1
|
Yoshihara M, Coschiera A, Bachmann JA, Pucci M, Li H, Bhagat S, Murakawa Y, Weltner J, Jouhilahti EM, Swoboda P, Sahlén P, Kere J. Transcriptional enhancers in human neuronal differentiation provide clues to neuronal disorders. EMBO Rep 2025; 26:1212-1237. [PMID: 39948187 PMCID: PMC11893885 DOI: 10.1038/s44319-025-00372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 03/12/2025] Open
Abstract
Genome-wide association studies (GWASs) have identified thousands of variants associated with complex phenotypes, including neuropsychiatric disorders. To better understand their pathogenesis, it is necessary to identify the functional roles of these variants, which are largely located in non-coding DNA regions. Here, we employ a human mesencephalic neuronal cell differentiation model, LUHMES, with sensitive and high-resolution methods to discover enhancers (NET-CAGE), perform DNA conformation analysis (Capture Hi-C) to link enhancers to their target genes, and finally validate selected interactions. We expand the number of known enhancers active in differentiating human LUHMES neurons to 47,350, and find overlap with GWAS variants for Parkinson's disease and schizophrenia. Our findings reveal a fine-tuned regulation of human neuronal differentiation, even between adjacent developmental stages; provide a valuable resource for further studies on neuronal development, regulation, and disorders; and emphasize the importance of exploring the vast regulatory potential of non-coding DNA and enhancers.
Collapse
Affiliation(s)
- Masahito Yoshihara
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, Japan
| | - Andrea Coschiera
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jörg A Bachmann
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mariangela Pucci
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Haonan Li
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
| | - Shruti Bhagat
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Yasuhiro Murakawa
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jere Weltner
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Peter Swoboda
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden.
| | - Pelin Sahlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Juha Kere
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden.
- Folkhälsan Research Centre, Helsinki, Finland.
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Panni S, Pizzolotto R. Integrated Analysis of microRNA Targets Reveals New Insights into Transcriptional-Post-Transcriptional Regulatory Cross-Talk. BIOLOGY 2025; 14:43. [PMID: 39857274 PMCID: PMC11762646 DOI: 10.3390/biology14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
It is becoming increasingly clear that microRNAs are key players in gene regulatory networks, modulating gene expression at post-transcriptional level. Their involvement in almost all cellular processes predicts their role in diseases, and several microRNA-based therapeutics are currently undergoing clinical testing. Despite their undeniable relevance and the substantial body of literature demonstrating their role in cancer and other pathologies, the identification of functional interactions is still challenging. To address this issue, several resources have been developed to collect information from the literature, according to different criteria and reliability scores. In the present study, we have constructed a network of verified microRNA-mRNA interactions by integrating strong-evidence couples from different resources. Our analysis of the resulting network reveals that only one-fifth of the human genes exhibits experimental validated regulation by microRNAs. A very small subset of them is controlled by more than 20 microRNAs, and these hubs are highly enriched of pivotal transcription factors and regulatory proteins, strongly suggesting a complex interplay and a combinatorial effect between transcriptional and post-transcriptional gene control. Data analysis also reveals that several microRNAs control multiple targets involved in the same pathway or biological process, likely contributing to the coordinated control of the protein levels.
Collapse
Affiliation(s)
- Simona Panni
- Dipartimento di Biologia Ecologia Scienze della Terra (DiBEST), Università della Calabria, 87036 Rende, CS, Italy;
| | | |
Collapse
|
3
|
Takase HM, Mishina T, Hayashi T, Yoshimura M, Kuse M, Nikaido I, Kitajima TS. Transcriptomic signatures of WNT-driven pathways and granulosa cell-oocyte interactions during primordial follicle activation. PLoS One 2024; 19:e0311978. [PMID: 39441825 PMCID: PMC11498688 DOI: 10.1371/journal.pone.0311978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Primordial follicle activation (PFA) is a pivotal event in female reproductive biology, coordinating the transition from quiescent to growing follicles. This study employed comprehensive single-cell RNA sequencing to gain insights into the detailed regulatory mechanisms governing the synchronized dormancy and activation between granulosa cells (GCs) and oocytes with the progression of the PFA process. Wntless (Wls) conditional knockout (cKO) mice served as a unique model, suppressing the transition from pre-GCs to GCs, and disrupting somatic cell-derived WNT signaling in the ovary. Our data revealed immediate transcriptomic changes in GCs post-PFA in Wls cKO mice, leading to a divergent trajectory, while oocytes exhibited modest transcriptomic alterations. Subpopulation analysis identified the molecular pathways affected by WNT signaling on GC maturation, along with specific gene signatures linked to dormant and activated oocytes. Despite minimal evidence of continuous up-regulation of dormancy-related genes in oocytes, the loss of WNT signaling in (pre-)GCs impacted gene expression in oocytes even before PFA, subsequently influencing them globally. The infertility observed in Wls cKO mice was attributed to compromised GC-oocyte molecular crosstalk and the microenvironment for oocytes. Our study highlights the pivotal role of the WNT-signaling pathway and its molecular signature, emphasizing the importance of intercellular crosstalk between (pre-)GCs and oocytes in orchestrating folliculogenesis.
Collapse
Affiliation(s)
- Hinako M. Takase
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mariko Kuse
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo, Japan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
4
|
Giffen KP, Liu H, Yamane KL, Li Y, Chen L, Kramer KL, Zallocchi M, He DZ. Molecular specializations underlying phenotypic differences in inner ear hair cells of zebrafish and mice. Front Neurol 2024; 15:1437558. [PMID: 39484049 PMCID: PMC11524865 DOI: 10.3389/fneur.2024.1437558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral, and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals. Mammalian HCs, in contrast, are not electrically tuned and achieve amplification by somatic motility of outer HCs (OHCs). Methods To understand the genetic mechanisms underlying differences between adult zebrafish and mammalian HCs, we compared their RNA-seq-characterized transcriptomes, focusing on protein-coding orthologous genes related to HC specialization. Results There was considerable shared expression of gene orthologs among the HCs, including those genes associated with mechanotransduction, ion transport/channels, and synaptic signaling. However, there were some notable differences in expression among zHCs, OHCs, and inner HCs (IHCs), which likely underlie the distinctive physiological properties of each cell type. For example, OHCs highly express Slc26a5 which encodes the motor protein prestin that contributes to OHC electromotility. However, zHCs have only weak expression of slc26a5, and subsequently showed no voltage-dependent electromotility when measured. Notably, the zHCs expressed more paralogous genes including those associated with HC-specific functions and transcriptional activity, though it is unknown whether they have functions similar to their mammalian counterparts. There was overlap in the expressed genes associated with a known hearing phenotype. Discussion Our analyses unveil substantial differences in gene expression patterns that may explain phenotypic specialization of zebrafish and mouse HCs. This dataset also includes several protein-coding genes to further the functional characterization of HCs and study of HC evolution from non-mammals to mammals.
Collapse
Affiliation(s)
- Kimberlee P. Giffen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA, United States
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Kacey L. Yamane
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Kenneth L. Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Marisa Zallocchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
5
|
Nam Y, Kim J, Jung SH, Woerner J, Suh EH, Lee DG, Shivakumar M, Lee ME, Kim D. Harnessing Artificial Intelligence in Multimodal Omics Data Integration: Paving the Path for the Next Frontier in Precision Medicine. Annu Rev Biomed Data Sci 2024; 7:225-250. [PMID: 38768397 PMCID: PMC11972123 DOI: 10.1146/annurev-biodatasci-102523-103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The integration of multiomics data with detailed phenotypic insights from electronic health records marks a paradigm shift in biomedical research, offering unparalleled holistic views into health and disease pathways. This review delineates the current landscape of multimodal omics data integration, emphasizing its transformative potential in generating a comprehensive understanding of complex biological systems. We explore robust methodologies for data integration, ranging from concatenation-based to transformation-based and network-based strategies, designed to harness the intricate nuances of diverse data types. Our discussion extends from incorporating large-scale population biobanks to dissecting high-dimensional omics layers at the single-cell level. The review underscores the emerging role of large language models in artificial intelligence, anticipating their influence as a near-future pivot in data integration approaches. Highlighting both achievements and hurdles, we advocate for a concerted effort toward sophisticated integration models, fortifying the foundation for groundbreaking discoveries in precision medicine.
Collapse
Affiliation(s)
- Yonghyun Nam
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Jaesik Kim
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Jakob Woerner
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Erica H Suh
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Dong-Gi Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Matthew E Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Dokyoon Kim
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
6
|
Giffen KP, Liu H, Yamane KL, Li Y, Chen L, Kramer KL, Zallocchi M, He DZ. Molecular Specializations Underlying Phenotypic Differences in Inner Ear Hair Cells of Zebrafish and Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595729. [PMID: 38826418 PMCID: PMC11142236 DOI: 10.1101/2024.05.24.595729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals. Mammalian cochlear HCs, in contrast, are not electrically tuned and achieve amplification by somatic motility of outer HCs (OHCs). To understand the genetic mechanisms underlying differences among adult zebrafish and mammalian cochlear HCs, we compared their RNA-seq-characterized transcriptomes, focusing on protein-coding orthologous genes related to HC specialization. There was considerable shared expression of gene orthologs among the HCs, including those genes associated with mechanotransduction, ion transport/channels, and synaptic signaling. For example, both zebrafish and mouse HCs express Tmc1, Lhfpl5, Tmie, Cib2, Cacna1d, Cacnb2, Otof, Pclo and Slc17a8. However, there were some notable differences in expression among zHCs, OHCs, and inner HCs (IHCs), which likely underlie the distinctive physiological properties of each cell type. Tmc2 and Cib3 were not detected in adult mouse HCs but tmc2a and b and cib3 were highly expressed in zHCs. Mouse HCs express Kcna10, Kcnj13, Kcnj16, and Kcnq4, which were not detected in zHCs. Chrna9 and Chrna10 were expressed in mouse HCs. In contrast, chrna10 was not detected in zHCs. OHCs highly express Slc26a5 which encodes the motor protein prestin that contributes to OHC electromotility. However, zHCs have only weak expression of slc26a5, and subsequently showed no voltage dependent electromotility when measured. Notably, the zHCs expressed more paralogous genes including those associated with HC-specific functions and transcriptional activity, though it is unknown whether they have functions similar to their mammalian counterparts. There was overlap in the expressed genes associated with a known hearing phenotype. Our analyses unveil substantial differences in gene expression patterns that may explain phenotypic specialization of zebrafish and mouse HCs. This dataset also includes several protein-coding genes to further the functional characterization of HCs and study of HC evolution from non-mammals to mammals.
Collapse
Affiliation(s)
- Kimberlee P. Giffen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Augusta University/University of Georgia Medical Partnership, Athens, GA, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Kacey L. Yamane
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Ken L. Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - David Z.Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
7
|
Pastva O, Klein K. Long Non-Coding RNAs in Sjögren's Disease. Int J Mol Sci 2024; 25:5162. [PMID: 38791207 PMCID: PMC11121283 DOI: 10.3390/ijms25105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Sjögren's disease (SjD) is a heterogeneous autoimmune disease characterized by severe dryness of mucosal surfaces, particularly the mouth and eyes; fatigue; and chronic pain. Chronic inflammation of the salivary and lacrimal glands, auto-antibody formation, and extra-glandular manifestations occur in subsets of patients with SjD. An aberrant expression of long, non-coding RNAs (lncRNAs) has been described in many autoimmune diseases, including SjD. Here, we review the current literature on lncRNAs in SjD and their role in regulating X chromosome inactivation, immune modulatory functions, and their potential as biomarkers.
Collapse
Affiliation(s)
- Ondřej Pastva
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Kerstin Klein
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
8
|
Agrawal S, Buyan A, Severin J, Koido M, Alam T, Abugessaisa I, Chang HY, Dostie J, Itoh M, Kere J, Kondo N, Li Y, Makeev VJ, Mendez M, Okazaki Y, Ramilowski JA, Sigorskikh AI, Strug LJ, Yagi K, Yasuzawa K, Yip CW, Hon CC, Hoffman MM, Terao C, Kulakovskiy IV, Kasukawa T, Shin JW, Carninci P, de Hoon MJL. Annotation of nuclear lncRNAs based on chromatin interactions. PLoS One 2024; 19:e0295971. [PMID: 38709794 PMCID: PMC11073715 DOI: 10.1371/journal.pone.0295971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/02/2023] [Indexed: 05/08/2024] Open
Abstract
The human genome is pervasively transcribed and produces a wide variety of long non-coding RNAs (lncRNAs), constituting the majority of transcripts across human cell types. Some specific nuclear lncRNAs have been shown to be important regulatory components acting locally. As RNA-chromatin interaction and Hi-C chromatin conformation data showed that chromatin interactions of nuclear lncRNAs are determined by the local chromatin 3D conformation, we used Hi-C data to identify potential target genes of lncRNAs. RNA-protein interaction data suggested that nuclear lncRNAs act as scaffolds to recruit regulatory proteins to target promoters and enhancers. Nuclear lncRNAs may therefore play a role in directing regulatory factors to locations spatially close to the lncRNA gene. We provide the analysis results through an interactive visualization web portal at https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA.
Collapse
Affiliation(s)
- Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Andrey Buyan
- Autosome.org, Russia
- FANTOM Consortium, Dolgoprudny, Russia
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Koido
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Howard Y. Chang
- Center for Personal Dynamic Regulome, Stanford University, Stanford, California, United States of America
| | - Josée Dostie
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Stem Cells and Metabolism Research Program, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Naoto Kondo
- RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Yunjing Li
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Mickaël Mendez
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Yasushi Okazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jordan A. Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | | | - Lisa J. Strug
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Department of Statistical Sciences, University of Toronto, Ontario, Canada
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ken Yagi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michael M. Hoffman
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jay W. Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | | |
Collapse
|
9
|
Parent HH, Niswender CM. Therapeutic Potential for Metabotropic Glutamate Receptor 7 Modulators in Cognitive Disorders. Mol Pharmacol 2024; 105:348-358. [PMID: 38423750 PMCID: PMC11026152 DOI: 10.1124/molpharm.124.000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is the most highly conserved and abundantly expressed mGlu receptor in the human brain. The presynaptic localization of mGlu7, coupled with its low affinity for its endogenous agonist, glutamate, are features that contribute to the receptor's role in modulating neuronal excitation and inhibition patterns, including long-term potentiation, in various brain regions. These characteristics suggest that mGlu7 modulation may serve as a novel therapeutic strategy in disorders of cognitive dysfunction, including neurodevelopmental disorders that cause impairments in learning, memory, and attention. Primary mutations in the GRM7 gene have recently been identified as novel causes of neurodevelopmental disorders, and these patients exhibit profound intellectual and cognitive disability. Pharmacological tools, such as agonists, antagonists, and allosteric modulators, have been the mainstay for targeting mGlu7 in its endogenous homodimeric form to probe effects of its function and modulation in disease models. However, recent research has identified diversity in dimerization, as well as trans-synaptic interacting proteins, that also play a role in mGlu7 signaling and pharmacological properties. These novel findings represent exciting opportunities in the field of mGlu receptor drug discovery and highlight the importance of further understanding the functions of mGlu7 in complex neurologic conditions at both the molecular and physiologic levels. SIGNIFICANCE STATEMENT: Proper expression and function of mGlu7 is essential for learning, attention, and memory formation at the molecular level within neural circuits. The pharmacological targeting of mGlu7 is undergoing a paradigm shift by incorporating an understanding of receptor interaction with other cis- and trans- acting synaptic proteins, as well as various intracellular signaling pathways. Based upon these new findings, mGlu7's potential as a drug target in the treatment of cognitive disorders and learning impairments is primed for exploration.
Collapse
Affiliation(s)
- Harrison H Parent
- Department of Pharmacology (H.H.P., C.M.N.), Warren Center for Neuroscience Drug Discovery (H.H.P., C.M.N.), Vanderbilt Brain Institute (C.M.N.), and Vanderbilt Institute for Chemical Biology (C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Colleen M Niswender
- Department of Pharmacology (H.H.P., C.M.N.), Warren Center for Neuroscience Drug Discovery (H.H.P., C.M.N.), Vanderbilt Brain Institute (C.M.N.), and Vanderbilt Institute for Chemical Biology (C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| |
Collapse
|
10
|
Deviatiiarov R, Nagai H, Ismagulov G, Stupina A, Wada K, Ide S, Toji N, Zhang H, Sukparangsi W, Intarapat S, Gusev O, Sheng G. Dosage compensation of Z sex chromosome genes in avian fibroblast cells. Genome Biol 2023; 24:213. [PMID: 37730643 PMCID: PMC10510239 DOI: 10.1186/s13059-023-03055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
In birds, sex is genetically determined; however, the molecular mechanism is not well-understood. The avian Z sex chromosome (chrZ) lacks whole chromosome inactivation, in contrast to the mammalian chrX. To investigate chrZ dosage compensation and its role in sex specification, we use a highly quantitative method and analyze transcriptional activities of male and female fibroblast cells from seven bird species. Our data indicate that three fourths of chrZ genes are strictly compensated across Aves, similar to mammalian chrX. We also present a complete list of non-compensated chrZ genes and identify Ribosomal Protein S6 (RPS6) as a conserved sex-dimorphic gene in birds.
Collapse
Affiliation(s)
- Ruslan Deviatiiarov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Life Improvement by Future Technologies Institute, Moscow, Russian Federation
| | - Hiroki Nagai
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Galym Ismagulov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Anastasia Stupina
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Kazuhiro Wada
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Shinji Ide
- Kumamoto City Zoo and Botanical Garden, Kumamoto, Japan
| | - Noriyuki Toji
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Heng Zhang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chonburi, Thailand
| | | | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
- Graduate School of Medicine, Juntendo University, Tokyo, Japan.
- Life Improvement by Future Technologies Institute, Moscow, Russian Federation.
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
11
|
Severin J, Agrawal S, Ramilowski JA, Deviatiiarov R, Shin J, Carninci P, de Hoon M. ZENBU-Reports: a graphical web-portal builder for interactive visualization and dissemination of genome-scale data. NAR Genom Bioinform 2023; 5:lqad075. [PMID: 37608799 PMCID: PMC10440783 DOI: 10.1093/nargab/lqad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/23/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
In the genomic era, data dissemination and visualization is an integral part of scientific publications and research projects involving international consortia producing massive genome-wide data sets, intra-organizational collaborations, or individual labs. However, creating custom supporting websites is oftentimes impractical due to the required programming effort, web server infrastructure, and data storage facilities, as well as the long-term maintenance burden. ZENBU-Reports (https://fantom.gsc.riken.jp/zenbu/reports) is a web application to create interactive scientific web portals by using graphical interfaces while providing storage and secured collaborative sharing for data uploaded by users. ZENBU-Reports provides the scientific visualization elements commonly used in supplementary websites, publications and presentations, presenting a complete solution for the interactive display and dissemination of data and analysis results during the full lifespan of a scientific project both during the active research phase and after publication of the results.
Collapse
Affiliation(s)
- Jessica Severin
- RIKEN, Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Saumya Agrawal
- RIKEN, Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Jordan A Ramilowski
- RIKEN, Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Ruslan Deviatiiarov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jay W Shin
- RIKEN, Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Piero Carninci
- RIKEN, Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Human Technopole, Milan, Italy
| | - Michiel de Hoon
- RIKEN, Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| |
Collapse
|
12
|
Ouyang JF, Chothani S, Rackham OJL. Deep learning models will shape the future of stem cell research. Stem Cell Reports 2023; 18:6-12. [PMID: 36630908 PMCID: PMC9860061 DOI: 10.1016/j.stemcr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 01/12/2023] Open
Abstract
Our ability to understand and control stem cell biology is being augmented by developments on two fronts, our ability to collect more data describing cell state and our capability to comprehend these data using deep learning models. Here we consider the impact deep learning will have in the future of stem cell research. We explore the importance of generating data suitable for these methods, the requirement for close collaboration between experimental and computational researchers, and the challenges we face to do this fairly and effectively. Achieving this will ensure that the resulting deep learning models are biologically meaningful and computationally tractable.
Collapse
Affiliation(s)
- John F Ouyang
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Singapore, Singapore
| | - Sonia Chothani
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Singapore, Singapore
| | - Owen J L Rackham
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Singapore, Singapore; School of Biological Sciences, University of Southampton, Southampton, UK; The Alan Turing Institute, The British Library, London, UK.
| |
Collapse
|
13
|
Bastide P, Soneson C, Stern DB, Lespinet O, Gallopin M. A Phylogenetic Framework to Simulate Synthetic Interspecies RNA-Seq Data. Mol Biol Evol 2023; 40:msac269. [PMID: 36508357 PMCID: PMC11249980 DOI: 10.1093/molbev/msac269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Interspecies RNA-Seq datasets are increasingly common, and have the potential to answer new questions about the evolution of gene expression. Single-species differential expression analysis is now a well-studied problem that benefits from sound statistical methods. Extensive reviews on biological or synthetic datasets have provided the community with a clear picture on the relative performances of the available methods in various settings. However, synthetic dataset simulation tools are still missing in the interspecies gene expression context. In this work, we develop and implement a new simulation framework. This tool builds on both the RNA-Seq and the phylogenetic comparative methods literatures to generate realistic count datasets, while taking into account the phylogenetic relationships between the samples. We illustrate the usefulness of this new framework through a targeted simulation study, that reproduces the features of a recently published dataset, containing gene expression data in adult eye tissue across blind and sighted freshwater crayfish species. Using our simulated datasets, we perform a fair comparison of several approaches used for differential expression analysis. This benchmark reveals some of the strengths and weaknesses of both the classical and phylogenetic approaches for interspecies differential expression analysis, and allows for a reanalysis of the crayfish dataset. The tool has been integrated in the R package compcodeR, freely available on Bioconductor.
Collapse
Affiliation(s)
- Paul Bastide
- IMAG, Université de Montpellier, CNRS, Montpellier, France
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - David B Stern
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Olivier Lespinet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Mélina Gallopin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Yip CW, Hon CC, Yasuzawa K, Sivaraman DM, Ramilowski JA, Shibayama Y, Agrawal S, Prabhu AV, Parr C, Severin J, Lan YJ, Dostie J, Petri A, Nishiyori-Sueki H, Tagami M, Itoh M, López-Redondo F, Kouno T, Chang JC, Luginbühl J, Kato M, Murata M, Yip WH, Shu X, Abugessaisa I, Hasegawa A, Suzuki H, Kauppinen S, Yagi K, Okazaki Y, Kasukawa T, de Hoon M, Carninci P, Shin JW. Antisense-oligonucleotide-mediated perturbation of long non-coding RNA reveals functional features in stem cells and across cell types. Cell Rep 2022; 41:111893. [PMID: 36577377 DOI: 10.1016/j.celrep.2022.111893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Within the scope of the FANTOM6 consortium, we perform a large-scale knockdown of 200 long non-coding RNAs (lncRNAs) in human induced pluripotent stem cells (iPSCs) and systematically characterize their roles in self-renewal and pluripotency. We find 36 lncRNAs (18%) exhibiting cell growth inhibition. From the knockdown of 123 lncRNAs with transcriptome profiling, 36 lncRNAs (29.3%) show molecular phenotypes. Integrating the molecular phenotypes with chromatin-interaction assays further reveals cis- and trans-interacting partners as potential primary targets. Additionally, cell-type enrichment analysis identifies lncRNAs associated with pluripotency, while the knockdown of LINC02595, CATG00000090305.1, and RP11-148B6.2 modulates colony formation of iPSCs. We compare our results with previously published fibroblasts phenotyping data and find that 2.9% of the lncRNAs exhibit a consistent cell growth phenotype, whereas we observe 58.3% agreement in molecular phenotypes. This highlights that molecular phenotyping is more comprehensive in revealing affected pathways.
Collapse
Affiliation(s)
- Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Divya M Sivaraman
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Jordan A Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Youtaro Shibayama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Anika V Prabhu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yan Jun Lan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Josée Dostie
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 2450, Denmark
| | | | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | | | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jen-Chien Chang
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Joachim Luginbühl
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuyoshi Murata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Wing Hin Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Xufeng Shu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 2450, Denmark
| | - Ken Yagi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasushi Okazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Human Technopole, via Rita Levi Montalcini 1, Milan, Italy
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore.
| |
Collapse
|
15
|
Ringel AR, Szabo Q, Chiariello AM, Chudzik K, Schöpflin R, Rothe P, Mattei AL, Zehnder T, Harnett D, Laupert V, Bianco S, Hetzel S, Glaser J, Phan MHQ, Schindler M, Ibrahim DM, Paliou C, Esposito A, Prada-Medina CA, Haas SA, Giere P, Vingron M, Wittler L, Meissner A, Nicodemi M, Cavalli G, Bantignies F, Mundlos S, Robson MI. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes. Cell 2022; 185:3689-3704.e21. [PMID: 36179666 PMCID: PMC9567273 DOI: 10.1016/j.cell.2022.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.
Collapse
Affiliation(s)
- Alessa R Ringel
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Quentin Szabo
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Konrad Chudzik
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Rothe
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Tobias Zehnder
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dermot Harnett
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Verena Laupert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sara Hetzel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Juliane Glaser
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mai H Q Phan
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Magdalena Schindler
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel M Ibrahim
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Stefan A Haas
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Giacomo Cavalli
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| | - Michael I Robson
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
A bioinformatics framework for targeted gene expression assay design: Application to in vitro developmental neurotoxicity screening in a rat model. Regul Toxicol Pharmacol 2022; 133:105211. [PMID: 35724854 DOI: 10.1016/j.yrtph.2022.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
Brain development involves a series of intricately choreographed neuronal differentiation and maturation steps that are acutely vulnerable to interferences from chemical exposures. Many genes involved in neurodevelopmental processes show evolutionarily conserved expression patterns in mammals and may constitute useful indicators/biomarkers for the evaluation of potential developmental neurotoxicity. Based on these premises, this study developed a bioinformatics framework to guide the design of a gene expression-based in vitro developmental neurotoxicity assay targeting evolutionary conserved genes associated with neuronal differentiation and maturation in rat cerebellar granule cells (CGCs). Rat, mouse and human genes involved in neurodevelopment and presenting one-to-one orthology were selected and orthologous exons within these genes were identified. PCR primer sets were designed within these orthologous exons and their specificity was evaluated in silico. The performance and specificity of rat, mouse and human PCR primer sets were then confirmed experimentally. Finally, RT-qPCR analyses in CGCs exposed in vitro to well-known neurotoxicants (Chlorpyrifos and Chlorpyrifos oxon) uncovered perturbations of expression levels for most of the selected genes. This bioinformatics framework for gene and target sequence selection may facilitate the identification of transcriptional biomarkers for developmental neurotoxicity assays and the comparison of gene expression data across experimental models from different mammalian species.
Collapse
|
17
|
Crow M, Suresh H, Lee J, Gillis J. Coexpression reveals conserved gene programs that co-vary with cell type across kingdoms. Nucleic Acids Res 2022; 50:4302-4314. [PMID: 35451481 PMCID: PMC9071420 DOI: 10.1093/nar/gkac276] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
What makes a mouse a mouse, and not a hamster? Differences in gene regulation between the two organisms play a critical role. Comparative analysis of gene coexpression networks provides a general framework for investigating the evolution of gene regulation across species. Here, we compare coexpression networks from 37 species and quantify the conservation of gene activity 1) as a function of evolutionary time, 2) across orthology prediction algorithms, and 3) with reference to cell- and tissue-specificity. We find that ancient genes are expressed in multiple cell types and have well conserved coexpression patterns, however they are expressed at different levels across cell types. Thus, differential regulation of ancient gene programs contributes to transcriptional cell identity. We propose that this differential regulation may play a role in cell diversification in both the animal and plant kingdoms.
Collapse
Affiliation(s)
- Megan Crow
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor NY, USA
| | - Hamsini Suresh
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor NY, USA
| | - John Lee
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor NY, USA
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor NY, USA
| |
Collapse
|
18
|
Abondio P, De Intinis C, da Silva Gonçalves Vianez Júnior JL, Pace L. SINGLE CELL MULTIOMIC APPROACHES TO DISENTANGLE T CELL HETEROGENEITY. Immunol Lett 2022; 246:37-51. [DOI: 10.1016/j.imlet.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
|
19
|
Kaplow IM, Schäffer DE, Wirthlin ME, Lawler AJ, Brown AR, Kleyman M, Pfenning AR. Inferring mammalian tissue-specific regulatory conservation by predicting tissue-specific differences in open chromatin. BMC Genomics 2022; 23:291. [PMID: 35410163 PMCID: PMC8996547 DOI: 10.1186/s12864-022-08450-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary conservation is an invaluable tool for inferring functional significance in the genome, including regions that are crucial across many species and those that have undergone convergent evolution. Computational methods to test for sequence conservation are dominated by algorithms that examine the ability of one or more nucleotides to align across large evolutionary distances. While these nucleotide alignment-based approaches have proven powerful for protein-coding genes and some non-coding elements, they fail to capture conservation of many enhancers, distal regulatory elements that control spatial and temporal patterns of gene expression. The function of enhancers is governed by a complex, often tissue- and cell type-specific code that links combinations of transcription factor binding sites and other regulation-related sequence patterns to regulatory activity. Thus, function of orthologous enhancer regions can be conserved across large evolutionary distances, even when nucleotide turnover is high. RESULTS We present a new machine learning-based approach for evaluating enhancer conservation that leverages the combinatorial sequence code of enhancer activity rather than relying on the alignment of individual nucleotides. We first train a convolutional neural network model that can predict tissue-specific open chromatin, a proxy for enhancer activity, across mammals. Next, we apply that model to distinguish instances where the genome sequence would predict conserved function versus a loss of regulatory activity in that tissue. We present criteria for systematically evaluating model performance for this task and use them to demonstrate that our models accurately predict tissue-specific conservation and divergence in open chromatin between primate and rodent species, vastly out-performing leading nucleotide alignment-based approaches. We then apply our models to predict open chromatin at orthologs of brain and liver open chromatin regions across hundreds of mammals and find that brain enhancers associated with neuron activity have a stronger tendency than the general population to have predicted lineage-specific open chromatin. CONCLUSION The framework presented here provides a mechanism to annotate tissue-specific regulatory function across hundreds of genomes and to study enhancer evolution using predicted regulatory differences rather than nucleotide-level conservation measurements.
Collapse
Affiliation(s)
- Irene M Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Daniel E Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michael Kleyman
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andreas R Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Xiao F, Qiu J, Zhao Y. Exploring the Potential Toxicological Mechanisms of Vine Tea on the Liver Based on Network Toxicology and Transcriptomics. Front Pharmacol 2022; 13:855926. [PMID: 35392562 PMCID: PMC8981030 DOI: 10.3389/fphar.2022.855926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
Objective: This study focuses on whether vine tea contains potentially toxic components that trigger hepatotoxicity as a mechanism of action, which further provides some reference for the consumption and guides future product development of vine tea. Methods: The chemical components of vine tea were collected from the reported literature and the toxicological information matched with the CTD database was collected, and the dataset of potential toxic components was established. The toxic components were submitted to the PharmMapper server to obtain potential targets. At the same time, the relevant targets were searched in the CTD database and GeneCards database with keywords such as “Hepatic Toxicity,” “Liver Damage,” and “Drug-induced liver injury.” After intersection, the potential hepatotoxic targets of vine tea were obtained. The protein interactions of potential hepatotoxic targets of vine tea were analyzed by the STRING database. Protein–protein interaction (PPI) networks were constructed by Cytoscape3.6.1 software. The GO molecular function and KEGG pathway of hepatotoxic targets were enriched by the R package to screen the key targets. The role of the components and key targets was analyzed by the LEDOCK program. The data from GEO database were mined for the functional correlation characterized by cell transcriptional expression caused by vine tea as a disturbance factor. Results: This study has searched 34 potential toxic components and 57 potential hepatotoxic targets of vine tea, and the result showed that these targets were mainly involved in oxidative stress, cell metabolism, and apoptosis to affect the liver. Conclusion: Vine tea has the interrelationship of multi-components, multi-targets, and multi-pathways. At the cellular level, the toxic components of vine tea, mainly flavonoids, may promote oxidative stress, promote oxidation to produce free radicals, guide apoptosis, and affect cell metabolism and other cytotoxic mechanisms. However, this hepatotoxicity is related to the dose, duration of vine tea, and individual differences. This study revealed the potential hepatotoxic components of vine tea and provides a reference for further research and development of related functional products.
Collapse
Affiliation(s)
- Fangyu Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jihua Qiu
- South China Agricultural University, Guangzhou, China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Young RS, Talmane L, Marion de Procé S, Taylor MS. The contribution of evolutionarily volatile promoters to molecular phenotypes and human trait variation. Genome Biol 2022; 23:89. [PMID: 35379293 PMCID: PMC8978360 DOI: 10.1186/s13059-022-02634-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoters are sites of transcription initiation that harbour a high concentration of phenotype-associated genetic variation. The evolutionary gain and loss of promoters between species (collectively, termed turnover) is pervasive across mammalian genomes and may play a prominent role in driving human phenotypic diversity. RESULTS We classified human promoters by their evolutionary history during the divergence of mouse and human lineages from a common ancestor. This defined conserved, human-inserted and mouse-deleted promoters, and a class of functional-turnover promoters that align between species but are only active in humans. We show that promoters of all evolutionary categories are hotspots for substitution and often, insertion mutations. Loci with a history of insertion and deletion continue that mode of evolution within contemporary humans. The presence of an evolutionary volatile promoter within a gene is associated with increased expression variance between individuals, but only in the case of human-inserted and mouse-deleted promoters does that correspond to an enrichment of promoter-proximal genetic effects. Despite the enrichment of these molecular quantitative trait loci (QTL) at evolutionarily volatile promoters, this does not translate into a corresponding enrichment of phenotypic traits mapping to these loci. CONCLUSIONS Promoter turnover is pervasive in the human genome, and these promoters are rich in molecularly quantifiable but phenotypically inconsequential variation in gene expression. However, since evolutionarily volatile promoters show evidence of selection, coupled with high mutation rates and enrichment of QTLs, this implicates them as a source of evolutionary innovation and phenotypic variation, albeit with a high background of selectively neutral expression variation.
Collapse
Affiliation(s)
- Robert S Young
- Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK. .,Zhejiang University - University of Edinburgh Institute, Zhejiang University, 718 East Haizhou Road, 314400, Haining, China. .,MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Lana Talmane
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sophie Marion de Procé
- Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK.,MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
22
|
Kaplun D, Starshin A, Sharko F, Gainova K, Filonova G, Zhigalova N, Mazur A, Prokhortchouk E, Zhenilo S. Kaiso Regulates DNA Methylation Homeostasis. Int J Mol Sci 2021; 22:7587. [PMID: 34299205 PMCID: PMC8307659 DOI: 10.3390/ijms22147587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/31/2023] Open
Abstract
Gain and loss of DNA methylation in cells is a dynamic process that tends to achieve an equilibrium. Many factors are involved in maintaining the balance between DNA methylation and demethylation. Previously, it was shown that methyl-DNA protein Kaiso may attract NCoR, SMRT repressive complexes affecting histone modifications. On the other hand, the deficiency of Kaiso resulted in reduced methylation of ICR in H19/Igf2 locus and Oct4 promoter in mouse embryonic fibroblasts. However, nothing is known about how Kaiso influences DNA methylation at the genome level. Here we show that deficiency of Kaiso led to whole-genome hypermethylation, using Kaiso deficient human renal cancer cell line obtained via CRISPR/CAS9 genome editing. However, Kaiso serves to protect genic regions, enhancers, and regions with a low level of histone modifications from demethylation. We detected hypomethylation of binding sites for Oct4 and Nanog in Kaiso deficient cells. Kaiso immunoprecipitated with de novo DNA methyltransferases DNMT3a/3b, but not with maintenance methyltransferase DNMT1. Thus, Kaiso may attract methyltransferases to surrounding regions and modulate genome methylation in renal cancer cells apart from being methyl DNA binding protein.
Collapse
Affiliation(s)
- Darya Kaplun
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia; (D.K.); (A.S.); (F.S.); (G.F.); (N.Z.); (A.M.)
- Institute of Gene Biology RAS, 119071 Moscow, Russia
| | - Alexey Starshin
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia; (D.K.); (A.S.); (F.S.); (G.F.); (N.Z.); (A.M.)
| | - Fedor Sharko
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia; (D.K.); (A.S.); (F.S.); (G.F.); (N.Z.); (A.M.)
| | - Kristina Gainova
- Centre for Strategic Planning of FMBA of Russia, 119071 Moscow, Russia;
| | - Galina Filonova
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia; (D.K.); (A.S.); (F.S.); (G.F.); (N.Z.); (A.M.)
| | - Nadezhda Zhigalova
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia; (D.K.); (A.S.); (F.S.); (G.F.); (N.Z.); (A.M.)
| | - Alexander Mazur
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia; (D.K.); (A.S.); (F.S.); (G.F.); (N.Z.); (A.M.)
- Institute of Gene Biology RAS, 119071 Moscow, Russia
| | - Egor Prokhortchouk
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia; (D.K.); (A.S.); (F.S.); (G.F.); (N.Z.); (A.M.)
- Institute of Gene Biology RAS, 119071 Moscow, Russia
| | - Svetlana Zhenilo
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia; (D.K.); (A.S.); (F.S.); (G.F.); (N.Z.); (A.M.)
- Institute of Gene Biology RAS, 119071 Moscow, Russia
| |
Collapse
|
23
|
Innovation, conservation, and repurposing of gene function in root cell type development. Cell 2021; 184:3333-3348.e19. [PMID: 34010619 DOI: 10.1016/j.cell.2021.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.
Collapse
|
24
|
Kwon ATJ, Mohri K, Takizawa S, Arakawa T, Takahashi M, Kaczkowski B, Furuno M, Suzuki H, Tagami S, Mukai H, Arner E. Development of p53 knockout U87MG cell line for unbiased drug delivery testing system using CRISPR-Cas9 and transcriptomic analysis. J Biotechnol 2021; 332:72-82. [PMID: 33836165 DOI: 10.1016/j.jbiotec.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Antibody-drug conjugates offers many advantages as a drug delivery platform that allows for highly specific targeting of cell types and genes. Ideally, testing the efficacy of these systems requires two cell types to be different only in the gene targeted by the drug, with the rest of the cellular machinery unchanged, in order to minimize other potential differences from obscuring the effects of the drug. In this study, we created multiple variants of U87MG cells with targeted mutation in the TP53 gene using the CRISPR-Cas9 system, and determined that their major transcriptional differences stem from the loss of p53 function. Using the transcriptome data, we predicted which mutant clones would have less divergent phenotypes from the wild type and thereby serve as the best candidates to be used as drug delivery testing platforms. Further in vitro and in vivo assays of cell morphology, proliferation rate and target antigen-mediated uptake supported our predictions. Based on the combined analysis results, we successfully selected the best qualifying mutant clone. This study serves as proof-of-principle of the approach and paves the way for extending to additional cell types and target genes.
Collapse
Affiliation(s)
| | - Kohta Mohri
- RIKEN Center for Biosystems Dynamic Research, Japan
| | | | | | | | | | | | | | | | | | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Japan.
| |
Collapse
|
25
|
Hashimoto M, Saito Y, Nakagawa R, Ogahara I, Takagi S, Takata S, Amitani H, Endo M, Yuki H, Ramilowski JA, Severin J, Manabe RI, Watanabe T, Ozaki K, Kaneko A, Kajita H, Fujiki S, Sato K, Honma T, Uchida N, Fukami T, Okazaki Y, Ohara O, Shultz LD, Yamada M, Taniguchi S, Vyas P, de Hoon M, Momozawa Y, Ishikawa F. Combined inhibition of XIAP and BCL2 drives maximal therapeutic efficacy in genetically diverse aggressive acute myeloid leukemia. ACTA ACUST UNITED AC 2021; 2:340-356. [DOI: 10.1038/s43018-021-00177-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/22/2021] [Indexed: 01/18/2023]
|
26
|
Ducoli L, Agrawal S, Sibler E, Kouno T, Tacconi C, Hon CC, Berger SD, Müllhaupt D, He Y, Kim J, D'Addio M, Dieterich LC, Carninci P, de Hoon MJL, Shin JW, Detmar M. LETR1 is a lymphatic endothelial-specific lncRNA governing cell proliferation and migration through KLF4 and SEMA3C. Nat Commun 2021; 12:925. [PMID: 33568674 PMCID: PMC7876020 DOI: 10.1038/s41467-021-21217-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have revealed the importance of long noncoding RNAs (lncRNAs) as tissue-specific regulators of gene expression. There is ample evidence that distinct types of vasculature undergo tight transcriptional control to preserve their structure, identity, and functions. We determine a comprehensive map of lineage-specific lncRNAs in human dermal lymphatic and blood vascular endothelial cells (LECs and BECs), combining RNA-Seq and CAGE-Seq. Subsequent antisense oligonucleotide-knockdown transcriptomic profiling of two LEC- and two BEC-specific lncRNAs identifies LETR1 as a critical gatekeeper of the global LEC transcriptome. Deep RNA-DNA, RNA-protein interaction studies, and phenotype rescue analyses reveal that LETR1 is a nuclear trans-acting lncRNA modulating, via key epigenetic factors, the expression of essential target genes, including KLF4 and SEMA3C, governing the growth and migratory ability of LECs. Together, our study provides several lines of evidence supporting the intriguing concept that every cell type expresses precise lncRNA signatures to control lineage-specific regulatory programs.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Eliane Sibler
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Chung-Chao Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Simone D Berger
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Daniela Müllhaupt
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Molecular and Translational Biomedicine PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Jihye Kim
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Marco D'Addio
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Michiel J L de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Abugessaisa I, Ramilowski JA, Lizio M, Severin J, Hasegawa A, Harshbarger J, Kondo A, Noguchi S, Yip CW, Ooi J, Tagami M, Hori F, Agrawal S, Hon C, Cardon M, Ikeda S, Ono H, Bono H, Kato M, Hashimoto K, Bonetti A, Kato M, Kobayashi N, Shin J, de Hoon M, Hayashizaki Y, Carninci P, Kawaji H, Kasukawa T. FANTOM enters 20th year: expansion of transcriptomic atlases and functional annotation of non-coding RNAs. Nucleic Acids Res 2021; 49:D892-D898. [PMID: 33211864 PMCID: PMC7779024 DOI: 10.1093/nar/gkaa1054] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 11/15/2022] Open
Abstract
The Functional ANnoTation Of the Mammalian genome (FANTOM) Consortium has continued to provide extensive resources in the pursuit of understanding the transcriptome, and transcriptional regulation, of mammalian genomes for the last 20 years. To share these resources with the research community, the FANTOM web-interfaces and databases are being regularly updated, enhanced and expanded with new data types. In recent years, the FANTOM Consortium's efforts have been mainly focused on creating new non-coding RNA datasets and resources. The existing FANTOM5 human and mouse miRNA atlas was supplemented with rat, dog, and chicken datasets. The sixth (latest) edition of the FANTOM project was launched to assess the function of human long non-coding RNAs (lncRNAs). From its creation until 2020, FANTOM6 has contributed to the research community a large dataset generated from the knock-down of 285 lncRNAs in human dermal fibroblasts; this is followed with extensive expression profiling and cellular phenotyping. Other updates to the FANTOM resource includes the reprocessing of the miRNA and promoter atlases of human, mouse and chicken with the latest reference genome assemblies. To facilitate the use and accessibility of all above resources we further enhanced FANTOM data viewers and web interfaces. The updated FANTOM web resource is publicly available at https://fantom.gsc.riken.jp/.
Collapse
Affiliation(s)
- Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jordan A Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Marina Lizio
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jesicca Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jayson Harshbarger
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Atsushi Kondo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shuhei Noguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | | | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Fumi Hori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Melissa Cardon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shuya Ikeda
- Database Center for Life Science, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Hiromasa Ono
- Database Center for Life Science, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Hidemasa Bono
- Database Center for Life Science, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Alessandro Bonetti
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Karolinska Institutet, Stockholm, Sweden
| | - Masaki Kato
- RIKEN Head Office for Information Systems and Cybersecurity, Wako, Saitama, Japan
| | - Norio Kobayashi
- RIKEN Head Office for Information Systems and Cybersecurity, Wako, Saitama, Japan
| | - Jay Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | | | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hideya Kawaji
- Correspondence may also be addressed to Hideya Kawaji.
| | - Takeya Kasukawa
- To whom correspondence should be addressed. Tel: +81 45 503 9222; Fax: +81 45 503 9219;
| |
Collapse
|
28
|
Pasquini G, Rojo Arias JE, Schäfer P, Busskamp V. Automated methods for cell type annotation on scRNA-seq data. Comput Struct Biotechnol J 2021; 19:961-969. [PMID: 33613863 PMCID: PMC7873570 DOI: 10.1016/j.csbj.2021.01.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
The advent of single-cell sequencing started a new era of transcriptomic and genomic research, advancing our knowledge of the cellular heterogeneity and dynamics. Cell type annotation is a crucial step in analyzing single-cell RNA sequencing data, yet manual annotation is time-consuming and partially subjective. As an alternative, tools have been developed for automatic cell type identification. Different strategies have emerged to ultimately associate gene expression profiles of single cells with a cell type either by using curated marker gene databases, correlating reference expression data, or transferring labels by supervised classification. In this review, we present an overview of the available tools and the underlying approaches to perform automated cell type annotations on scRNA-seq data.
Collapse
Affiliation(s)
- Giovanni Pasquini
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden 01307, Germany
- Universitäts-Augenklinik Bonn, University of Bonn, Department of Ophthalmology, Bonn 53127, Germany
| | - Jesus Eduardo Rojo Arias
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Patrick Schäfer
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden 01307, Germany
| | - Volker Busskamp
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden 01307, Germany
- Universitäts-Augenklinik Bonn, University of Bonn, Department of Ophthalmology, Bonn 53127, Germany
| |
Collapse
|