1
|
Housman G, Arner A, Longtin A, Gagnon C, Durvasula A, Lea A. Addressing missing context in regulatory variation across primate evolution. ARXIV 2025:arXiv:2504.02081v1. [PMID: 40236837 PMCID: PMC11998855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In primates, loci associated with adaptive trait variation often fall in non-coding regions. Understanding the mechanisms linking these regulatory variants to fitness-relevant phenotypes remains challenging, but can be addressed using functional genomic data. However, such data are rarely generated at scale in non-human primates. When they are, only select tissues, cell types, developmental stages, and cellular environments are typically considered, despite appreciation that adaptive variants often exhibit context-dependent effects. In this review, we 1) discuss why context-dependent regulatory loci might be especially evolutionarily relevant in primates, 2) explore challenges and emerging solutions for mapping such context-dependent variation, and 3) discuss the scientific questions these data could address. We argue that filling this gap will provide critical insights into evolutionary processes, human disease, and regulatory adaptation.
Collapse
Affiliation(s)
- Genevieve Housman
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Audrey Arner
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Amy Longtin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Christian Gagnon
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Arun Durvasula
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amanda Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
da Silva Ribeiro T, Lollar MJ, Sprengelmeyer QD, Huang Y, Benson DM, Orr MS, Johnson ZC, Corbett-Detig RB, Pool JE. Recombinant inbred line panels inform the genetic architecture and interactions of adaptive traits in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.594228. [PMID: 38798433 PMCID: PMC11118405 DOI: 10.1101/2024.05.14.594228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The distribution of allelic effects on traits, along with their gene-by-gene and gene-by-environment interactions, contributes to the phenotypes available for selection and the trajectories of adaptive variants. Nonetheless, uncertainty persists regarding the effect sizes underlying adaptations and the importance of genetic interactions. Herein, we aimed to investigate the genetic architecture and the epistatic and environmental interactions involving loci that contribute to multiple adaptive traits using two new panels of Drosophila melanogaster recombinant inbred lines (RILs). To better fit our data, we re-implemented functions from R/qtl (Broman et al. 2003) using additive genetic models. We found 14 quantitative trait loci (QTL) underlying melanism, wing size, song pattern, and ethanol resistance. By combining our mapping results with population genetic statistics, we identified potential new genes related to these traits. None of the detected QTLs showed clear evidence of epistasis, and our power analysis indicated that we should have seen at least one significant interaction if sign epistasis or strong positive epistasis played a pervasive role in trait evolution. In contrast, we did find roles for gene-by-environment interactions involving pigmentation traits. Overall, our data suggest that the genetic architecture of adaptive traits often involves alleles of detectable effect, that strong epistasis does not always play a role in adaptation, and that environmental interactions can modulate the effect size of adaptive alleles.
Collapse
Affiliation(s)
- Tiago da Silva Ribeiro
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Matthew J. Lollar
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Derek M. Benson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan S. Orr
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zachary C. Johnson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Russell B. Corbett-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Costa CE, Watowich MM, Goldman EA, Sterner KN, Negron-Del Valle JE, Phillips D, Platt ML, Montague MJ, Brent LJN, Higham JP, Snyder-Mackler N, Lea AJ. Genetic Architecture of Immune Cell DNA Methylation in the Rhesus Macaque. Mol Ecol 2024:e17576. [PMID: 39582237 DOI: 10.1111/mec.17576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/23/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Genetic variation that impacts gene regulation, rather than protein function, can have strong effects on trait variation both within and between species. Epigenetic mechanisms, such as DNA methylation, are often an important intermediate link between genotype and phenotype, yet genetic effects on DNA methylation remain understudied in natural populations. To address this gap, we used reduced representation bisulfite sequencing to measure DNA methylation levels at 555,856 CpGs in peripheral whole blood of 573 samples collected from free-ranging rhesus macaques (Macaca mulatta) living on the island of Cayo Santiago, Puerto Rico. We used allele-specific methods to map cis-methylation quantitative trait loci (meQTL) and tested for effects of 243,389 single nucleotide polymorphisms (SNPs) on local DNA methylation levels. Of 776,092 tested SNP-CpG pairs, we identified 516,213 meQTL, with 69.12% of CpGs having at least one meQTL (FDR < 5%). On average, meQTL explained 21.2% of nearby methylation variance, significantly more than age or sex. meQTL were enriched in genomic compartments where methylation is likely to impact gene expression, for example, promoters, enhancers and binding sites for methylation-sensitive transcription factors. In support, using mRNA-seq data from 172 samples, we confirmed 332 meQTL as whole blood cis-expression QTL (eQTL) in the population, and found meQTL-eQTL genes were enriched for immune response functions, like antigen presentation and inflammation. Overall, our study takes an important step towards understanding the genetic architecture of DNA methylation in natural populations, and more generally points to the biological mechanisms driving phenotypic variation in our close relatives.
Collapse
Affiliation(s)
- Christina E Costa
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Josue E Negron-Del Valle
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Daniel Phillips
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - James P Higham
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Avery RR, Collins MA, Albert FW. Genotype-by-environment interactions shape ubiquitin-proteasome system activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624644. [PMID: 39605480 PMCID: PMC11601593 DOI: 10.1101/2024.11.21.624644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In genotype-by-environment interactions (GxE), the effect of a genetic variant on a trait depends on the environment. GxE influences numerous organismal traits across eukaryotic life. However, we have a limited understanding of how GxE shapes the molecular processes that give rise to organismal traits. Here, we characterized how GxE shapes protein degradation, an essential molecular process that influences numerous aspects of cellular and organismal physiology. Using the yeast Saccharomyces cerevisiae, we characterized GxE in the activity of the ubiquitin-proteasome system (UPS), the primary protein degradation system in eukaryotes. By mapping genetic influences on the degradation of six substrates that engage multiple distinct UPS pathways across eight diverse environments, we discovered extensive GxE in the genetics of UPS activity. Hundreds of locus effects on UPS activity varied depending on the substrate, the environment, or both. Most of these cases corresponded to loci that were present in one environment but not another ("presence / absence" GxE), while a smaller number of loci had opposing effects in different environments ("sign change" GxE). The number of loci exhibiting GxE, their genomic location, and the type of GxE (presence / absence or sign change) varied across UPS substrates. Loci exhibiting GxE were clustered at genomic regions that contain core UPS genes and especially at regions containing variation that affects the expression of thousands of genes, suggesting indirect contributions to UPS activity. Our results reveal highly complex interactions at the level of substrates and environments in the genetics of protein degradation.
Collapse
Affiliation(s)
- Randi R Avery
- Department of Genetics, Cell Biology, & Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Mahlon A Collins
- Department of Genetics, Cell Biology, & Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, & Genetics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Yang J, Chen S, Ma F, Ding N, Mi S, Zhao Q, Xing Y, Yang T, Xing K, Yu Y, Wang C. Pathogen stimulations and immune cells synergistically affect the gene expression profile characteristics of porcine peripheral blood mononuclear cells. BMC Genomics 2024; 25:719. [PMID: 39054472 PMCID: PMC11270792 DOI: 10.1186/s12864-024-10603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Pigs serve as a crucial source of protein in the human diet and play a fundamental role in ensuring food security. However, infectious diseases caused by bacteria or viruses are a major threat to effective global pig farming, jeopardizing human health. Peripheral blood mononuclear cells (PBMCs) are a mixture of immune cells that play crucial roles in immunity and disease resistance in pigs. Previous studies on the gene expression regulation patterns of PBMCs have concentrated on a single immune stimulus or immune cell subpopulation, which has limited our comprehensive understanding of the mechanisms of the pig immune response. RESULTS Here, we integrated and re-analyzed RNA-seq data published online for porcine PBMC stimulated by lipopolysaccharide (LPS), polyinosinic acid (PolyI:C), and various unknown microorganisms (EM). The results revealed that gene expression and its functional characterization are highly specific to the pathogen, identifying 603, 254, and 882 pathogen-specific genes and 38 shared genes, respectively. Notably, LPS and PolyI:C stimulation directly triggered inflammatory and immune-response pathways, while exposure to mixed microbes (EM) enhanced metabolic processes. These pathogen-specific genes were enriched in immune trait-associated quantitative trait loci (QTL) and eGenes in porcine immune tissues and were implicated in specific cell types. Furthermore, we discussed the roles of eQTLs rs3473322705 and rs1109431654 in regulating pathogen- and cell-specific genes CD300A and CD93, using cellular experiments. Additionally, by integrating genome-wide association studies datasets from 33 complex traits and diseases in humans, we found that pathogen-specific genes were significantly enriched for immune traits and metabolic diseases. CONCLUSIONS We systematically analyzed the gene expression profiles of the three stimulations and demonstrated pathogen-specific and cell-specific gene regulation across different stimulations in porcine PBMCs. These findings enhance our understanding of shared and distinct regulatory mechanisms of genetic variants in pig immune traits.
Collapse
Affiliation(s)
- Jinyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Fuping Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Ning Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Qingyao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Yue Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Ting Yang
- Dabei-Nong Science and Technology Group Co., Ltd, Beijing, 100080, China
| | - Kai Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China.
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Boye C, Nirmalan S, Ranjbaran A, Luca F. Genotype × environment interactions in gene regulation and complex traits. Nat Genet 2024; 56:1057-1068. [PMID: 38858456 PMCID: PMC11492161 DOI: 10.1038/s41588-024-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Genotype × environment interactions (GxE) have long been recognized as a key mechanism underlying human phenotypic variation. Technological developments over the past 15 years have dramatically expanded our appreciation of the role of GxE in both gene regulation and complex traits. The richness and complexity of these datasets also required parallel efforts to develop robust and sensitive statistical and computational approaches. Although our understanding of the genetic architecture of molecular and complex traits has been maturing, a large proportion of complex trait heritability remains unexplained. Furthermore, there are increasing efforts to characterize the effect of environmental exposure on human health. We therefore review GxE in human gene regulation and complex traits, advocating for a comprehensive approach that jointly considers genetic and environmental factors in human health and disease.
Collapse
Affiliation(s)
- Carly Boye
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US
| | - Shreya Nirmalan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US
| | - Ali Ranjbaran
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, US.
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
7
|
Natri HM, Del Azodi CB, Peter L, Taylor CJ, Chugh S, Kendle R, Chung MI, Flaherty DK, Matlock BK, Calvi CL, Blackwell TS, Ware LB, Bacchetta M, Walia R, Shaver CM, Kropski JA, McCarthy DJ, Banovich NE. Cell-type-specific and disease-associated expression quantitative trait loci in the human lung. Nat Genet 2024; 56:595-604. [PMID: 38548990 PMCID: PMC11018522 DOI: 10.1038/s41588-024-01702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis. Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA sequencing of lung tissue from 66 individuals with pulmonary fibrosis and 48 unaffected donors. Using a pseudobulk approach, we mapped expression quantitative trait loci (eQTLs) across 38 cell types, observing both shared and cell-type-specific regulatory effects. Furthermore, we identified disease interaction eQTLs and demonstrated that this class of associations is more likely to be cell-type-specific and linked to cellular dysregulation in pulmonary fibrosis. Finally, we connected lung disease risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression and implicates context-specific eQTLs as key regulators of lung homeostasis and disease.
Collapse
Affiliation(s)
- Heini M Natri
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christina B Del Azodi
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Lance Peter
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Chase J Taylor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sagrika Chugh
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Kendle
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Mei-I Chung
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - David K Flaherty
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brittany K Matlock
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carla L Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rajat Walia
- Department of Thoracic Disease and Transplantation, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Ciara M Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Davis J McCarthy
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
8
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae015. [PMID: 38262701 PMCID: PMC11021028 DOI: 10.1093/g3journal/jkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper results in cell and tissue damage ranging in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes respond to nonessential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the heavy metal stress response. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource using a combination of differential expression analysis and expression quantitative trait locus mapping. Differential expression analysis revealed clear patterns of tissue-specific expression. Tissue and treatment specific responses to copper stress were also detected using expression quantitative trait locus mapping. Expression quantitative trait locus associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited both genotype-by-tissue and genotype-by-treatment effects on gene expression under copper stress, illuminating tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- School of Biological Sciences, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Stuart J Macdonald
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| |
Collapse
|
9
|
Pettie KP, Mumbach M, Lea AJ, Ayroles J, Chang HY, Kasowski M, Fraser HB. Chromatin activity identifies differential gene regulation across human ancestries. Genome Biol 2024; 25:21. [PMID: 38225662 PMCID: PMC10789071 DOI: 10.1186/s13059-024-03165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Current evidence suggests that cis-regulatory elements controlling gene expression may be the predominant target of natural selection in humans and other species. Detecting selection acting on these elements is critical to understanding evolution but remains challenging because we do not know which mutations will affect gene regulation. RESULTS To address this, we devise an approach to search for lineage-specific selection on three critical steps in transcriptional regulation: chromatin activity, transcription factor binding, and chromosomal looping. Applying this approach to lymphoblastoid cells from 831 individuals of either European or African descent, we find strong signals of differential chromatin activity linked to gene expression differences between ancestries in numerous contexts, but no evidence of functional differences in chromosomal looping. Moreover, we show that enhancers rather than promoters display the strongest signs of selection associated with sites of differential transcription factor binding. CONCLUSIONS Overall, our study indicates that some cis-regulatory adaptation may be more easily detected at the level of chromatin than DNA sequence. This work provides a vast resource of genomic interaction data from diverse human populations and establishes a novel selection test that will benefit future study of regulatory evolution in humans and other species.
Collapse
Affiliation(s)
- Kade P Pettie
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Maxwell Mumbach
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julien Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maya Kasowski
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Natri HM, Del Azodi CB, Peter L, Taylor CJ, Chugh S, Kendle R, Chung MI, Flaherty DK, Matlock BK, Calvi CL, Blackwell TS, Ware LB, Bacchetta M, Walia R, Shaver CM, Kropski JA, McCarthy DJ, Banovich NE. Cell type-specific and disease-associated eQTL in the human lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533161. [PMID: 36993211 PMCID: PMC10055257 DOI: 10.1101/2023.03.17.533161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis (PF). Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA-sequencing of lung tissue from 67 PF and 49 unaffected donors. Employing a pseudo-bulk approach, we mapped expression quantitative trait loci (eQTL) across 38 cell types, observing both shared and cell type-specific regulatory effects. Further, we identified disease-interaction eQTL and demonstrated that this class of associations is more likely to be cell-type specific and linked to cellular dysregulation in PF. Finally, we connected PF risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression, and implicates context-specific eQTL as key regulators of lung homeostasis and disease.
Collapse
|
11
|
Murani E, Hadlich F. Exploration of genotype-by-environment interactions affecting gene expression responses in porcine immune cells. Front Genet 2023; 14:1157267. [PMID: 37007953 PMCID: PMC10061014 DOI: 10.3389/fgene.2023.1157267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
As one of the keys to healthy performance, robustness of farm animals is gaining importance, and with this comes increasing interest in genetic dissection of genotype-by-environment interactions (G×E). Changes in gene expression are among the most sensitive responses conveying adaptation to environmental stimuli. Environmentally responsive regulatory variation thus likely plays a central role in G×E. In the present study, we set out to detect action of environmentally responsive cis-regulatory variation by the analysis of condition-dependent allele specific expression (cd-ASE) in porcine immune cells. For this, we harnessed mRNA-sequencing data of peripheral blood mononuclear cells (PBMCs) stimulated in vitro with lipopolysaccharide, dexamethasone, or their combination. These treatments mimic common challenges such as bacterial infection or stress, and induce vast transcriptome changes. About two thirds of the examined loci showed significant ASE in at least one treatment, and out of those about ten percent exhibited cd-ASE. Most of the ASE variants were not yet reported in the PigGTEx Atlas. Genes showing cd-ASE were enriched in cytokine signaling in immune system and include several key candidates for animal health. In contrast, genes showing no ASE featured cell-cycle related functions. We confirmed LPS-dependent ASE for one of the top candidates, SOD2, which ranks among the major response genes in LPS-stimulated monocytes. The results of the present study demonstrate the potential of in vitro cell models coupled with cd-ASE analysis for the investigation of G×E in farm animals. The identified loci may benefit efforts to unravel the genetic basis of robustness and improvement of health and welfare in pigs.
Collapse
Affiliation(s)
- Eduard Murani
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | |
Collapse
|