompte
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, ICube, UMR 7357, University of Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
14
|
Benítez-Mateos AI, Paradisi F. Halomonas elongata: a microbial source of highly stable enzymes for applied biotechnology. Appl Microbiol Biotechnol 2023; 107:3183-3190. [PMID: 37052635 PMCID: PMC10160191 DOI: 10.1007/s00253-023-12510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Extremophilic microorganisms, which are resistant to extreme levels of temperature, salinity, pH, etc., have become popular tools for biotechnological applications. Due to their availability and cost-efficacy, enzymes from extremophiles are getting the attention of researchers and industries in the field of biocatalysis to catalyze diverse chemical reactions in a selective and sustainable manner. In this mini-review, we discuss the advantages of Halomonas elongata as moderate halophilic bacteria to provide suitable enzymes for biotechnology. While enzymes from H. elongata are more resistant to the presence of salt compared to their mesophilic counterparts, they are also easier to produce in heterologous hosts compared with more extremophilic microorganisms. Herein, a set of different enzymes (hydrolases, transferases, and oxidoreductases) from H. elongata are showcased, highlighting their interesting properties as more efficient and sustainable biocatalysts. With this, we aim to improve the visibility of halotolerant enzymes and their uncommon properties to integrate biocatalysis in industrial set-ups. KEYPOINTS: • Production and use of halotolerant enzymes can be easier than strong halophilic ones. • Enzymes from halotolerant organisms are robust catalysts under harsh conditions. • Halomonas elongata has shown a broad enzyme toolbox with biotechnology applications.
Collapse
Affiliation(s)
- Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martínez-Espinosa RM, Kumavath R. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front Microbiol 2023; 14:1113540. [PMID: 37065149 PMCID: PMC10102575 DOI: 10.3389/fmicb.2023.1113540] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - V. T. Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
16
|
Fontana A, Falasconi I, Bellassi P, Fanfoni E, Puglisi E, Morelli L. Comparative Genomics of Halobacterium salinarum Strains Isolated from Salted Foods Reveals Protechnological Genes for Food Applications. Microorganisms 2023; 11:microorganisms11030587. [PMID: 36985161 PMCID: PMC10058572 DOI: 10.3390/microorganisms11030587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Archaeal cell factories are becoming of great interest given their ability to produce a broad range of value-added compounds. Moreover, the Archaea domain often includes extremophilic microorganisms, facilitating their cultivation at the industrial level under nonsterile conditions. Halophilic archaea are studied for their ability to grow in environments with high NaCl concentrations. In this study, nine strains of Halobacterium salinarum were isolated from three different types of salted food, sausage casings, salted codfish, and bacon, and their genomes were sequenced along with the genome of the collection strain CECT 395. A comparative genomic analysis was performed on these newly sequenced genomes and the publicly available ones for a total of 19 H. salinarum strains. We elucidated the presence of unique gene clusters of the species in relation to the different ecological niches of isolation (salted foods, animal hides, and solar saltern sediments). Moreover, genome mining at the single-strain level highlighted the metabolic potential of H. salinarum UC4242, which revealed the presence of different protechnological genes (vitamins and myo-inositol biosynthetic pathways, aroma- and texture-related features, and antimicrobial compounds). Despite the presence of genes of potential concern (e.g., those involved in biogenic amine production), all the food isolates presented archaeocin-related genes (halocin-C8 and sactipeptides).
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Correspondence: (A.F.); (L.M.)
| | - Irene Falasconi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Paolo Bellassi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
- Correspondence: (A.F.); (L.M.)
| |
Collapse
|
17
|
Onga EA, Vêncio RZN, Koide T. Low Salt Influences Archaellum-Based Motility, Glycerol Metabolism, and Gas Vesicles Biogenesis in Halobacterium salinarum. Microorganisms 2022; 10:2442. [PMID: 36557695 PMCID: PMC9786353 DOI: 10.3390/microorganisms10122442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Halobacterium salinarum NRC-1 is an extremophile that grows optimally at 4.3 M NaCl concentration. In spite of being an established model microorganism for the archaea domain, direct comparisons between its proteome and transcriptome during osmotic stress are still not available. Through RNA-seq-based transcriptomics, we compared a low salt (2.6 M NaCl) stress condition with 4.3 M of NaCl and found 283 differentially expressed loci. The more commonly found classes of genes were: ABC-type transporters and transcription factors. Similarities, and most importantly, differences between our findings and previously published datasets in similar experimental conditions are discussed. We validated three important biological processes differentially expressed: gas vesicles production (due to down-regulation of gvpA1b, gvpC1b, gvpN1b, and gvpO1b); archaellum formation (due to down-regulation of arlI, arlB1, arlB2, and arlB3); and glycerol metabolism (due to up-regulation of glpA1, glpB, and glpC). Direct comparison between transcriptomics and proteomics showed 58% agreement between mRNA and protein level changes, pointing to post-transcriptional regulation candidates. From those genes, we highlight rpl15e, encoding for the 50S ribosomal protein L15e, for which we hypothesize an ionic strength-dependent conformational change that guides post-transcriptional processing of its mRNA and, thus, possible salt-dependent regulation of the translation machinery.
Collapse
Affiliation(s)
- Evelyn Ayumi Onga
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
18
|
Laye VJ, Solieva S, Voelz VA, DasSarma S. Effects of Salinity and Temperature on the Flexibility and Function of a Polyextremophilic Enzyme. Int J Mol Sci 2022; 23:15620. [PMID: 36555259 PMCID: PMC9779221 DOI: 10.3390/ijms232415620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The polyextremophilic β-galactosidase enzyme of the haloarchaeon Halorubrum lacusprofundi functions in extremely cold and hypersaline conditions. To better understand the basis of polyextremophilic activity, the enzyme was studied using steady-state kinetics and molecular dynamics at temperatures ranging from 10 °C to 50 °C and salt concentrations from 1 M to 4 M KCl. Kinetic analysis showed that while catalytic efficiency (kcat/Km) improves with increasing temperature and salinity, Km is reduced with decreasing temperatures and increasing salinity, consistent with improved substrate binding at low temperatures. In contrast, kcat was similar from 2-4 M KCl across the temperature range, with the calculated enthalpic and entropic components indicating a threshold of 2 M KCl to lower the activation barrier for catalysis. With molecular dynamics simulations, the increase in per-residue root-mean-square fluctuation (RMSF) was observed with higher temperature and salinity, with trends like those seen with the catalytic efficiency, consistent with the enzyme's function being related to its flexibility. Domain A had the smallest change in flexibility across the conditions tested, suggesting the adaptation to extreme conditions occurs via regions distant to the active site and surface accessible residues. Increased flexibility was most apparent in the distal active sites, indicating their importance in conferring salinity and temperature-dependent effects.
Collapse
Affiliation(s)
- Victoria J. Laye
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD 21202, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Shahlo Solieva
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD 21202, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| |
Collapse
|
19
|
Udomsil N, Pongjanla S, Rodtong S, Tanasupawat S, Yongsawatdigul J. Extremely halophilic strains of
Halobacterium salinarum
as a potential starter culture for fish sauce fermentation. J Food Sci 2022; 87:5375-5389. [DOI: 10.1111/1750-3841.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Natteewan Udomsil
- Food Technology Program School of Interdisciplinary Studies Mahidol University Kanchanaburi Campus Kanchanaburi Thailand
| | - Sirinya Pongjanla
- School of Food Technology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Sureelak Rodtong
- School of Preclinical Sciences, Institute of ScienceSuranaree University of Technology Nakhon RatchasimaThailand
- Microbial Cultures Research Center for Food and Bioplastics Production Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Somboon Tanasupawat
- Department of Microbiology, Faculty of Pharmaceutical Sciences Chulalongkorn University Bangkok Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
- Microbial Cultures Research Center for Food and Bioplastics Production Suranaree University of Technology Nakhon Ratchasima Thailand
| |
Collapse
|
20
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
21
|
Ochoa-Gutiérrez D, Reyes-Torres AM, de la Fuente-Colmenares I, Escobar-Sánchez V, González J, Ortiz-Hernández R, Torres-Ramírez N, Segal-Kischinevzky C. Alternative CUG Codon Usage in the Halotolerant Yeast Debaryomyces hansenii: Gene Expression Profiles Provide New Insights into Ambiguous Translation. J Fungi (Basel) 2022; 8:jof8090970. [PMID: 36135695 PMCID: PMC9502446 DOI: 10.3390/jof8090970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
The halotolerant yeast Debaryomyces hansenii belongs to the CTG-Ser1 clade of fungal species that use the CUG codon to translate as leucine or serine. The ambiguous decoding of the CUG codon is relevant for expanding protein diversity, but little is known about the role of leucine–serine ambiguity in cellular adaptations to extreme environments. Here, we examine sequences and structures of tRNACAG from the CTG-Ser1 clade yeasts, finding that D. hansenii conserves the elements to translate ambiguously. Then, we show that D. hansenii has tolerance to conditions of salinity, acidity, alkalinity, and oxidative stress associated with phenotypic and ultrastructural changes. In these conditions, we found differential expression in both the logarithmic and stationary growth phases of tRNASer, tRNALeu, tRNACAG, LeuRS, and SerRS genes that could be involved in the adaptive process of this yeast. Finally, we compare the proteomic isoelectric points and hydropathy profiles, detecting that the most important variations among the physicochemical characteristics of D. hansenii proteins are in their hydrophobic and hydrophilic interactions with the medium. We propose that the ambiguous translation, i.e., leucylation or serynation, on translation of the CUG-encoded residues, could be linked to adaptation processes in extreme environments.
Collapse
Affiliation(s)
- Daniel Ochoa-Gutiérrez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Anya M. Reyes-Torres
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Ileana de la Fuente-Colmenares
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Viviana Escobar-Sánchez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - James González
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Rosario Ortiz-Hernández
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Nayeli Torres-Ramírez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Claudia Segal-Kischinevzky
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
22
|
Salwan R, Sharma V. Genomics of Prokaryotic Extremophiles to Unfold the Mystery of Survival in Extreme Environments. Microbiol Res 2022; 264:127156. [DOI: 10.1016/j.micres.2022.127156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
23
|
Abstract
The hypervariable residues that compose the major part of proteins’ surfaces are generally considered outside evolutionary control. Yet, these “nonconserved” residues determine the outcome of stochastic encounters in crowded cells. It has recently become apparent that these encounters are not as random as one might imagine, but carefully orchestrated by the intracellular electrostatics to optimize protein diffusion, interactivity, and partner search. The most influential factor here is the protein surface-charge density, which takes different optimal values across organisms with different intracellular conditions. In this study, we examine how far the net-charge density and other physicochemical properties of proteomes will take us in terms of distinguishing organisms in general. The results show that these global proteome properties not only follow the established taxonomical hierarchy, but also provide clues to functional adaptation. In many cases, the proteome–property divergence is even resolved at species level. Accordingly, the variable parts of the genes are not as free to drift as they seem in sequence alignment, but present a complementary tool for functional, taxonomic, and evolutionary assignment.
Collapse
|
24
|
Laye VJ, DasSarma S. Double mutations far from the active site affect cold activity in an Antarctic halophilic β-galactosidase. Protein Sci 2022; 31:677-687. [PMID: 34939242 PMCID: PMC8862438 DOI: 10.1002/pro.4264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Abstract
The Antarctic haloarchaeon, Halorubrum lacusprofundi, contains a polyextremophilic family 42 β-galactosidase, which we are using as a model for cold-active enzymes. Divergent amino acid residues in this 78 kDa protein were identified through comparative genomics and hypothesized to be important for cold activity. Six amino acid residues were previously mutated and five were shown by steady-state kinetic analysis to have altered temperature-dependent catalytic activity profiles via effects on Km and/or kcat compared to the wild-type enzyme. In this follow-up study, double-mutated enzymes were constructed and tested for temperature effects, including two new tandem residue pairs (N180T/A181T and T383A/S384A), and pairwise combination of the single residue mutations (N251D, F387L, I476V, and V482L). All double-mutated enzymes were found to be more catalytically active at moderate and/or less active at colder temperatures than wild-type, with both Km and kcat effects observed for the two tandem mutations. For pairwise combinations, a Km effect was seen when the surface exposed F387L mutation located in a domain A TIM barrel α helix 19 Å from the active site was combined with two internal residues, N251D or V482L. When another surface exposed mutation I476V located in a coiled region of domain B 25 Å from the active site was paired with N251D or V482L, a kcat effect was observed. These results indicate that temperature-dependent kinetic effects may be complex and subtle and are mediated by a combination of a small number of residues distant from the active site via changes to the hydration shell and/or perturbation of internal packing.
Collapse
Affiliation(s)
- Victoria J. Laye
- Institute of Marine and Environmental TechnologyUniversity System of MarylandBaltimoreMarylandUSA,Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Shiladitya DasSarma
- Institute of Marine and Environmental TechnologyUniversity System of MarylandBaltimoreMarylandUSA,Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
25
|
Comprehensive Genome Analysis of Halolamina pelagica CDK2: Insights into Abiotic Stress Tolerance Genes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halophilic archaeon Halolamina pelagica CDK2, showcasing plant growth-promoting properties and endurance towards harsh environmental conditions (high salinity, heavy metals, high temperature and UV radiation) was sequenced earlier. Pan-genome of Halolamina genus was created and investigated for strain-specific genes of CDK2, which might confer it with features helping it to withstand high abiotic stress. Pathways and subsystems in CDK2 were compared with other Halolamina strain CGHMS and analysed using KEGG and RAST. A genome-scale metabolic model was reconstructed from the genome of H. pelagica CDK2. Results implicated strain-specific genes like thermostable carboxypeptidase and DNA repair protein MutS which might protect the proteins and DNA from high temperature and UV denaturation respectively. A bifunctional trehalose synthase gene responsible for trehalose biosynthesis was also annotated specifying the need for low salt compatible solute strategy, the probable reason behind the ability of this haloarchaea to survive in a wide range of salt concentrations. A modified shikimate and mevalonate pathways were also identified in CDK2, along with many ABC transporters for metal uptakes like zinc and cobalt through pathway analysis. Probable employment of one multifunctional ABC transporter in place of two for similar metals (Nickel/cobalt and molybdenum/tungsten) might be employed as a strategy for energy conservation. The findings of the present study could be utilized for future research relating metabolic model for flux balance analysis and the genetic repertoire imparting resistance to harsh conditions can be transferred to crops for improving their tolerance to abiotic stresses.
Collapse
|
26
|
Genome Sequence of the Early 20th-Century Extreme Halophile Halobacterium sp. Strain NRC-34001. Microbiol Resour Announc 2022; 11:e0118121. [PMID: 35023769 PMCID: PMC8759366 DOI: 10.1128/mra.01181-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halobacterium sp. strain NRC-34001 is a red, extremely halophilic archaeon isolated in Canada in 1934. Single-molecule real-time sequencing revealed a 2.3-Mbp genome with a 2-Mbp chromosome and two plasmids (235 kb and 43 kb). The genome encodes all conserved core haloarchaeal groups (cHOGs) and a highly acidic proteome.
Collapse
|
27
|
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 2022; 58:107906. [DOI: 10.1016/j.biotechadv.2022.107906] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
|
28
|
Genome Sequence of Halobacterium sp. Strain BOL4-2, Isolated and Cultured from Salar de Uyuni, Bolivia. Microbiol Resour Announc 2021; 10:e0104521. [PMID: 34854697 PMCID: PMC8638584 DOI: 10.1128/mra.01045-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Halobacterium sp. strain BOL4-2 was isolated from an Andean salt flat, Salar de Uyuni, in Bolivia. Single-molecule real-time (SMRT) sequencing revealed a 2.4-Mbp genome with a 2.0-Mbp chromosome and four plasmids (2 to 299 kb). Its isolation from an environment experiencing multiple extremes makes the strain interesting for astrobiology.
Collapse
|
29
|
Martínez FL, Rajal VB, Irazusta VP. Genomic characterization and proteomic analysis of the halotolerant Micrococcus luteus SA211 in response to the presence of lithium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147290. [PMID: 33940405 DOI: 10.1016/j.scitotenv.2021.147290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Micrococcus luteus SA211, isolated from the Salar del Hombre Muerto in Argentina, developed responses that allowed its survival and growth in presence of high concentrations of lithium chloride (LiCl). In this research, analysis of total genome sequencing and a comparative proteomic approach were performed to investigate the responses of this bacterium to the presence of Li. Through proteomic analysis, we found differentially synthesized proteins in growth media without LiCl (DM) and with 10 (D10) and 30 g/L LiCl (D30). Bi-dimensional separation of total protein extracts allowed the identification of 17 over-synthesized spots when growth occurred in D30, five in D10, and six in both media with added LiCl. The results obtained showed different metabolic pathways involved in the ability of M. luteus SA211 to interact with Li. These pathways include defense against oxidative stress, pigment and protein synthesis, energy production, and osmolytes biosynthesis and uptake. Furthermore, mono-dimensional gel electrophoresis revealed differential protein synthesis at equivalent NaCl and LiCl concentrations, suggesting that this strain would be able to develop different responses depending on the nature of the ion. Moreover, the percentage of proteins with acidic pI predicted and observed was highlighted, indicating an adaptation to saline environments. To the best of our knowledge, this is the first report showing the relationship between protein synthesis and genome sequence analysis in response to Li, showing the great biotechnological potential that native microorganisms present, especially those isolated from extreme environments.
Collapse
Affiliation(s)
- Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ingeniería, UNSa, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ciencias Naturales, UNSa, Argentina.
| |
Collapse
|
30
|
The Mutational Robustness of the Genetic Code and Codon Usage in Environmental Context: A Non-Extremophilic Preference? Life (Basel) 2021; 11:life11080773. [PMID: 34440517 PMCID: PMC8398314 DOI: 10.3390/life11080773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The genetic code was evolved, to some extent, to minimize the effects of mutations. The effects of mutations depend on the amino acid repertoire, the structure of the genetic code and frequencies of amino acids in proteomes. The amino acid compositions of proteins and corresponding codon usages are still under selection, which allows us to ask what kind of environment the standard genetic code is adapted to. Using simple computational models and comprehensive datasets comprising genomic and environmental data from all three domains of Life, we estimate the expected severity of non-synonymous genomic mutations in proteins, measured by the change in amino acid physicochemical properties. We show that the fidelity in these physicochemical properties is expected to deteriorate with extremophilic codon usages, especially in thermophiles. These findings suggest that the genetic code performs better under non-extremophilic conditions, which not only explains the low substitution rates encountered in halophiles and thermophiles but the revealed relationship between the genetic code and habitat allows us to ponder on earlier phases in the history of Life.
Collapse
|
31
|
Complete Genome Sequence of an Extremely Halophilic Archaeon from Great Salt Lake, Halobacterium sp. GSL-19. Microbiol Resour Announc 2021; 10:e0052021. [PMID: 34264097 PMCID: PMC8281068 DOI: 10.1128/mra.00520-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An extremely halophilic archaeon, Halobacterium sp. GSL-19, was isolated from the north arm of Great Salt Lake in Utah. Single-molecule real-time (SMRT) sequencing was used to establish a GC-rich 2.3-Mbp genome composed of a circular chromosome and 2 plasmids, with 2,367 predicted genes, including 1 encoding a CTAG-methylase widely distributed among Haloarchaea.
Collapse
|
32
|
Proteins maintain hydration at high [KCl] concentration regardless of content in acidic amino acids. Biophys J 2021; 120:2746-2762. [PMID: 34087206 PMCID: PMC8390907 DOI: 10.1016/j.bpj.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Proteins of halophilic organisms, which accumulate molar concentrations of KCl in their cytoplasm, have a much higher content in acidic amino acids than proteins of mesophilic organisms. It has been proposed that this excess is necessary to maintain proteins hydrated in an environment with low water activity, either via direct interactions between water and the carboxylate groups of acidic amino acids or via cooperative interactions between acidic amino acids and hydrated cations. Our simulation study of five halophilic proteins and five mesophilic counterparts does not support either possibility. The simulations use the AMBER ff14SB force field with newly optimized Lennard-Jones parameters for the interactions between carboxylate groups and potassium ions. We find that proteins with a larger fraction of acidic amino acids indeed have higher hydration levels, as measured by the concentration of water in their hydration shell and the number of water/protein hydrogen bonds. However, the hydration level of each protein is identical at low (bKCl = 0.15 mol/kg) and high (bKCl = 2 mol/kg) KCl concentrations; excess acidic amino acids are clearly not necessary to maintain proteins hydrated at high salt concentration. It has also been proposed that cooperative interactions between acidic amino acids in halophilic proteins and hydrated cations stabilize the folded protein structure and would lead to slower dynamics of the solvation shell. We find that the translational dynamics of the solvation shell is barely distinguishable between halophilic and mesophilic proteins; if such a cooperative effect exists, it does not have that entropic signature.
Collapse
|
33
|
Genome Sequence and Methylation Pattern of Haloterrigena salifodinae BOL5-1, an Extremely Halophilic Archaeon from a Bolivian Salt Mine. Microbiol Resour Announc 2021; 10:10/18/e00275-21. [PMID: 33958400 PMCID: PMC8103870 DOI: 10.1128/mra.00275-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The halophilic archaeon Haloterrigena salifodinae BOL5-1 was isolated from a Bolivian salt mine and sequenced using single-molecule real-time sequencing. The GC-rich genome was 5.1 Mbp, with a 4.2-Mbp chromosome and 5 plasmids ranging from 96 to 281 kbp. The genome annotation was incorporated into HaloWeb (https://halo.umbc.edu) and the methylation patterns into REBASE (http://rebase.neb.com). Halophilic microbes capable of surviving extreme conditions are of interest for biotechnology and astrobiology (1–12). Our recent focus has been on high elevation and subsurface hypersaline environments, which yield polyextremophilic varieties. In this announcement, isolation of an extremely halophilic archaeon, Haloterrigena salifodinae BOL5-1, is reported, together with the first complete genome sequence for this species. The halophilic archaeon Haloterrigena salifodinae BOL5-1 was isolated from a Bolivian salt mine and sequenced using single-molecule real-time sequencing. The GC-rich genome was 5.1 Mbp, with a 4.2-Mbp chromosome and 5 plasmids ranging from 96 to 281 kbp. The genome annotation was incorporated into HaloWeb (https://halo.umbc.edu), and the methylation patterns were incorporated into REBASE (http://tools.neb.com/genomes/view.php?seq_id=99167&list=1).
Collapse
|
34
|
Bize A, Midoux C, Mariadassou M, Schbath S, Forterre P, Da Cunha V. Exploring short k-mer profiles in cells and mobile elements from Archaea highlights the major influence of both the ecological niche and evolutionary history. BMC Genomics 2021; 22:186. [PMID: 33726663 PMCID: PMC7962313 DOI: 10.1186/s12864-021-07471-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND K-mer-based methods have greatly advanced in recent years, largely driven by the realization of their biological significance and by the advent of next-generation sequencing. Their speed and their independence from the annotation process are major advantages. Their utility in the study of the mobilome has recently emerged and they seem a priori adapted to the patchy gene distribution and the lack of universal marker genes of viruses and plasmids. To provide a framework for the interpretation of results from k-mer based methods applied to archaea or their mobilome, we analyzed the 5-mer DNA profiles of close to 600 archaeal cells, viruses and plasmids. Archaea is one of the three domains of life. Archaea seem enriched in extremophiles and are associated with a high diversity of viral and plasmid families, many of which are specific to this domain. We explored the dataset structure by multivariate and statistical analyses, seeking to identify the underlying factors. RESULTS For cells, the 5-mer profiles were inconsistent with the phylogeny of archaea. At a finer taxonomic level, the influence of the taxonomy and the environmental constraints on 5-mer profiles was very strong. These two factors were interdependent to a significant extent, and the respective weights of their contributions varied according to the clade. A convergent adaptation was observed for the class Halobacteria, for which a strong 5-mer signature was identified. For mobile elements, coevolution with the host had a clear influence on their 5-mer profile. This enabled us to identify one previously known and one new case of recent host transfer based on the atypical composition of the mobile elements involved. Beyond the effect of coevolution, extrachromosomal elements strikingly retain the specific imprint of their own viral or plasmid taxonomic family in their 5-mer profile. CONCLUSION This specific imprint confirms that the evolution of extrachromosomal elements is driven by multiple parameters and is not restricted to host adaptation. In addition, we detected only recent host transfer events, suggesting the fast evolution of short k-mer profiles. This calls for caution when using k-mers for host prediction, metagenomic binning or phylogenetic reconstruction.
Collapse
Affiliation(s)
- Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, F-92761, Antony, France.
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, PROSE, F-92761, Antony, France.,Université Paris-Saclay, INRAE, MaIAGE, F-78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, F-78350, Jouy-en-Josas, France
| | - Mahendra Mariadassou
- Université Paris-Saclay, INRAE, MaIAGE, F-78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, F-78350, Jouy-en-Josas, France
| | - Sophie Schbath
- Université Paris-Saclay, INRAE, MaIAGE, F-78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, F-78350, Jouy-en-Josas, France
| | - Patrick Forterre
- Institut Pasteur, Unité de Virologie des Archées, Département de Microbiologie, 25 Rue du Docteur Roux, 75015, Paris, France. .,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
35
|
Bhattacharjee R, Choubey A, Das N, Ohri A, Gaur S. Detecting the Carotenoid Pigmentation due to Haloarchaea Microbes in the Lonar Lake, Maharashtra, India Using Sentinel-2 Images. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING 2021. [PMCID: PMC7582028 DOI: 10.1007/s12524-020-01219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Lonar Lake of Maharashtra is a crater based-saline lake. During the month of June 2020, this lake suddenly changed its colour and turned to pink due to the presence of Haloarchaea microbes, and this species have a unique adaptation style to survive in high saline condition. The salinity of this lake is increasing due to less rainfall, low human intervention, and an increase in the temperature of this region. These microbes produce fantastic bloom, which can be sensed from outer space because of red–orange carotenoids production. In this work, Sentinel 2A datasets have been used for the duration of January 2020 to June 2020. These datasets have been processed in Google Earth Engine platform and several indices like Salinity Index, Surface Algal Bloom Index, and Normalized Difference Haloarchaea Index have been calculated. With the help of these indices, it has been found that the appearance of these microbes has happened in the early part of June 2020, and in more precise terms, it can be stated that between May 31 and June 5, these microbes have appeared in the lake.
Collapse
Affiliation(s)
- Rajarshi Bhattacharjee
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Abhinandan Choubey
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Nilendu Das
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Anurag Ohri
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Shishir Gaur
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| |
Collapse
|
36
|
Bharathi M, Senthil Kumar N, Chellapandi P. Functional Prediction and Assignment of Methanobrevibacter ruminantium M1 Operome Using a Combined Bioinformatics Approach. Front Genet 2020; 11:593990. [PMID: 33391347 PMCID: PMC7772410 DOI: 10.3389/fgene.2020.593990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Methanobrevibacter ruminantium M1 (MRU) is a rod-shaped rumen methanogen with the ability to use H2 and CO2, and formate as substrates for methane formation in the ruminants. Enteric methane emitted from this organism can also be influential to the loss of dietary energy in ruminants and humans. To date, there is no successful technology to reduce methane due to a lack of knowledge on its molecular machinery and 73% conserved hypothetical proteins (HPs; operome) whose functions are still not ascertained perceptively. To address this issue, we have predicted and assigned a precise function to HPs and categorize them as metabolic enzymes, binding proteins, and transport proteins using a combined bioinformatics approach. The results of our study show that 257 (34%) HPs have well-defined functions and contributed essential roles in its growth physiology and host adaptation. The genome-neighborhood analysis identified 6 operon-like clusters such as hsp, TRAM, dsr, cbs and cas, which are responsible for protein folding, sudden heat-shock, host defense, and protection against the toxicities in the rumen. The functions predicted from MRU operome comprised of 96 metabolic enzymes with 17 metabolic subsystems, 31 transcriptional regulators, 23 transport, and 11 binding proteins. Functional annotation of its operome is thus more imperative to unravel the molecular and cellular machinery at the systems-level. The functional assignment of its operome would advance strategies to develop new anti-methanogenic targets to mitigate methane production. Hence, our approach provides new insight into the understanding of its growth physiology and lifestyle in the ruminants and also to reduce anthropogenic greenhouse gas emissions worldwide.
Collapse
Affiliation(s)
- M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - N Senthil Kumar
- Human Genetics Lab, Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
37
|
Martijn J, Schön ME, Lind AE, Vosseberg J, Williams TA, Spang A, Ettema TJG. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nat Commun 2020; 11:5490. [PMID: 33127909 PMCID: PMC7599335 DOI: 10.1038/s41467-020-19200-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/01/2020] [Indexed: 01/09/2023] Open
Abstract
Halobacteria (henceforth: Haloarchaea) are predominantly aerobic halophiles that are thought to have evolved from anaerobic methanogens. This remarkable transformation most likely involved an extensive influx of bacterial genes. Whether it entailed a single massive transfer event or a gradual stream of transfers remains a matter of debate. To address this, genomes that descend from methanogen-to-halophile intermediates are necessary. Here, we present five such near-complete genomes of Marine Group IV archaea (Hikarchaeia), the closest known relatives of Haloarchaea. Their inclusion in gene tree-aware ancestral reconstructions reveals an intermediate stage that had already lost a large number of genes, including nearly all of those involved in methanogenesis and the Wood-Ljungdahl pathway. In contrast, the last Haloarchaea common ancestor gained a large number of genes and expanded its aerobic respiration and salt/UV resistance gene repertoire. Our results suggest that complex and gradual patterns of gain and loss shaped the methanogen-to-halophile transition.
Collapse
Affiliation(s)
- Joran Martijn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Max E Schön
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anders E Lind
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Julian Vosseberg
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Anja Spang
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Thijs J G Ettema
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
38
|
Evolutionary Study of Disorder in Protein Sequences. Biomolecules 2020; 10:biom10101413. [PMID: 33036302 PMCID: PMC7650552 DOI: 10.3390/biom10101413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) contain regions lacking intrinsic globular structure (intrinsically disordered regions, IDRs). IDPs are present across the tree of life, with great variability of IDR type and frequency even between closely related taxa. To investigate the function of IDRs, we evaluated and compared the distribution of disorder content in 10,695 reference proteomes, confirming its high variability and finding certain correlation along the Euteleostomi (bony vertebrates) lineage to number of cell types. We used the comparison of orthologs to study the function of disorder related to increase in cell types, observing that multiple interacting subunits of protein complexes might gain IDRs in evolution, thus stressing the function of IDRs in modulating protein-protein interactions, particularly in the cell nucleus. Interestingly, the conservation of local compositional biases of IDPs follows residue-type specific patterns, with E- and K-rich regions being evolutionarily stable and Q- and A-rich regions being more dynamic. We provide a framework for targeted evolutionary studies of the emergence of IDRs. We believe that, given the large variability of IDR distributions in different species, studies using this evolutionary perspective are required.
Collapse
|
39
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
40
|
Kumar S, Paul D, Bhushan B, Wakchaure GC, Meena KK, Shouche Y. Traversing the "Omic" landscape of microbial halotolerance for key molecular processes and new insights. Crit Rev Microbiol 2020; 46:631-653. [PMID: 32991226 DOI: 10.1080/1040841x.2020.1819770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-2005, the biology of the salt afflicted habitats is predominantly studied employing high throughput "Omic" approaches comprising metagenomics, transcriptomics, metatranscriptomics, metabolomics, and proteomics. Such "Omic-based" studies have deciphered the unfamiliar details about microbial salt-stress biology. The MAGs (Metagenome-assembled genomes) of uncultured halophilic microbial lineages such as Nanohaloarchaea and haloalkaliphilic members within CPR (Candidate Phyla Radiation) have been reconstructed from diverse hypersaline habitats. The study of MAGs of such uncultured halophilic microbial lineages has unveiled the genomic basis of salt stress tolerance in "yet to culture" microbial lineages. Furthermore, functional metagenomic approaches have been used to decipher the novel genes from uncultured microbes and their possible role in microbial salt-stress tolerance. The present review focuses on the new insights into microbial salt-stress biology gained through different "Omic" approaches. This review also summarizes the key molecular processes that underlie microbial salt-stress response, and their role in microbial salt-stress tolerance has been confirmed at more than one "Omic" levels.
Collapse
Affiliation(s)
- Satish Kumar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.,ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Bharat Bhushan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - G C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Kamlesh K Meena
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| |
Collapse
|
41
|
A potassium chloride to glycine betaine osmoprotectant switch in the extreme halophile Halorhodospira halophila. Sci Rep 2020; 10:3383. [PMID: 32098991 PMCID: PMC7042295 DOI: 10.1038/s41598-020-59231-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
Halophiles utilize two distinct osmoprotection strategies. The accumulation of organic compatible solutes such as glycine betaine does not perturb the functioning of cytoplasmic components, but represents a large investment of energy and carbon. KCl is an energetically attractive alternative osmoprotectant, but requires genome-wide modifications to establish a highly acidic proteome. Most extreme halophiles are optimized for the use of one of these two strategies. Here we examine the extremely halophilic Proteobacterium Halorhodospira halophila and report that medium K+ concentration dramatically alters its osmoprotectant use. When grown in hypersaline media containing substantial K+ concentrations, H. halophila accumulates molar concentrations of KCl. However, at limiting K+ concentrations the organism switches to glycine betaine as its major osmoprotectant. In contrast, the closely related organism Halorhodospira halochloris is limited to using compatible solutes. H. halophila performs both de novo synthesis and uptake of glycine betaine, matching the biosynthesis and transport systems encoded in its genome. The medium K+ concentration (~10 mM) at which the KCl to glycine betaine osmoprotectant switch in H. halophila occurs is near the K+ content of the lake from which it was isolated, supporting an ecological relevance of this osmoprotectant strategy.
Collapse
|
42
|
Panja AS, Maiti S, Bandyopadhyay B. Protein stability governed by its structural plasticity is inferred by physicochemical factors and salt bridges. Sci Rep 2020; 10:1822. [PMID: 32020026 PMCID: PMC7000726 DOI: 10.1038/s41598-020-58825-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2020] [Indexed: 12/02/2022] Open
Abstract
Several organisms, specifically microorganisms survive in a wide range of harsh environments including extreme temperature, pH, and salt concentration. We analyzed systematically a large number of protein sequences with their structures to understand their stability and to discriminate extremophilic proteins from their non-extremophilic orthologs. Our results highlighted that the strategy for the packing of the protein core was influenced by the environmental stresses through substitutive structural events through better ionic interaction. Statistical analysis showed that a significant difference in number and composition of amino acid exist among them. The negative correlation of pairwise sequence alignments and structural alignments indicated that most of the extremophile and non-extremophile proteins didn’t contain any association for maintaining their functional stability. A significant numbers of salt bridges were noticed on the surface of the extremostable proteins. The Ramachandran plot data represented more occurrences of amino acids being present in helix and sheet regions of extremostable proteins. We also found that a significant number of small nonpolar amino acids and moderate number of charged amino acids like Arginine and Aspartic acid represented more nonplanar Omega angles in their peptide bond. Thus, extreme conditions may predispose amino acid composition including geometric variability for molecular adaptation of extremostable proteins against atmospheric variations and associated changes under natural selection pressure. The variation of amino acid composition and structural diversifications in proteins play a major role in evolutionary adaptation to mitigate climate change.
Collapse
Affiliation(s)
- Anindya S Panja
- Post Graduate Department of Biotechnology, Molecular informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India.
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Bidyut Bandyopadhyay
- Post Graduate Department of Biotechnology, Molecular informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
43
|
Genome Sequence of Salarchaeum sp. Strain JOR-1, an Extremely Halophilic Archaeon from the Dead Sea. Microbiol Resour Announc 2020; 9:9/5/e01505-19. [PMID: 32001568 PMCID: PMC6992872 DOI: 10.1128/mra.01505-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An extremely halophilic archaeon, Salarchaeum sp. strain JOR-1, was isolated from the east coast of the Dead Sea, Kingdom of Jordan, and sequenced using single-molecule real-time (SMRT) sequencing. The GC-rich 2.5-Mbp genome was composed of a circular chromosome and a megaplasmid. The genome contained 2,633 genes and was incorporated into HaloWeb (https://halo.umbc.edu/).
Collapse
|
44
|
Abstract
Despite the typical human notion that the Earth is a habitable planet, over three quarters of our planet is uninhabitable by us without assistance. The organisms that live and thrive in these “inhospitable” environments are known by the name extremophiles and are found in all Domains of Life. Despite our general lack of knowledge about them, they have already assisted humans in many ways and still have much more to give. In this review, I describe how they have adapted to live/thrive/survive in their niches, helped scientists unlock major scientific discoveries, advance the field of biotechnology, and inform us about the boundaries of Life and where we might find it in the Universe.
Collapse
Affiliation(s)
- James A Coker
- Department of Sciences, University of Maryland Global Campus, Adelphi, MD, USA
| |
Collapse
|
45
|
Intermediate-Salinity Systems at High Altitudes in the Peruvian Andes Unveil a High Diversity and Abundance of Bacteria and Viruses. Genes (Basel) 2019; 10:genes10110891. [PMID: 31694288 PMCID: PMC6895999 DOI: 10.3390/genes10110891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022] Open
Abstract
Intermediate-salinity environments are distributed around the world. Here, we present a snapshot characterization of two Peruvian thalassohaline environments at high altitude, Maras and Acos, which provide an excellent opportunity to increase our understanding of these ecosystems. The main goal of this study was to assess the structure and functional diversity of the communities of microorganisms in an intermediate-salinity environment, and we used a metagenomic shotgun approach for this analysis. These Andean hypersaline systems exhibited high bacterial diversity and abundance of the phyla Proteobacteria, Bacteroidetes, Balneolaeota, and Actinobacteria; in contrast, Archaea from the phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota were identified in low abundance. Acos harbored a more diverse prokaryotic community and a higher number of unique species compared with Maras. In addition, we obtained the draft genomes of two bacteria, Halomonas elongata and Idiomarina loihiensis, as well as the viral genomes of Enterobacteria lambda-like phage and Halomonas elongata-like phage and 27 partial novel viral halophilic genomes. The functional metagenome annotation showed a high abundance of sequences associated with detoxification, DNA repair, cell wall and capsule formation, and nucleotide metabolism; sequences for these functions were overexpressed mainly in bacteria and also in some archaea and viruses. Thus, their metabolic profiles afford a decrease in oxidative stress as well as the assimilation of nitrogen, a critical energy source for survival. Our work represents the first microbial characterization of a community structure in samples collected from Peruvian hypersaline systems.
Collapse
|
46
|
He H, Fu L, Liu Q, Fu L, Bi N, Yang Z, Zhen Y. Community Structure, Abundance and Potential Functions of Bacteria and Archaea in the Sansha Yongle Blue Hole, Xisha, South China Sea. Front Microbiol 2019; 10:2404. [PMID: 31681249 PMCID: PMC6813542 DOI: 10.3389/fmicb.2019.02404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023] Open
Abstract
The Sansha Yongle Blue Hole is the deepest blue hole in the world and exhibits unique environmental characteristics. In this paper, Illumina sequencing and qPCR analysis were conducted to obtain the microbial information in this special ecosystem. The results showed that the richness and diversity of bacterial communities in the hole was greater than those of archaeal communities, and bacterial and archaeal communities were dominated by Proteobacteria and Euryarchaeota, respectively. Temperature and nitrate concentration significantly contributed to the heterogeneous distribution of major bacterial clades; salinity explained most variations of the archaeal communities, but not significant. A sudden increase of bacterial 16S rRNA, archaeal 16S rRNA, ANAMMOX 16S rRNA, nirS and dsrB gene was noticed from 90 to 100 m in the hole probably due to more phytoplankton at this depth. Sulfur oxidation and nitrate reduction were the most abundant predicted ecological functions in the hole, while lots of archaea were predicted to be involved in aerobic ammonia oxidation and methanogenesis. The co-occurrence network analysis illustrated that a synergistic effect between sulfate reduction and sulfur oxidation, and between nitrogen fixation and denitrification, a certain degree of coupling between sulfur and nitrogen cycle was also observed in the hole. The comparisons of bacterial and archaeal communities between the hole and other caves in the world (or other areas of the South China Sea) suggest that similar conditions are hypothesized to give rise to similar microbial communities, and environmental conditions may contribute significantly to the bacterial and archaeal communities.
Collapse
Affiliation(s)
- Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lulu Fu
- Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Qian Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
| | - Liang Fu
- Sansha Trackline Institute of Coral Reef Environment Protection, Sansha, China
| | - Naishuang Bi
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Zuosheng Yang
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Yu Zhen
- Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
47
|
Kutnowski N, Shmulevich F, Davidov G, Shahar A, Bar-Zvi D, Eichler J, Zarivach R, Shaanan B. Specificity of protein-DNA interactions in hypersaline environment: structural studies on complexes of Halobacterium salinarum oxidative stress-dependent protein hsRosR. Nucleic Acids Res 2019; 47:8860-8873. [PMID: 31310308 PMCID: PMC7145548 DOI: 10.1093/nar/gkz604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Interactions between proteins and DNA are crucial for all biological systems. Many studies have shown the dependence of protein–DNA interactions on the surrounding salt concentration. How these interactions are maintained in the hypersaline environments that halophiles inhabit remains puzzling. Towards solving this enigma, we identified the DNA motif recognized by the Halobactrium salinarum ROS-dependent transcription factor (hsRosR), determined the structure of several hsRosR–DNA complexes and investigated the DNA-binding process under extreme high-salt conditions. The picture that emerges from this work contributes to our understanding of the principles underlying the interplay between electrostatic interactions and salt-mediated protein–DNA interactions in an ionic environment characterized by molar salt concentrations.
Collapse
Affiliation(s)
- Nitzan Kutnowski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Fania Shmulevich
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Anat Shahar
- Macromolecular Crystallography Research Center, National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Dudy Bar-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Boaz Shaanan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| |
Collapse
|
48
|
Edbeib MF, Aksoy HM, Kaya Y, Wahab RA, Huyop F. Haloadaptation: insights from comparative modeling studies between halotolerant and non-halotolerant dehalogenases. J Biomol Struct Dyn 2019; 38:3452-3461. [PMID: 31422756 DOI: 10.1080/07391102.2019.1657498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Halophiles are extremophilic microorganisms that grow optimally at high salt concentrations by producing a myriad of equally halotolerant enzymes. Structural haloadaptation of these enzymes adept to thriving under high-salt environments, though are not fully understood. Herein, the study attempts an in silico investigation to identify and comprehend the evolutionary structural adaptation of a halotolerant dehalogenase, DehHX (GenBank accession number: KR297065) of the halotolerant Pseudomonas halophila, over its non-halotolerant counterpart, DehMX1 (GenBank accession number KY129692) produced by Pseudomonas aeruginosa. GC content of the halotolerant DehHX DNA sequence was distinctively higher (58.9%) than the non-halotolerant dehalogenases (55% average GC). Its acidic residues, Asp and Glu were 8.27% and 12.06%, respectively, compared to an average 5.5% Asp and 7% Glu, in the latter; but lower contents of basic and hydrophobic residues in the DehHX. The secondary structure of DehHX interestingly revealed a lower incidence of α-helix forming regions (29%) and a higher percentage of coils (57%), compared to 49% and 29% in the non-halotolerant homologues, respectively. Simulation models showed the DehHX is stable under a highly saline environment (25% w/v) by adopting a highly negative-charged surface with a concomitant weakly interacting hydrophobic core. The study thus, established that a halotolerant dehalogenase undergoes notable evolutionary structural changes related to GC content over its non-halotolerant counterpart, in order to adapt and thrive under highly saline environments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed Faraj Edbeib
- Department of Animal Production, Faculty of Agriculture, Baniwalid University, Baniwalid, Libya.,Department of Plant Protection, Agricultural Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Hasan Murat Aksoy
- Department of Plant Protection, Agricultural Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey.,Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Fahrul Huyop
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey.,Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
49
|
DasSarma S, DasSarma P, Laye VJ, Schwieterman EW. Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. Extremophiles 2019; 24:31-41. [PMID: 31463573 DOI: 10.1007/s00792-019-01126-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Recent progress in extremophile biology, exploration of planetary bodies in the solar system, and the detection and characterization of extrasolar planets are leading to new insights in the field of astrobiology and possible distribution of life in the universe. Among the many extremophiles on Earth, the halophilic Archaea (Haloarchaea) are especially attractive models for astrobiology, being evolutionarily ancient and physiologically versatile, potentially surviving in a variety of planetary environments and with relevance for in situ life detection. Haloarchaea are polyextremophilic with tolerance of saturating salinity, anaerobic conditions, high levels of ultraviolet and ionizing radiation, subzero temperatures, desiccation, and toxic ions. Haloarchaea survive launches into Earth's stratosphere encountering conditions similar to those found on the surface of Mars. Studies of their unique proteins are revealing mechanisms permitting activity and function in high ionic strength, perchlorates, and subzero temperatures. Haloarchaea also produce spectacular blooms visible from space due to synthesis of red-orange isoprenoid carotenoids used for photoprotection and photorepair processes and purple retinal chromoproteins for phototrophy and phototaxis. Remote sensing using visible and infrared spectroscopy has shown that haloarchaeal pigments exhibit both a discernable peak of absorption and a reflective "green edge". Since the pigments produce remotely detectable features, they may influence the spectrum from an inhabited exoplanet imaged by a future large space-based telescope. In this review, we focus primarily on studies of two Haloarchaea, Halobacterium sp. NRC-1 and Halorubrum lacusprofundi.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Priya DasSarma
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victoria J Laye
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward W Schwieterman
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
50
|
Genome Sequences and Methylation Patterns of Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, Two Extremely Halophilic Archaea from a Bolivian Salt Mine. Microbiol Resour Announc 2019; 8:8/33/e00810-19. [PMID: 31416876 PMCID: PMC6696651 DOI: 10.1128/mra.00810-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Two extremely halophilic archaea, namely, Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, were isolated from a Bolivian salt mine and their genomes sequenced using single-molecule real-time sequencing. The GC-rich genomes of BOL5-4 and BOL6-1 were 4.6 and 3.8 Mbp, respectively, with large chromosomes and multiple megaplasmids. Genome annotation was incorporated into HaloWeb and methylation patterns incorporated into REBASE. Two extremely halophilic archaea, namely, Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, were isolated from a Bolivian salt mine and their genomes sequenced using single-molecule real-time sequencing. The GC-rich genomes of BOL5-4 and BOL6-1 were 4.6 and 3.8 Mbp, respectively, with large chromosomes and multiple megaplasmids. Genome annotation was incorporated into HaloWeb and methylation patterns incorporated into REBASE.
Collapse
|