1
|
Yang Y, Zhong Y, Chen L. EIciRNAs in focus: current understanding and future perspectives. RNA Biol 2025; 22:1-12. [PMID: 39711231 DOI: 10.1080/15476286.2024.2443876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yinchun Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Vo K, Shila S, Sharma Y, Pei GJ, Rosales CY, Dahiya V, Fields PE, Rumi MAK. Detection of mRNA Transcript Variants. Genes (Basel) 2025; 16:343. [PMID: 40149494 PMCID: PMC11942493 DOI: 10.3390/genes16030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Most eukaryotic genes express more than one mature mRNA, defined as transcript variants. This complex phenomenon arises from various mechanisms, such as using alternative transcription start sites and alternative post-transcriptional processing events. The resulting transcript variants can lead to synthesizing proteins that possess distinct functional domains or may even generate noncoding RNAs, each with unique roles in cellular processes. The generation of these transcript variants is not merely a random occurrence; it is cell-type specific and varies with developmental stages, aging processes, or pathogenesis of diseases. This highlights the biological significance of transcript variants in regulating gene expression and their potential impact on cellular functionality. Despite the biological importance, investigating transcript variants has been hampered by challenges associated with detecting their expression. This review article addresses the advancements in molecular techniques in detecting transcript variants. Traditional methods such as RT-PCR and RT-qPCR can easily detect known transcript variants using primers that target unique exons associated with the variants. Other techniques like RACE-PCR and hybridization-based methods, including Northern blotting, RNase protection assays, and microarrays, have also been utilized to detect transcript variants. Nevertheless, RNA sequencing (RNA-Seq) has emerged as a powerful technique for identifying transcript variants, especially those with previously unknown sequences. The effectiveness of RNA sequencing in transcript variant detection depends on the specific sequencing approach and the precision of data analysis. By understanding the strengths and weaknesses of each laboratory technique, researchers can develop more effective strategies for detecting mRNA transcript variants. This ability will be crucial for our comprehensive understanding of gene regulation and the implications of transcript diversity in various biological contexts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (K.V.); (S.S.); (Y.S.); (G.J.P.); (C.Y.R.); (V.D.); (P.E.F.)
| |
Collapse
|
3
|
Murach KA, Bagley JR. A primer on global molecular responses to exercise in skeletal muscle: Omics in focus. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101029. [PMID: 39961420 DOI: 10.1016/j.jshs.2025.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Advances in skeletal muscle omics has expanded our understanding of exercise-induced adaptations at the molecular level. Over the past 2 decades, transcriptome studies in muscle have detailed acute and chronic responses to resistance, endurance, and concurrent exercise, focusing on variables such as training status, nutrition, age, sex, and metabolic health profile. Multi-omics approaches, such as the integration of transcriptomic and epigenetic data, along with emerging ribosomal RNA sequencing advancements, have further provided insights into how skeletal muscle adapts to exercise across the lifespan. Downstream of the transcriptome, proteomic and phosphoproteomic studies have identified novel regulators of exercise adaptations, while single-cell/nucleus and spatial sequencing technologies promise to evolve our understanding of cellular specialization and communication in and around skeletal muscle cells. This narrative review highlights (a) the historical foundations of exercise omics in skeletal muscle, (b) current research at 3 layers of the omics cascade (DNA, RNA, and protein), and (c) applications of single-cell omics and spatial sequencing technologies to study skeletal muscle adaptation to exercise. Further elaboration of muscle's global molecular footprint using multi-omics methods will help researchers and practitioners develop more effective and targeted approaches to improve skeletal muscle health as well as athletic performance.
Collapse
Affiliation(s)
- Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA.
| | - James R Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, College of Health and Social Sciences, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
4
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. HGG ADVANCES 2025; 6:100354. [PMID: 39318092 PMCID: PMC11525221 DOI: 10.1016/j.xhgg.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two brothers with congenital myopathy and compound heterozygous variants (NC_000002.12:g.151692086G>T; NM_001271208.2: c.2079C>A; p.(Cys693Ter) and NC_000002.12:g.151533439T>C; NM_001271208.2:c.21522+3A>G) in NEB. Transcriptomic sequencing on affected individual muscles revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Affected individuals' MRI patterns of muscle involvement were compared with the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these affected individuals better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. Our report introduces disease pathogenesis and manifestation as a result of alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Rutgers New Jersey School of Medicine, 185 S Orange Ave, Newark, NJ 07103, USA; Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, MD 20892, USA.
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille University, INSERM, MMG, U 1251 Marseille, France; Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, France
| | - Katherine G Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Ionis Pharmaceuticals, Carlsbad CA, USA
| | - Meganne E Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Research Center for Genetic Medicine, Children's National Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.25.24304535. [PMID: 38585796 PMCID: PMC10996755 DOI: 10.1101/2024.03.25.24304535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two individuals with congenital myopathy and compound heterozygous variants (NM_001271208.2: c.2079C>A; p.(Cys693Ter) and c.21522+3A>G ) in NEB. Transcriptomic sequencing on patient muscle revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Patients MRIs were compared to the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these patients better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. To our knowledge this is the first report hypothesizing disease pathogenesis through the alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Rutgers New Jersey School of Medicine, 185 S Orange Ave Newark NJ 07103 USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Timone Children’s Hospital, APHM, Marseille, France
| | - Katherine G. Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Biogen, Boston MA
| | - Meganne E. Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Research Center for Genetic Medicine, Children’s National Research Institute, Children’s National Medical Center, Washington DC 20010
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St. Cambridge MA 02142
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Maeng JH, Jang HJ, Du AY, Tzeng SC, Wang T. Using long-read CAGE sequencing to profile cryptic-promoter-derived transcripts and their contribution to the immunopeptidome. Genome Res 2023; 33:2143-2155. [PMID: 38065624 PMCID: PMC10760525 DOI: 10.1101/gr.277061.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/13/2023] [Indexed: 01/04/2024]
Abstract
Recent studies have shown that the noncoding genome can produce unannotated proteins as antigens that induce immune response. One major source of this activity is the aberrant epigenetic reactivation of transposable elements (TEs). In tumors, TEs often provide cryptic or alternate promoters, which can generate transcripts that encode tumor-specific unannotated proteins. Thus, TE-derived transcripts (TE transcripts) have the potential to produce tumor-specific, but recurrent, antigens shared among many tumors. Identification of TE-derived tumor antigens holds the promise to improve cancer immunotherapy approaches; however, current genomics and computational tools are not optimized for their detection. Here we combined CAGE technology with full-length long-read transcriptome sequencing (long-read CAGE, or LRCAGE) and developed a suite of computational tools to significantly improve immunopeptidome detection by incorporating TE and other tumor transcripts into the proteome database. By applying our methods to human lung cancer cell line H1299 data, we show that long-read technology significantly improves mapping of promoters with low mappability scores and that LRCAGE guarantees accurate construction of uncharacterized 5' transcript structure. Augmenting a reference proteome database with newly characterized transcripts enabled us to detect noncanonical antigens from HLA-pulldown LC-MS/MS data. Lastly, we show that epigenetic treatment increased the number of noncanonical antigens, particularly those encoded by TE transcripts, which might expand the pool of targetable antigens for cancers with low mutational burden.
Collapse
Affiliation(s)
- Ju Heon Maeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - H Josh Jang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alan Y Du
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Shin-Cheng Tzeng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
7
|
Owusu R, Savarese M. Long-read sequencing improves diagnostic rate in neuromuscular disorders. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2023; 42:123-128. [PMID: 38406378 PMCID: PMC10883326 DOI: 10.36185/2532-1900-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 02/27/2024]
Abstract
Massive parallel sequencing methods, such as exome, genome, and targeted DNA sequencing, have aided molecular diagnosis of genetic diseases in the last 20 years. However, short-read sequencing methods still have several limitations, such inaccurate genome assembly, the inability to detect large structural variants, and variants located in hard-to-sequence regions like highly repetitive areas. The recently emerged PacBio single-molecule real-time (SMRT) and Oxford nanopore technology (ONT) long-read sequencing (LRS) methods have been shown to overcome most of these technical issues, leading to an increase in diagnostic rate. LRS methods are contributing to the detection of repeat expansions in novel disease-causing genes (e.g., ABCD3, NOTCH2NLC and RILPL1 causing an Oculopharyngodistal myopathy or PLIN4 causing a Myopathy with rimmed ubiquitin-positive autophagic vacuolation), of structural variants (e.g., in DMD), and of single nucleotide variants in repetitive regions (TTN and NEB). Moreover, these methods have simplified the characterization of the D4Z4 repeats in DUX4, facilitating the diagnosis of Facioscapulohumeral muscular dystrophy (FSHD). We review recent studies that have used either ONT or PacBio SMRT sequencing methods and discuss different types of variants that have been detected using these approaches in individuals with neuromuscular disorders.
Collapse
Affiliation(s)
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- University of Helsinki, Faculty of Medicine, Helsinki, Finland
| |
Collapse
|
8
|
Di Feo MF, Lillback V, Jokela M, McEntagart M, Homfray T, Giorgio E, Casalis Cavalchini GC, Brusco A, Iascone M, Spaccini L, D'Oria P, Savarese M, Udd B. The crucial role of titin in fetal development: recurrent miscarriages and bone, heart and muscle anomalies characterise the severe end of titinopathies spectrum. J Med Genet 2023; 60:866-873. [PMID: 36977548 DOI: 10.1136/jmg-2022-109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/18/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Titin truncating variants (TTNtvs) have been associated with several forms of myopathies and/or cardiomyopathies. In homozygosity or in compound heterozygosity, they cause a wide spectrum of recessive phenotypes with a congenital or childhood onset. Most recessive phenotypes showing a congenital or childhood onset have been described in subjects carrying biallelic TTNtv in specific exons. Often karyotype or chromosomal microarray analyses are the only tests performed when prenatal anomalies are identified. Thereby, many cases caused by TTN defects might be missed in the diagnostic evaluations. In this study, we aimed to dissect the most severe end of the titinopathies spectrum. METHODS We performed a retrospective study analysing an international cohort of 93 published and 10 unpublished cases carrying biallelic TTNtv. RESULTS We identified recurrent clinical features showing a significant correlation with the genotype, including fetal akinesia (up to 62%), arthrogryposis (up to 85%), facial dysmorphisms (up to 73%), joint (up to 17%), bone (up to 22%) and heart anomalies (up to 27%) resembling complex, syndromic phenotypes. CONCLUSION We suggest TTN to be carefully evaluated in any diagnostic process involving patients with these prenatal signs. This step will be essential to improve diagnostic performance, expand our knowledge and optimise prenatal genetic counselling.
Collapse
Affiliation(s)
- Maria Francesca Di Feo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (DINOGMI), University of Genoa, Genova, Italy
| | - Victoria Lillback
- Folkhälsan Research Center, Helsinki, Uusimaa, Finland
- University of Helsinki Department of Medical and Clinical Genetics, Helsinki, Uusimaa, Finland
| | - Manu Jokela
- Tampere University Hospital, Tampere, Pirkanmaa, Finland
- TYKS Turku University Hospital, Turku, Varsinais-Suomi, Finland
| | - Meriel McEntagart
- Department of Medical Genetics, St George's University of London, London, London, UK
| | - Tessa Homfray
- St George's University of London, London, London, UK
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
- Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Guido C Casalis Cavalchini
- Medical Genetics Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin School of Medicine, Torino, Piemonte, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, BG, Italy
| | - Luigina Spaccini
- Unità di Genetica Medica, UOC Ostetricia e Ginecologia, Ospedale dei Bambini Vittore Buzzi, Milano, Lombardia, Italy
| | - Patrizia D'Oria
- UOC Ostetrica e Ginecologia, Ospedale Bolognini di Seriate, Seriate, Lombardia, Italy
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Uusimaa, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Uusimaa, Finland
- Tampere University Hospital Department of Musculoskeletal Diseases, Tampere, Pirkanmaa, Finland
| |
Collapse
|
9
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O'Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet 2023; 110:1229-1248. [PMID: 37541186 PMCID: PMC10432150 DOI: 10.1016/j.ajhg.2023.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/06/2023] Open
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael H Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip M Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily E Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emmanuèle C Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Center for Genetics Medicine Research, Children's National Research and Innovation Campus, Washington, DC, USA; Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica X Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seth I Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Balasundaram P, Avulakunta ID, Delfiner L, Levy P, Forman KR. Novel TTN Mutation Causing Severe Congenital Myopathy and Uncertain Association with Infantile Hydrocephalus. Case Rep Genet 2023; 2023:5535083. [PMID: 37497165 PMCID: PMC10368502 DOI: 10.1155/2023/5535083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Arthrogryposis multiplex congenita (AMC) is characterized by nonprogressive symmetric contractures of multiple joints with normal intellect and normal systemic examination. AMC is often due to fetal akinesia, which has neurologic, muscular, and connective tissue etiologies. We present a case of AMC due to a variant in the titin (TTN) gene in a term neonate. The infant is homozygous for this variant, c.38442dup, which is predicted to result in a truncated protein (p.Pro12815Thr fs∗37, NM_001267550.2). A literature search (PubMed) failed to find reports of this TTN variant. The variant was classified as pathogenic and submitted to ClinVar. Titin is the body's largest protein, expressed in skeletal and cardiac muscles and encoded by the TTN gene. Due to its large size (364 exons), the TTN gene has been difficult to sequence; the number of variants in the TTN gene and the spectrum of titinopathies are probably underestimated.
Collapse
Affiliation(s)
- Palanikumar Balasundaram
- Division of Neonatology, Jack D. Weiler Hospital, The Children's Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Indirapriya Darshini Avulakunta
- Division of Neonatology, Jack D. Weiler Hospital, The Children's Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Leslie Delfiner
- Division of Neurology, The Children's Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Levy
- Division of Medical Genetics, The Children's Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Katie R. Forman
- Division of Neonatology, Jack D. Weiler Hospital, The Children's Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Lim WF, Rinaldi C. RNA Transcript Diversity in Neuromuscular Research. J Neuromuscul Dis 2023:JND221601. [PMID: 37182892 DOI: 10.3233/jnd-221601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Three decades since the Human Genome Project began, scientists have now identified more then 25,000 protein coding genes in the human genome. The vast majority of the protein coding genes (> 90%) are multi-exonic, with the coding DNA being interrupted by intronic sequences, which are removed from the pre-mRNA transcripts before being translated into proteins, a process called splicing maturation. Variations in this process, i.e. by exon skipping, intron retention, alternative 5' splice site (5'ss), 3' splice site (3'ss), or polyadenylation usage, lead to remarkable transcriptome and proteome diversity in human tissues. Given its critical biological importance, alternative splicing is tightly regulated in a tissue- and developmental stage-specific manner. The central nervous system and skeletal muscle are amongst the tissues with the highest number of differentially expressed alternative exons, revealing a remarkable degree of transcriptome complexity. It is therefore not surprising that splicing mis-regulation is causally associated with a myriad of neuromuscular diseases, including but not limited to amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD), and myotonic dystrophy type 1 and 2 (DM1, DM2). A gene's transcript diversity has since become an integral and an important consideration for drug design, development and therapy. In this review, we will discuss transcript diversity in the context of neuromuscular diseases and current approaches to address splicing mis-regulation.
Collapse
Affiliation(s)
- Wooi Fang Lim
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Cardone N, Moula M, Baelde RJ, Biquand A, Villanova M, Metay C, Fiorillo C, Baratto S, Merlini L, Sabatelli P, Romero NB, Relaix F, Authier FJ, Taglietti V, Savarese M, de Winter J, Ottenheijm C, Richard I, Malfatti E. Clinical and functional characterization of a long survivor congenital titinopathy patient with a novel metatranscript-only titin variant. Acta Neuropathol Commun 2023; 11:48. [PMID: 36945066 PMCID: PMC10031982 DOI: 10.1186/s40478-023-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Congenital titinopathies are an emerging group of a potentially severe form of congenital myopathies caused by biallelic mutations in titin, encoding the largest existing human protein involved in the formation and stability of sarcomeres. In this study we describe a patient with a congenital myopathy characterized by multiple contractures, a rigid spine, non progressive muscular weakness, and a novel homozygous TTN pathogenic variant in a metatranscript-only exon: the c.36400A > T, p.Lys12134*. Muscle biopsies showed increased internalized nuclei, variability in fiber size, mild fibrosis, type 1 fiber predominance, and a slight increase in the number of satellite cells. RNA studies revealed the retention of intron 170 and 171 in the open reading frame, and immunoflourescence and western blot studies, a normal titin content. Single fiber functional studies showed a slight decrease in absolute maximal force and a cross-sectional area with no decreases in tension, suggesting that weakness is not sarcomere-based but due to hypotrophy. Passive properties of single fibers were not affected, but the observed increased calcium sensitivity of force generation might contribute to the contractural phenotype and rigid spine of the patient. Our findings provide evidence for a pathogenic, causative role of a metatranscript-only titin variant in a long survivor congenital titinopathy patient with distal arthrogryposis and rigid spine.
Collapse
Affiliation(s)
- Nastasia Cardone
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
| | - Melissa Moula
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
| | - Rianne J Baelde
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands
| | | | - Marcello Villanova
- Neuromuscular Unit, Presidio Ospedaliero Accreditato Villa Bellombra, Bologna, Italy
| | - Corinne Metay
- Unité Fonctionnelle de Cardiogénétique et Myogénétique moléculaire et cellulaire. Centre de Génétique Moléculaire et Chromosomique et INSERM UMRS 974, Institut de Myologie. Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Paris, INSERM UMRS1166, Sorbonne Université, Paris, France
| | - Chiara Fiorillo
- Neurologia Pediatrica e Malattie Muscolari, Istituto G.Gaslini, Genoa, Italy
| | - Serena Baratto
- Neurologia Pediatrica e Malattie Muscolari, Istituto G.Gaslini, Genoa, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Patrizia Sabatelli
- CNR, Institute of Molecular Genetics "Luigi Luca Cavalli Sforza" -Unit of Bologna, Bologna, Italy
- IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Norma B Romero
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France
| | - Frederic Relaix
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
| | - François Jérôme Authier
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Créteil, France
| | | | | | - Josine de Winter
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands
| | - Coen Ottenheijm
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands
| | | | - Edoardo Malfatti
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France.
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Créteil, France.
| |
Collapse
|
13
|
Manuel JM, Guilloy N, Khatir I, Roucou X, Laurent B. Re-evaluating the impact of alternative RNA splicing on proteomic diversity. Front Genet 2023; 14:1089053. [PMID: 36845399 PMCID: PMC9947481 DOI: 10.3389/fgene.2023.1089053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Alternative splicing (AS) constitutes a mechanism by which protein-coding genes and long non-coding RNA (lncRNA) genes produce more than a single mature transcript. From plants to humans, AS is a powerful process that increases transcriptome complexity. Importantly, splice variants produced from AS can potentially encode for distinct protein isoforms which can lose or gain specific domains and, hence, differ in their functional properties. Advances in proteomics have shown that the proteome is indeed diverse due to the presence of numerous protein isoforms. For the past decades, with the help of advanced high-throughput technologies, numerous alternatively spliced transcripts have been identified. However, the low detection rate of protein isoforms in proteomic studies raised debatable questions on whether AS contributes to proteomic diversity and on how many AS events are really functional. We propose here to assess and discuss the impact of AS on proteomic complexity in the light of the technological progress, updated genome annotation, and current scientific knowledge.
Collapse
Affiliation(s)
- Jeru Manoj Manuel
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Noé Guilloy
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Inès Khatir
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada,Quebec Network for Research on Protein Function Structure and Engineering, PROTEO, Québec, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada,*Correspondence: Benoit Laurent,
| |
Collapse
|
14
|
Wen H, Chen W, Chen Y, Wei G, Ni T. Integrative analysis of Iso-Seq and RNA-seq reveals dynamic changes of alternative promoter, alternative splicing and alternative polyadenylation during Angiotensin II-induced senescence in rat primary aortic endothelial cells. Front Genet 2023; 14:1064624. [PMID: 36741323 PMCID: PMC9892061 DOI: 10.3389/fgene.2023.1064624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
In eukaryotes, alternative promoter (AP), alternative splicing (AS), and alternative polyadenylation (APA) are three crucial regulatory mechanisms that modulate message RNA (mRNA) diversity. Although AP, AS and APA are involved in diverse biological processess, whether they have dynamic changes in Angiotensin II (Ang II) induced senescence in rat primary aortic endothelial cells (RAECs), an important cellular model for studying cardiovascular disease, remains unclear. Here we integrated both PacBio single-molecule long-read isoform sequencing (Iso-Seq) and Illumina short-read RNA sequencing (RNA-seq) to analyze the changes of AP, AS and APA in Ang II-induced senescent RAECs. Iso-Seq generated 36,278 isoforms from 10,145 gene loci and 65.81% of these isoforms are novel, which were further cross-validated by public data obtained by other techonologies such as CAGE, PolyA-Seq and 3'READS. APA contributed most to novel isoforms, followed by AS and AP. Further investigation showed that AP, AS and APA could all contribute to the regulation of isoform, but AS has more dynamic changes compared to AP and APA upon Ang II stimulation. Genes undergoing AP, AS and APA in Ang II-treated cells are enriched in various pathways related to aging or senescence, suggesting that these molecular changes are involved in functional alterations during Ang II-induced senescence. Together, the present study largely improved the annotation of rat genome and revealed gene expression changes at isoform level, extending the understanding of the complexity of gene regulation in Ang II-treated RAECs, and also provided novel clues for discovering the regulatory mechanism undelying Ang II caused vascular senescence and diseases.
Collapse
Affiliation(s)
- Haimei Wen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Chen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yu Chen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Gang Wei
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Ni
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O’Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: what's next in diagnostic testing for Mendelian conditions. ARXIV 2023:arXiv:2301.07363v1. [PMID: 36713248 PMCID: PMC9882576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order and emerging technologies, such as optical genome mapping and long-read DNA or RNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to a consortium such as GREGoR, which is focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H. Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M. Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Michael H. Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010 USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Philip M. Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emily E. Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emmanuèle C. Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
- Center for Genetics Medicine Research, Children’s National Research and Innovation Campus, Washington, DC, USA
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle WA 98195 USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | | | - Lea M. Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stephen B. Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jessica X. Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Matthew T. Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Seth I. Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children’s National Hospital, Washington, DC 20010 USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005 USA
| | - Danny E. Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
16
|
Leshkowitz D, Kedmi M, Fried Y, Pilzer D, Keren-Shaul H, Ainbinder E, Dassa B. Exploring differential exon usage via short- and long-read RNA sequencing strategies. Open Biol 2022; 12:220206. [PMID: 36168804 PMCID: PMC9516339 DOI: 10.1098/rsob.220206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing produces various mRNAs, and thereby various protein products, from one gene, impacting a wide range of cellular activities. However, accurate reconstruction and quantification of full-length transcripts using short-reads is limited, due to their length. Long-reads sequencing technologies may provide a solution by sequencing full-length transcripts. We explored the use of both Illumina short-reads and two long Oxford Nanopore Technology (cDNA and Direct RNA) RNA-Seq reads for detecting global differential splicing during mouse embryonic stem cell differentiation, applying several bioinformatics strategies: gene-based, isoform-based and exon-based. We detected the strongest similarity among the sequencing platforms at the gene level compared to exon-based and isoform-based. Furthermore, the exon-based strategy discovered many differential exon usage (DEU) events, mostly in a platform-dependent manner and in non-differentially expressed genes. Thus, the platforms complemented each other in the ability to detect DEUs (i.e. long-reads exhibited an advantage in detecting DEUs at the UTRs, and short-reads detected more DEUs). Exons within 20 genes, detected in one or more platforms, were here validated by PCR, including key differentiation genes, such as Mdb3 and Aplp1. We provide an important analysis resource for discovering transcriptome changes during stem cell differentiation and insights for analysing such data.
Collapse
Affiliation(s)
- Dena Leshkowitz
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merav Kedmi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Fried
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Pilzer
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Keren-Shaul
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elena Ainbinder
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bareket Dassa
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Koczwara KE, Lake NJ, DeSimone AM, Lek M. Neuromuscular disorders: finding the missing genetic diagnoses. Trends Genet 2022; 38:956-971. [PMID: 35908999 DOI: 10.1016/j.tig.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Collapse
Affiliation(s)
- Katherine E Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicole J Lake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alec M DeSimone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Xiong J, Tang X, Wei M, Yu W. Comparative full-length transcriptome analysis by Oxford Nanopore Technologies reveals genes involved in anthocyanin accumulation in storage roots of sweet potatoes ( Ipomoea batatas L.). PeerJ 2022; 10:e13688. [PMID: 35846886 PMCID: PMC9285475 DOI: 10.7717/peerj.13688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background Storage roots of sweet potatoes (Ipomoea batatas L.) with different colors vary in anthocyanin content, indicating different economically agronomic trait. As the newest DNA/RNA sequencing technology, Oxford Nanopore Technologies (ONT) have been applied in rapid transcriptome sequencing for investigation of genes related to nutrient metabolism. At present, few reports concern full-length transcriptome analysis based on ONT for study on the molecular mechanism of anthocyanin accumulation leading to color change of tuberous roots of sweet potato cultivars. Results The storage roots of purple-fleshed sweet potato (PFSP) and white-fleshed sweet potato (WFSP) at different developmental stages were subjected to anthocyanin content comparison by UV-visible spectroscopy as well as transcriptome analysis at ONT MinION platform. UV-visible spectrophotometric measurements demonstrated the anthocyanin content of PFSP was much higher than that of WFSP. ONT RNA-Seq results showed each sample generated average 2.75 GB clean data with Full-Length Percentage (FL%) over 70% and the length of N50 ranged from 1,192 to 1,395 bp, indicating reliable data for transcriptome analysis. Subsequent analysis illustrated intron retention was the most prominent splicing event present in the resulting transcripts. As compared PFSP with WFSP at the relative developmental stages with the highest (PH vs. WH) and the lowest (PL vs. WL) anthocyanin content, 282 and 216 genes were up-regulated and two and 11 genes were down-regulated respectively. The differential expression genes involved in flavonoid biosynthesis pathway include CCoAOMT, PpLDOX, DFR, Cytochrome P450, CHI, and CHS. The genes encoding oxygenase superfamily were significantly up-regulated when compared PFSP with WFSP at the relative developmental stages. Conclusions Comparative full-length transcriptome analysis based on ONT serves as an effective approach to detect the differences in anthocyanin accumulation in the storage roots of different sweet potato cultivars at transcript level, with noting that some key genes can now be closely related to flavonoids biosynthesis. This study helps to improve understanding of molecular mechanism for anthocyanin accumulation in sweet potatoes and also provides a theoretical basis for high-quality sweet potato breeding.
Collapse
Affiliation(s)
- Jun Xiong
- Agricultural College, Guangxi University, Nanning, China,Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiuhua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Minzheng Wei
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjin Yu
- Agricultural College, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
20
|
Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight. Skelet Muscle 2022; 12:11. [PMID: 35642060 PMCID: PMC9153194 DOI: 10.1186/s13395-022-00294-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the interest in manned spaceflight increases, so does the requirement to understand the transcriptomic mechanisms that underlay the detrimental physiological adaptations of skeletal muscle to microgravity. While microgravity-induced differential gene expression (DGE) has been extensively investigated, the contribution of differential alternative splicing (DAS) to the plasticity and functional status of the skeletal muscle transcriptome has not been studied in an animal model. Therefore, by evaluating both DGE and DAS across spaceflight, we set out to provide the first comprehensive characterization of the transcriptomic landscape of skeletal muscle during exposure to microgravity. METHODS RNA-sequencing, immunohistochemistry, and morphological analyses were conducted utilizing total RNA and tissue sections isolated from the gastrocnemius and quadriceps muscles of 30-week-old female BALB/c mice exposed to microgravity or ground control conditions for 9 weeks. RESULTS In response to microgravity, the skeletal muscle transcriptome was remodeled via both DGE and DAS. Importantly, while DGE showed variable gene network enrichment, DAS was enriched in structural and functional gene networks of skeletal muscle, resulting in the expression of alternatively spliced transcript isoforms that have been associated with the physiological changes to skeletal muscle in microgravity, including muscle atrophy and altered fiber type function. Finally, RNA-binding proteins, which are required for regulation of pre-mRNA splicing, were themselves differentially spliced but not differentially expressed, an upstream event that is speculated to account for the downstream splicing changes identified in target skeletal muscle genes. CONCLUSIONS Our work serves as the first investigation of coordinate changes in DGE and DAS in large limb muscles across spaceflight. It opens up a new opportunity to understand (i) the molecular mechanisms by which splice variants of skeletal muscle genes regulate the physiological adaptations of skeletal muscle to microgravity and (ii) how small molecule splicing regulator therapies might thwart muscle atrophy and alterations to fiber type function during prolonged spaceflight.
Collapse
|
21
|
Perrin A, Van Goethem C, Thèze C, Puechberty J, Guignard T, Lecardonnel B, Lacourt D, Métay C, Isapof A, Whalen S, Ferreiro A, Arne-Bes MC, Quijano-Roy S, Nectoux J, Leturcq F, Richard P, Larrieux M, Bergougnoux A, Pellestor F, Koenig M, Cossée M. Long-Reads Sequencing Strategy to Localize Variants in TTN Repeated Domains. J Mol Diagn 2022; 24:719-726. [PMID: 35580751 DOI: 10.1016/j.jmoldx.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Titin protein is responsible for muscle elasticity. The TTN gene, composed of 364 exons, is subjected to extensive alternative splicing and leads to different isoforms expressed in skeletal and cardiac muscle. Variants in TTN are responsible for myopathies with a wide phenotypic spectrum and autosomal dominant or recessive transmission. The I-band coding domain, highly subject to alternative splicing, contains a three-zone block of repeated sequences with 99% homology. Sequencing and localization of variants in these areas are complex when using short-reads sequencing, a second-generation sequencing technique. We have implemented a protocol based on the third-generation sequencing technology (long-reads sequencing). This new method allows us to localize variants in these repeated areas to improve the diagnosis of TTN-related myopathies and offer the analysis of relatives in postnatal or in prenatal screening.
Collapse
Affiliation(s)
- Aurélien Perrin
- Molecular Diagnostic Laboratory, Montpellier University Hospital, Montpellier, France; PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Charles Van Goethem
- Molecular Diagnostic Laboratory, Montpellier University Hospital, Montpellier, France
| | - Corinne Thèze
- Molecular Diagnostic Laboratory, Montpellier University Hospital, Montpellier, France
| | - Jacques Puechberty
- Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Thomas Guignard
- Laboratoire de Génétique Chromosomique, Plateforme ChromoStem, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Bérénice Lecardonnel
- Laboratoire de Génétique Chromosomique, Plateforme ChromoStem, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Delphine Lacourt
- Molecular Diagnostic Laboratory, Montpellier University Hospital, Montpellier, France
| | - Corinne Métay
- Assistance Publique-Hôpitaux de Paris (AP-HP), UF Molecular Cardiogenetics and Myogenetics, Sorbonne Université and Sorbonne Université UPMC Paris 06-Inserm UMRS974, Research Center in Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Arnaud Isapof
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Service de Neuropédiatrie, Hôpital Trousseau, Paris, France
| | - Sandra Whalen
- Genetics and Cytogenetics Department, Centre de Référence Déficiences Intellectuelles de Causes Rares, Pitié-Salpétrière, AP-HP, Paris, France
| | - Ana Ferreiro
- AP-HP, Centre de Référence des Pathologies Neuromusculaires Nord-Est-Ile de France, Institut de Myologie, GHU Pitié-Salpêtrière, Paris, France; Basic and Translational Myology Laboratory, Université de Paris BFA, UMR 8251, CNRS, Paris, France
| | | | - Susana Quijano-Roy
- AP-HP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France; Université de Versailles, U1179 INSERM-UVSQ, Montigny, France
| | - Juliette Nectoux
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université de Paris, Paris, France
| | - France Leturcq
- Department of Genetics and Molecular Biology, AP-HP, Cochin Hospital, Paris, France
| | - Pascale Richard
- Assistance Publique-Hôpitaux de Paris (AP-HP), UF Molecular Cardiogenetics and Myogenetics, Sorbonne Université and Sorbonne Université UPMC Paris 06-Inserm UMRS974, Research Center in Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Marion Larrieux
- Molecular Diagnostic Laboratory, Montpellier University Hospital, Montpellier, France
| | - Anne Bergougnoux
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Franck Pellestor
- Laboratoire de Génétique Chromosomique, Plateforme ChromoStem, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Michel Koenig
- Molecular Diagnostic Laboratory, Montpellier University Hospital, Montpellier, France; PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Mireille Cossée
- Molecular Diagnostic Laboratory, Montpellier University Hospital, Montpellier, France; PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
22
|
Robinson EL, Baker AH, Brittan M, McCracken I, Condorelli G, Emanueli C, Srivastava PK, Gaetano C, Thum T, Vanhaverbeke M, Angione C, Heymans S, Devaux Y, Pedrazzini T, Martelli F, EU-CardioRNA COST Action CA17129. Dissecting the transcriptome in cardiovascular disease. Cardiovasc Res 2022; 118:1004-1019. [PMID: 33757121 PMCID: PMC8930073 DOI: 10.1093/cvr/cvab117] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The human transcriptome comprises a complex network of coding and non-coding RNAs implicated in a myriad of biological functions. Non-coding RNAs exhibit highly organized spatial and temporal expression patterns and are emerging as critical regulators of differentiation, homeostasis, and pathological states, including in the cardiovascular system. This review defines the current knowledge gaps, unmet methodological needs, and describes the challenges in dissecting and understanding the role and regulation of the non-coding transcriptome in cardiovascular disease. These challenges include poor annotation of the non-coding genome, determination of the cellular distribution of transcripts, assessment of the role of RNA processing and identification of cell-type specific changes in cardiovascular physiology and disease. We highlight similarities and differences in the hurdles associated with the analysis of the non-coding and protein-coding transcriptomes. In addition, we discuss how the lack of consensus and absence of standardized methods affect reproducibility of data. These shortcomings should be defeated in order to make significant scientific progress and foster the development of clinically applicable non-coding RNA-based therapeutic strategies to lessen the burden of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
- The Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Ian McCracken
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - G Condorelli
- Humanitas Research Hospital, Humanitas University, Via Manzoni 113, Rozzano, MI 20089, Italy
| | - C Emanueli
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - P K Srivastava
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - C Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia 27100, Italy
| | - T Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Carl-Neuberg-Straße 1 30625 Hannover, Germany
| | - M Vanhaverbeke
- UZ Gasthuisberg Campus, KU Leuven, Herestraat 49 3000 Leuven, Belgium
| | - C Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, TS4 3BX, UK
| | - S Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
| | - Y Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - T Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011 Lausanne, Switzerland
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato, Milan, Italy
| | | |
Collapse
|
23
|
Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med 2022; 14:23. [PMID: 35220969 PMCID: PMC8883622 DOI: 10.1186/s13073-022-01026-w] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Rare diseases affect 30 million people in the USA and more than 300-400 million worldwide, often causing chronic illness, disability, and premature death. Traditional diagnostic techniques rely heavily on heuristic approaches, coupling clinical experience from prior rare disease presentations with the medical literature. A large number of rare disease patients remain undiagnosed for years and many even die without an accurate diagnosis. In recent years, gene panels, microarrays, and exome sequencing have helped to identify the molecular cause of such rare and undiagnosed diseases. These technologies have allowed diagnoses for a sizable proportion (25-35%) of undiagnosed patients, often with actionable findings. However, a large proportion of these patients remain undiagnosed. In this review, we focus on technologies that can be adopted if exome sequencing is unrevealing. We discuss the benefits of sequencing the whole genome and the additional benefit that may be offered by long-read technology, pan-genome reference, transcriptomics, metabolomics, proteomics, and methyl profiling. We highlight computational methods to help identify regionally distant patients with similar phenotypes or similar genetic mutations. Finally, we describe approaches to automate and accelerate genomic analysis. The strategies discussed here are intended to serve as a guide for clinicians and researchers in the next steps when encountering patients with non-diagnostic exomes.
Collapse
Affiliation(s)
- Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Diabetes Research Center, Cardiovascular Institute and Prevention Research Center, Stanford, CA, USA
| | - Euan A Ashley
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Hong CP, Kim CK, Lee DJ, Jeong HJ, Lee Y, Park SG, Kim HJ, Kang JN, Ryu H, Kwon SJ, Kang SH. Long-read transcriptome sequencing provides insight into lignan biosynthesis during fruit development in Schisandra chinensis. BMC Genomics 2022; 23:17. [PMID: 34996357 PMCID: PMC8742460 DOI: 10.1186/s12864-021-08253-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Schisandra chinensis, an ancient member of the most basal angiosperm lineage which is known as the ANITA, is a fruit-bearing vine with the pharmacological effects of a multidrug system, such as antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anti-osteoporosis effects. Its major bioactive compound is represented by lignans such as schisandrin. Molecular characterization of lignan biosynthesis in S. chinensis is of great importance for improving the production of this class of active compound. However, the biosynthetic mechanism of schisandrin remains largely unknown. RESULTS To understand the potential key catalytic steps and their regulation of schisandrin biosynthesis, we generated genome-wide transcriptome data from three different tissues of S. chinensis cultivar Cheongsoon, including leaf, root, and fruit, via long- and short-read sequencing technologies. A total of 132,856 assembled transcripts were generated with an average length of 1.9 kb and high assembly completeness. Overall, our data presented effective, accurate gene annotation in the prediction of functional pathways. In particular, the annotation revealed the abundance of transcripts related to phenylpropanoid biosynthesis. Remarkably, transcriptome profiling during fruit development of S. chinensis cultivar Cheongsoon revealed that the phenylpropanoid biosynthetic pathway, specific to coniferyl alcohol biosynthesis, showed a tendency to be upregulated at the postfruit development stage. Further the analysis also revealed that the pathway forms a transcriptional network with fruit ripening-related genes, especially the ABA signaling-related pathway. Finally, candidate unigenes homologous to isoeugenol synthase 1 (IGS1) and dirigent-like protein (DIR), which are subsequently activated by phenylpropanoid biosynthesis and thus catalyze key upstream steps in schisandrin biosynthesis, were identified. Their expression was increased at the postfruit development stage, suggesting that they may be involved in the regulation of schisandrin biosynthesis in S. chinensis. CONCLUSIONS Our results provide new insights into the production and accumulation of schisandrin in S. chinensis berries and will be utilized as a valuable transcriptomic resource for improving the schisandrin content.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea.
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Dong Jin Lee
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea
| | - Hee Jeong Jeong
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sin-Gi Park
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea
| | - Hyo-Jin Kim
- Jeollabukdo ARES Medicinal Resource Research Institute, Jinan, 55440, Republic of Korea
| | - Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| |
Collapse
|
25
|
Cabrera-Serrano M, Caccavelli L, Savarese M, Vihola A, Jokela M, Johari M, Capiod T, Madrange M, Bugiardini E, Brady S, Quinlivan R, Merve A, Scalco R, Hilton-Jones D, Houlden H, Ibrahim Aydin H, Ceylaner S, Vockley J, Taylor RL, Folland C, Kelly A, Goullee H, Ylikallio E, Auranen M, Tyynismaa H, Udd B, Forrest ARR, Davis MR, Bratkovic D, Manton N, Robertson T, McCombe P, Laing NG, Phillips L, de Lonlay P, Ravenscroft G. Bi-allelic loss-of-function OBSCN variants predispose individuals to severe recurrent rhabdomyolysis. Brain 2021; 145:3985-3998. [DOI: 10.1093/brain/awab484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified ten bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in SR function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in SR Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the SR and/or a decrease in Ca2+ SR storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Unidad de Enfermedades Neuromusculares. Servicio de Neurologia y Neurofisiologia. Hospital Virgen del Rocio, Sevilla, Spain
| | - Laure Caccavelli
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
- Neurocenter, Department of Neurology, Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Thierry Capiod
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Marine Madrange
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Enrico Bugiardini
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Stefen Brady
- Department of Neurology, Southmead Hospital, Bristol, UK
| | - Rosaline Quinlivan
- MRC Centre for Neuromuscular Diseases, University College Hospitals, London, UK
| | - Ashirwad Merve
- MRC Centre for Neuromuscular Diseases, University College Hospitals, London, UK
| | - Renata Scalco
- MRC Centre for Neuromuscular Diseases, University College Hospitals, London, UK
| | - David Hilton-Jones
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | | | - Serdar Ceylaner
- Intergen Genetic Diagnosis and Research Center, Ankara, Turkey
| | - Jerry Vockley
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Aasta Kelly
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Hayley Goullee
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Emil Ylikallio
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
| | - Alistair R. R. Forrest
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Mark R. Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Drago Bratkovic
- Metabolic Clinic, Women and Children’s Hospital, North Adelaide, SA, Australia
| | - Nicholas Manton
- SA Pathology, Women and Children’s Hospital, North Adelaide, SA, Australia
| | - Thomas Robertson
- Anatomical Pathology, Queensland Pathology, Brisbane, Queensland, Australia
| | - Pamela McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Liza Phillips
- SA Pathology, Women and Children’s Hospital, North Adelaide, SA, Australia
- The University of Adelaide, Adelaide, SA, Australia
| | - Pascale de Lonlay
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
26
|
Clinical, pathological, and molecular genetic analysis of 7 Chinese patients with hereditary myopathy with early respiratory failure. Neurol Sci 2021; 43:3371-3380. [PMID: 34839411 DOI: 10.1007/s10072-021-05783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Hereditary myopathy with early respiratory failure (HMERF) is a subtype of myofibrillar myopathy. Mutations located on exon 344 of the titin-A band, the 119th fibronectin-3 domain (FN3 119), are responsible for HMERF. In this article, we retrospectively analyzed the clinical features, findings of muscle imaging, muscle pathology, immunohistochemistry, and ultrastructural characteristics of seven patients diagnosed with HMERF at a single center in China. Muscle MRI showed the involvement of semitendinosus in four patients. The common pathological features were variability in fiber diameter, increased internal nuclei, endomysial fibrosis, and cytoplasmic bodies. On immunohistochemical examination, the cytoplasmic bodies stained positive for calpain-3, p53, and programmed death-ligand 1. Electron microscopy showed cytoplasmic bodies, distorted sarcomere architecture, glycogen pool, and subsarcolemmal accumulation of mitochondria and lysosomes. We retrospectively reviewed four reported HMERF patients in China. Among the 11 patients, the median age at onset was 34 years (range 14-54). Allelic frequency of mutation c.95195C > T was 36.36%. This study characterizes the phenotype and genotype spectrum of HMERF in China.
Collapse
|
27
|
De Paoli-Iseppi R, Gleeson J, Clark MB. Isoform Age - Splice Isoform Profiling Using Long-Read Technologies. Front Mol Biosci 2021; 8:711733. [PMID: 34409069 PMCID: PMC8364947 DOI: 10.3389/fmolb.2021.711733] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023] Open
Abstract
Alternative splicing (AS) of RNA is a key mechanism that results in the expression of multiple transcript isoforms from single genes and leads to an increase in the complexity of both the transcriptome and proteome. Regulation of AS is critical for the correct functioning of many biological pathways, while disruption of AS can be directly pathogenic in diseases such as cancer or cause risk for complex disorders. Current short-read sequencing technologies achieve high read depth but are limited in their ability to resolve complex isoforms. In this review we examine how long-read sequencing (LRS) technologies can address this challenge by covering the entire RNA sequence in a single read and thereby distinguish isoform changes that could impact RNA regulation or protein function. Coupling LRS with technologies such as single cell sequencing, targeted sequencing and spatial transcriptomics is producing a rapidly expanding suite of technological approaches to profile alternative splicing at the isoform level with unprecedented detail. In addition, integrating LRS with genotype now allows the impact of genetic variation on isoform expression to be determined. Recent results demonstrate the potential of these techniques to elucidate the landscape of splicing, including in tissues such as the brain where AS is particularly prevalent. Finally, we also discuss how AS can impact protein function, potentially leading to novel therapeutic targets for a range of diseases.
Collapse
Affiliation(s)
| | | | - Michael B. Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
28
|
Zhao X, Collins RL, Lee WP, Weber AM, Jun Y, Zhu Q, Weisburd B, Huang Y, Audano PA, Wang H, Walker M, Lowther C, Fu J, Gerstein MB, Devine SE, Marschall T, Korbel JO, Eichler EE, Chaisson MJP, Lee C, Mills RE, Brand H, Talkowski ME. Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies. Am J Hum Genet 2021; 108:919-928. [PMID: 33789087 PMCID: PMC8206509 DOI: 10.1016/j.ajhg.2021.03.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Virtually all genome sequencing efforts in national biobanks, complex and Mendelian disease programs, and medical genetic initiatives are reliant upon short-read whole-genome sequencing (srWGS), which presents challenges for the detection of structural variants (SVs) relative to emerging long-read WGS (lrWGS) technologies. Given this ubiquity of srWGS in large-scale genomics initiatives, we sought to establish expectations for routine SV detection from this data type by comparison with lrWGS assembly, as well as to quantify the genomic properties and added value of SVs uniquely accessible to each technology. Analyses from the Human Genome Structural Variation Consortium (HGSVC) of three families captured ~11,000 SVs per genome from srWGS and ~25,000 SVs per genome from lrWGS assembly. Detection power and precision for SV discovery varied dramatically by genomic context and variant class: 9.7% of the current GRCh38 reference is defined by segmental duplication (SD) and simple repeat (SR), yet 91.4% of deletions that were specifically discovered by lrWGS localized to these regions. Across the remaining 90.3% of reference sequence, we observed extremely high (93.8%) concordance between technologies for deletions in these datasets. In contrast, lrWGS was superior for detection of insertions across all genomic contexts. Given that non-SD/SR sequences encompass 95.9% of currently annotated disease-associated exons, improved sensitivity from lrWGS to discover novel pathogenic deletions in these currently interpretable genomic regions is likely to be incremental. However, these analyses highlight the considerable added value of assembly-based lrWGS to create new catalogs of insertions and transposable elements, as well as disease-associated repeat expansions in genomic sequences that were previously recalcitrant to routine assessment.
Collapse
Affiliation(s)
- Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Disorders, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Disorders, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Wan-Ping Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Alexandra M Weber
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Yukyung Jun
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Qihui Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ben Weisburd
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Disorders, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yongqing Huang
- Data Sciences Platform, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Peter A Audano
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Harold Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Disorders, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mark Walker
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Disorders, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chelsea Lowther
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Disorders, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jack Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Disorders, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mark B Gerstein
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, CT 06520, USA
| | - Scott E Devine
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Mark J P Chaisson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Graduate Studies - Life Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, South Korea; Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi, People's Republic of China
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Disorders, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Disorders, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Li Q, Lai H, Li Y, Chen B, Chen S, Li Y, Huang Z, Meng Z, Wang P, Hu Z, Huang S. RJunBase: a database of RNA splice junctions in human normal and cancerous tissues. Nucleic Acids Res 2021; 49:D201-D211. [PMID: 33179749 PMCID: PMC7779070 DOI: 10.1093/nar/gkaa1056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 01/22/2023] Open
Abstract
Splicing is an essential step of RNA processing for multi-exon genes, in which introns are removed from a precursor RNA, thereby producing mature RNAs containing splice junctions. Here, we develope the RJunBase (www.RJunBase.org), a web-accessible database of three types of RNA splice junctions (linear, back-splice, and fusion junctions) that are derived from RNA-seq data of non-cancerous and cancerous tissues. The RJunBase aims to integrate and characterize all RNA splice junctions of both healthy or pathological human cells and tissues. This new database facilitates the visualization of the gene-level splicing pattern and the junction-level expression profile, as well as the demonstration of unannotated and tumor-specific junctions. The first release of RJunBase contains 682 017 linear junctions, 225 949 back-splice junctions and 34 733 fusion junctions across 18 084 non-cancerous and 11 540 cancerous samples. RJunBase can aid researchers in discovering new splicing-associated targets and provide insights into the identification and assessment of potential neoepitopes for cancer treatment.
Collapse
Affiliation(s)
- Qin Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyan Lai
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bing Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siyuan Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|