1
|
Fragaszy DM, Kelty-Stephen DG, Mangalam M. How bipedalism shapes humans' actions with hand tools. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230152. [PMID: 39155723 PMCID: PMC11391300 DOI: 10.1098/rstb.2023.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 08/20/2024] Open
Abstract
The task for an embodied cognitive understanding of humans' actions with tools is to elucidate how the human body, as a whole, supports the perception of affordances and dexterous action with objects in relation to other objects. Here, we focus on the relationship between humans' actions with handheld tools and bipedal posture. Posture plays a pivotal role in shaping animals' perception and action dynamics. While humans stand and locomote bipedally, other primates predominantly employ quadrupedal postures and locomotion, relying on both hands and feet to support the body. Drawing upon evidence from evolutionary biology, developmental psychology and performance studies, we elucidate the influence of bipedalism on our actions with objects and on our proficiency in using tools. We use the metaphor of cascades to capture the dynamic, nonlinear transformations in morphology and behaviour associated with posture and the use of tools across evolutionary and developmental timescales. Recent work illustrates the promise of multifractal cascade analysis to reveal nonlinear, cross-scale interactions across the entire body in real-time, supporting the perception of affordances for actions with tools. Cascade analysis enriches our comprehension of real-time performance and facilitates exploration of the relationships among whole-body coordination, individual development, and evolutionary processes.This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY 12561, USA
| | - Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska, Omaha, NE 68182, USA
| |
Collapse
|
2
|
Simpson J, Kozak CA, Boso G. Evolutionary conservation of an ancient retroviral gagpol gene in Artiodactyla. J Virol 2023; 97:e0053523. [PMID: 37668369 PMCID: PMC10537755 DOI: 10.1128/jvi.00535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/28/2023] [Indexed: 09/06/2023] Open
Abstract
The genomes of mammals contain fingerprints of past infections by ancient retroviruses that invaded the germline of their ancestors. Most of these endogenous retroviruses (ERVs) contain only remnants of the original retrovirus; however, on rare occasions, ERV genes can be co-opted for a beneficial host function. While most studies of co-opted ERVs have focused on envelope genes, including the syncytins that function in placentation, there are examples of co-opted gag genes including one we recently discovered in simian primates. Here, we searched for other intact gag genes in non-primate mammalian lineages. We began by examining the genomes of extant camel species, which represent a basal lineage in the order Artiodactyla. This identified a gagpol gene with a large open reading frame (ORF) (>3,500 bp) in the same orthologous location in Artiodactyla species but that is absent in other mammals. Thus, this ERV was fixed in the common ancestor of all Artiodactyla at least 64 million years ago. The amino acid sequence of this gene, termed ARTgagpol, contains recognizable matrix, capsid, nucleocapsid, and reverse transcriptase domains in ruminants, with an RNase H domain in camels and pigs. Phylogenetic analysis and structural prediction of its reverse transcriptase and RNase H domains groups ARTgagpol with gammaretroviruses. Transcriptomic analysis shows ARTgagpol expression in multiple tissues suggestive of a co-opted host function. These findings identify the oldest and largest ERV-derived gagpol gene with an intact ORF in mammals, an intriguing milestone in the co-evolution of mammals and retroviruses. IMPORTANCE Retroviruses are unique among viruses that infect animals as they integrate their reverse-transcribed double-stranded DNA into host chromosomes. When this happens in a germline cell, such as sperm, egg, or their precursors, the integrated retroviral copies can be passed on to the next generation as endogenous retroviruses (ERVs). On rare occasions, the genes of these ERVs can be domesticated by the host. In this study we used computational similarity searches to identify an ancient ERV with an intact viral gagpol gene in the genomes of camels that is also found in the same genomic location in other even-toed ungulates suggesting that it is at least 64 million years old. Broad tissue expression and predicted preservation of the reverse transcriptase fold of this protein suggest that it may be domesticated for a host function. This is the oldest known intact gagpol gene of an ancient retrovirus in mammals.
Collapse
Affiliation(s)
- J'Zaria Simpson
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
3
|
de la Fuente R, Díaz-Villanueva W, Arnau V, Moya A. Genomic Signature in Evolutionary Biology: A Review. BIOLOGY 2023; 12:biology12020322. [PMID: 36829597 PMCID: PMC9953303 DOI: 10.3390/biology12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Organisms are unique physical entities in which information is stored and continuously processed. The digital nature of DNA sequences enables the construction of a dynamic information reservoir. However, the distinction between the hardware and software components in the information flow is crucial to identify the mechanisms generating specific genomic signatures. In this work, we perform a bibliometric analysis to identify the different purposes of looking for particular patterns in DNA sequences associated with a given phenotype. This study has enabled us to make a conceptual breakdown of the genomic signature and differentiate the leading applications. On the one hand, it refers to gene expression profiling associated with a biological function, which may be shared across taxa. This signature is the focus of study in precision medicine. On the other hand, it also refers to characteristic patterns in species-specific DNA sequences. This interpretation plays a key role in comparative genomics, identifying evolutionary relationships. Looking at the relevant studies in our bibliographic database, we highlight the main factors causing heterogeneities in genome composition and how they can be quantified. All these findings lead us to reformulate some questions relevant to evolutionary biology.
Collapse
Affiliation(s)
- Rebeca de la Fuente
- Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Spanish Research Council (CSIC), 46980 Valencia, Spain
- Correspondence:
| | - Wladimiro Díaz-Villanueva
- Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Spanish Research Council (CSIC), 46980 Valencia, Spain
| | - Vicente Arnau
- Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Spanish Research Council (CSIC), 46980 Valencia, Spain
| | - Andrés Moya
- Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Spanish Research Council (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| |
Collapse
|
4
|
Simpson J, Kozak CA, Boso G. Cross-species transmission of an ancient endogenous retrovirus and convergent co-option of its envelope gene in two mammalian orders. PLoS Genet 2022; 18:e1010458. [PMID: 36240227 PMCID: PMC9604959 DOI: 10.1371/journal.pgen.1010458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Endogenous retroviruses (ERVs) found in vertebrate genomes are remnants of retroviral invasions of their ancestral species. ERVs thus represent molecular fossil records of ancient retroviruses and provide a unique opportunity to study viral-host interactions, including cross-species transmissions, in deep time. While most ERVs contain the mutated remains of the original retrovirus, on rare occasions evolutionary selection pressures lead to the co-option/exaptation of ERV genes for a host function. Here, we report the identification of two ancient related non-orthologous ERV env genes, ARTenvV and CARenvV, that are preserved with large open reading frames (ORFs) in the mammalian orders Artiodactyla and Carnivora, respectively, but are not found in other mammals. These Env proteins lack a transmembrane motif, but phylogenetic analyses show strong sequence preservation and positive selection of the env surface ORF in their respective orders, and transcriptomic analyses show a broad tissue expression pattern for both ARTenvV and CARenvV, suggesting that these genes may be exapted for a host function. Multiple lines of evidence indicate that ARTenvV and CARenvV were derived from an ancient ancestral exogenous gamma-like retrovirus that was independently endogenized in two mammalian orders more than 60 million years ago, which roughly coincides with the K-Pg mass extinction event and subsequent mammalian diversification. Thus, these findings identify the oldest known retroviral cross-ordinal transmission of a gamma-like retrovirus with no known extant infectious counterpart in mammals, and the first discovery of the convergent co-option of an ERV gene derived from the same ancestral retrovirus in two different mammalian orders.
Collapse
Affiliation(s)
- J’Zaria Simpson
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Patil AB, Vijay N. Repetitive genomic regions and the inference of demographic history. Heredity (Edinb) 2021; 127:151-166. [PMID: 34002046 PMCID: PMC8322061 DOI: 10.1038/s41437-021-00443-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/03/2023] Open
Abstract
Inference of demographic histories using whole-genome datasets has provided insights into diversification, adaptation, hybridization, and plant-pathogen interactions, and stimulated debate on the impact of anthropogenic interventions and past climate on species demography. However, the impact of repetitive genomic regions on these inferences has mostly been ignored by masking of repeats. We use the Populus trichocarpa genome (Pop_tri_v3) to show that masking of repeat regions leads to lower estimates of effective population size (Ne) in the distant past in contrast to an increase in Ne estimates in recent times. However, in human datasets, masking of repeats resulted in lower estimates of Ne at all time points. We demonstrate that repeats affect demographic inferences using diverse methods like PSMC, MSMC, SMC++, and the Stairway plot. Our genomic analysis revealed that the biases in Ne estimates were dependent on the repeat class type and its abundance in each atomic interval. Notably, we observed a weak, yet consistently significant negative correlation between the repeat abundance of an atomic interval and the Ne estimates for that interval, which potentially reflects the recombination rate variation within the genome. The rationale for the masking of repeats has been that variants identified within these regions are erroneous. We find that polymorphisms in some repeat classes occur in callable regions and reflect reliable coalescence histories (e.g., LTR Gypsy, LTR Copia). The current demography inference methods do not handle repeats explicitly, and hence the effect of individual repeat classes needs careful consideration in comparative analysis. Deciphering the repeat demographic histories might provide a clear understanding of the processes involved in repeat accumulation.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
6
|
Zhuo X, Du AY, Pehrsson EC, Li D, Wang T. Epigenomic differences in the human and chimpanzee genomes are associated with structural variation. Genome Res 2021; 31:279-290. [PMID: 33303495 PMCID: PMC7849402 DOI: 10.1101/gr.263491.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Structural variation (SV), including insertions and deletions (indels), is a primary mechanism of genome evolution. However, the mechanism by which SV contributes to epigenome evolution is poorly understood. In this study, we characterized the association between lineage-specific indels and epigenome differences between human and chimpanzee to investigate how SVs might have shaped the epigenetic landscape. By intersecting medium-to-large human-chimpanzee indels (20 bp-50 kb) with putative promoters and enhancers in cranial neural crest cells (CNCCs) and repressed regions in induced pluripotent cells (iPSCs), we found that 12% of indels overlap putative regulatory and repressed regions (RRRs), and 15% of these indels are associated with lineage-biased RRRs. Indel-associated putative enhancer and repressive regions are approximately 1.3 times and approximately three times as likely to be lineage-biased, respectively, as those not associated with indels. We found a twofold enrichment of medium-sized indels (20-50 bp) in CpG island (CGI)-containing promoters than expected by chance. Lastly, from human-specific transposable element insertions, we identified putative regulatory elements, including NR2F1-bound putative CNCC enhancers derived from SVAs and putative iPSC promoters derived from LTR5s. Our results show that different types of indels are associated with specific epigenomic diversity between human and chimpanzee.
Collapse
Affiliation(s)
- Xiaoyu Zhuo
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alan Y Du
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Erica C Pehrsson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
7
|
Zhuo X, Feschotte C. Cross-Species Transmission and Differential Fate of an Endogenous Retrovirus in Three Mammal Lineages. PLoS Pathog 2015; 11:e1005279. [PMID: 26562410 PMCID: PMC4643047 DOI: 10.1371/journal.ppat.1005279] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs) arise from retroviruses chromosomally integrated in the host germline. ERVs are common in vertebrate genomes and provide a valuable fossil record of past retroviral infections to investigate the biology and evolution of retroviruses over a deep time scale, including cross-species transmission events. Here we took advantage of a catalog of ERVs we recently produced for the bat Myotis lucifugus to seek evidence for infiltration of these retroviruses in other mammalian species (>100) currently represented in the genome sequence database. We provide multiple lines of evidence for the cross-ordinal transmission of a gammaretrovirus endogenized independently in the lineages of vespertilionid bats, felid cats and pangolin ~13-25 million years ago. Following its initial introduction, the ERV amplified extensively in parallel in both bat and cat lineages, generating hundreds of species-specific insertions throughout evolution. However, despite being derived from the same viral species, phylogenetic and selection analyses suggest that the ERV experienced different amplification dynamics in the two mammalian lineages. In the cat lineage, the ERV appears to have expanded primarily by retrotransposition of a single proviral progenitor that lost infectious capacity shortly after endogenization. In the bat lineage, the ERV followed a more complex path of germline invasion characterized by both retrotransposition and multiple infection events. The results also suggest that some of the bat ERVs have maintained infectious capacity for extended period of time and may be still infectious today. This study provides one of the most rigorously documented cases of cross-ordinal transmission of a mammalian retrovirus. It also illustrates how the same retrovirus species has transitioned multiple times from an infectious pathogen to a genomic parasite (i.e. retrotransposon), yet experiencing different invasion dynamics in different mammalian hosts.
Collapse
Affiliation(s)
- Xiaoyu Zhuo
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hu JY, Zhang YP, Yu L. Summary of Laurasiatheria (mammalia) phylogeny. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2013; 33:E65-74. [PMID: 23266984 DOI: 10.3724/sp.j.1141.2012.e05-06e65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laurasiatheria is one of the richest and most diverse superorders of placental mammals. Because this group had a rapid evolutionary radiation, the phylogenetic relationships among the six orders of Laurasiatheria remain a subject of heated debate and several issues related to its phylogeny remain open. Reconstructing the true phylogenetic relationships of Laurasiatheria is a significant case study in evolutionary biology due to the diversity of this suborder and such research will have significant implications for biodiversity conservation. We review the higher-level (inter-ordinal) phylogenies of Laurasiatheria based on previous cytogenetic, morphological and molecular data, and discuss the controversies of its phylogenetic relationship. This review aims to outline future researches on Laurasiatheria phylogeny and adaptive evolution.
Collapse
|
9
|
CR1 retroposons provide a new insight into the phylogeny of Phasianidae species (Aves: Galliformes). Gene 2012; 502:125-32. [PMID: 22565186 DOI: 10.1016/j.gene.2012.04.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/20/2012] [Accepted: 04/22/2012] [Indexed: 01/21/2023]
Abstract
Chicken repeat 1 (CR1) elements, a class of retroposons belonging to non-long-terminal repeats, have been recognized as powerful tools for phylogenetic studies. Here we examine the phylogenetic relationships of 11 Phasianidae species based on CR1 retroposons. Together with 19 loci reported previously, a total of 99 CR1 loci were identified from chicken genome and turkey BAC clone sequences. 75 insertion events were used to address the branching order of 11 species in Phasianidae. The topology of our tree suggests that: 1) Gallus gallus possessed a basal phylogenetic position within Phasianidae and was related to Bambusicola thoracica (BSP=100%); 2) After the split of G. gallus and B. thoracica, Arborophila rufipectus diverged from Phasianidae (BSP=100%). Nine unambiguous insertion events supported a phylogenetic position of A. rufipectus different to previous mitochondrial data suggesting a hybrid origin or an ancient introgression of A. rufipectus; and 3) 22 CR1 insertion events strongly supported the eight phasianids under investigation sharing a common ancestor. Our study has revisited the phylogenetic position of G. gallus and A. rufipectus and provided a new insight into the phylogeny of Phasianidae birds. It showed that a CR1-based methodology has a great potential to be informative within Phasianidae in resolving relationships of closely related species whose radiation and speciation have occurred very recently.
Collapse
|
10
|
Matzke A, Churakov G, Berkes P, Arms EM, Kelsey D, Brosius J, Kriegs JO, Schmitz J. Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era. Mol Biol Evol 2012; 29:1497-501. [PMID: 22319163 DOI: 10.1093/molbev/msr319] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
More than 150 Ma, the avian lineage separated from that of other dinosaurs and later diversified into the more than 10,000 species extant today. The early neoavian bird radiations most likely occurred in the late Cretaceous (more than 65 Ma) but left behind few if any molecular signals of their archaic evolutionary past. Retroposed elements, once established in an ancestral population, are highly valuable, virtually homoplasy-free markers of species evolution; after applying stringent orthology criteria, their phylogenetically informative presence/absence patterns are free of random noise and independent of evolutionary rate or nucleotide composition effects. We screened for early neoavian orthologous retroposon insertions and identified six markers with conflicting presence/absence patterns, whereas six additional retroposons established before or after the presumed major neoavian radiation show consistent phylogenetic patterns. The exceptionally frequent conflicting retroposon presence/absence patterns of neoavian orders are strong indicators of an extensive incomplete lineage sorting era, potentially induced by an early rapid successive speciation of ancestral Neoaves.
Collapse
|
11
|
Li WLS, Drummond AJ. Model averaging and Bayes factor calculation of relaxed molecular clocks in Bayesian phylogenetics. Mol Biol Evol 2011; 29:751-61. [PMID: 21940644 PMCID: PMC3258040 DOI: 10.1093/molbev/msr232] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We describe a procedure for model averaging of relaxed molecular clock models in Bayesian phylogenetics. Our approach allows us to model the distribution of rates of substitution across branches, averaged over a set of models, rather than conditioned on a single model. We implement this procedure and test it on simulated data to show that our method can accurately recover the true underlying distribution of rates. We applied the method to a set of alignments taken from a data set of 12 mammalian species and uncovered evidence that lognormally distributed rates better describe this data set than do exponentially distributed rates. Additionally, our implementation of model averaging permits accurate calculation of the Bayes factor(s) between two or more relaxed molecular clock models. Finally, we introduce a new computational approach for sampling rates of substitution across branches that improves the convergence of our Markov chain Monte Carlo algorithms in this context. Our methods are implemented under the BEAST 1.6 software package, available at http://beast-mcmc.googlecode.com.
Collapse
Affiliation(s)
- Wai Lok Sibon Li
- Computational Evolution Group, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
12
|
Grechko VV, Kosushkin SA, Borodulina OR, Butaeva FG, Darevsky IS. Short interspersed elements (SINEs) of squamate reptiles (Squam1 and Squam2): structure and phylogenetic significance. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:212-26. [PMID: 21462315 DOI: 10.1002/jez.b.21391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 11/08/2022]
Abstract
Short interspersed elements (SINEs) are important nuclear molecular markers of the evolution of many eukaryotes. However, the SINEs of squamate reptile genomes have been little studied. We first identified two families of SINEs, termed Squam1 and Squam2, in the DNA of meadow lizard Darevskia praticola (Lacertidae) by performing DNA hybridization and PCR. Later, the same families of retrotransposons were found using the same methods in members of another 25 lizard families (from Iguania, Scincomorpha, Gekkota, Varanoidea, and Diploglossa infraorders) and two snake families, but their abundances in these taxa varied greatly. Both SINEs were Squamata-specific and were absent from mammals, birds, crocodiles, turtles, amphibians, and fish. Squam1 possessed some characteristics common to tRNA-related SINEs from fish and mammals, while Squam2 belonged to the tRNA(Ala) group of SINEs and had a more unusual and divergent structure. Squam2-related sequences were found in several unannotated GenBank sequences of squamate reptiles. Squam1 abundance in the Polychrotidae, Agamidae, Leiolepididae, Chamaeleonidae, Scincidae, Lacertidae, Gekkonidae, Varanidae, Helodermatidae, and two snake families were 10(2) -10(4) times higher than those in other taxa (Corytophanidae, Iguanidae, Anguidae, Cordylidae, Gerrhosauridae, Pygopodidae, and Eublepharidae). A less dramatic degree of copy number variation was observed for Squam2 in different taxa. Several Squam1 copies from Lacertidae, Chamaeleonidae, Gekkonidae, Varanidae, and Colubridae were sequenced and found to have evident orthologous features, as well as taxa-specific autapomorphies. Squam1 from Lacertidae and Chamaeleonidae could be divided into several subgroups based on sequence differences. Possible applications of these SINEs as Squamata phylogeny markers are discussed.
Collapse
Affiliation(s)
- Vernata V Grechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
13
|
Whishaw IQ, Sacrey LAR, Travis SG, Gholamrezaei G, Karl JM. The functional origins of speech-related hand gestures. Behav Brain Res 2010; 214:206-15. [PMID: 20573589 DOI: 10.1016/j.bbr.2010.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 11/25/2022]
|
14
|
Li M, Xia Y, Gu Y, Zhang K, Lang Q, Chen L, Guan J, Luo Z, Chen H, Li Y, Li Q, Li X, Jiang AA, Shuai S, Wang J, Zhu Q, Zhou X, Gao X, Li X. MicroRNAome of porcine pre- and postnatal development. PLoS One 2010; 5:e11541. [PMID: 20634961 PMCID: PMC2902522 DOI: 10.1371/journal.pone.0011541] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/20/2010] [Indexed: 12/21/2022] Open
Abstract
The domestic pig is of enormous agricultural significance and valuable models for many human diseases. Information concerning the pig microRNAome (miRNAome) has been long overdue and elucidation of this information will permit an atlas of microRNA (miRNA) regulation functions and networks to be constructed. Here we performed a comprehensive search for porcine miRNAs on ten small RNA sequencing libraries prepared from a mixture of tissues obtained during the entire pig lifetime, from the fetal period through adulthood. The sequencing results were analyzed using mammalian miRNAs, the precursor hairpins (pre-miRNAs) and the first release of the high-coverage porcine genome assembly (Sscrofa9, April 2009) and the available expressed sequence tag (EST) sequences. Our results extend the repertoire of pig miRNAome to 867 pre-miRNAs (623 with genomic coordinates) encoding for 1,004 miRNAs, of which 777 are unique. We preformed real-time quantitative PCR (q-PCR) experiments for selected 30 miRNAs in 47 tissue-specific samples and found agreement between the sequencing and q-PCR data. This broad survey provides detailed information about multiple variants of mature sequences, precursors, chromosomal organization, development-specific expression, and conservation patterns. Our data mining produced a broad view of the pig miRNAome, consisting of miRNAs and isomiRs and a wealth of information of pig miRNA characteristics. These results are prelude to the advancement in pig biology as well the use of pigs as model organism for human biological and biomedical studies.
Collapse
Affiliation(s)
- Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Youlin Xia
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Yiren Gu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Kai Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Qiulei Lang
- Department of Biology, Zhejiang University, Hangzhou, Zhejiang, China
- LC Sciences, Houston, Texas, United States of America
| | - Lei Chen
- Chongqing Academy of Animal Science, Chongqing, China
| | - Jiuqiang Guan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zonggang Luo
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Haosi Chen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Yang Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Qinghai Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Xiang Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - An-an Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Surong Shuai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qi Zhu
- LC Sciences, Houston, Texas, United States of America
| | | | - Xiaolian Gao
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail: (XG); (XL)
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
- * E-mail: (XG); (XL)
| |
Collapse
|
15
|
Abstract
The use of low coverage genomes in comparative evolutionary analyses skews estimates of gene gains and losses. Background Given the availability of full genome sequences, mapping gene gains, duplications, and losses during evolution should theoretically be straightforward. However, this endeavor suffers from overemphasis on detecting conserved genome features, which in turn has led to sequencing multiple eutherian genomes with low coverage rather than fewer genomes with high-coverage and more even distribution in the phylogeny. Although limitations associated with analysis of low coverage genomes are recognized, they have not been quantified. Results Here, using recently developed comparative genomic application systems, we evaluate the impact of low-coverage genomes on inferences pertaining to gene gains and losses when analyzing eukaryote genome evolution through gene duplication. We demonstrate that, when performing inference of genome content evolution, low-coverage genomes generate not only a massive number of false gene losses, but also striking artifacts in gene duplication inference, especially at the most recent common ancestor of low-coverage genomes. We show that the artifactual gains are caused by the low coverage of genome sequence per se rather than by the increased taxon sampling in a biased portion of the species tree. Conclusions We argue that it will remain difficult to differentiate artifacts from true changes in modes and tempo of genome evolution until there is better homogeneity in both taxon sampling and high-coverage sequencing. This is important for broadening the utility of full genome data to the community of evolutionary biologists, whose interests go well beyond widely conserved physiologies and developmental patterns as they seek to understand the generative mechanisms underlying biological diversity.
Collapse
|
16
|
Milinkovitch MC, Helaers R, Tzika AC. Historical constraints on vertebrate genome evolution. Genome Biol Evol 2009; 2:13-8. [PMID: 20333219 PMCID: PMC2839353 DOI: 10.1093/gbe/evp052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2009] [Indexed: 02/01/2023] Open
Abstract
Recent analyses indicated that genes with larger effect of knockout or mutation
and with larger probability to revert to single copy after whole genome
duplication are expressed earlier in development. Here, we further investigate
whether tissue specificity of gene expression is constrained by the age of
origin of the corresponding genes. We use 38 metazoan genomes and a comparative
genomic application system to integrate inference of gene duplication with
expression data from 17,503 human genes into a strictly phylogenetic framework.
We show that the number of anatomical systems in which genes are expressed
decreases steadily with decreased age of the genes’ first appearance
in the phylogeny: the oldest genes are expressed, on average, in twice as many
anatomical systems than the genes gained recently in evolution. These results
are robust to different sources of expression data, to different levels of the
anatomical system hierarchy, and to the use of gene families rather than
duplication events. Finally, we show that the rate of increase in gene tissue
specificity correlates with the relative rate of increase in the maximum number
of cell types in the corresponding taxa. Although subfunctionalization and
increase in cell type number throughout evolution could constitute,
respectively, the proximal and ultimate causes of this correlation, the two
phenomena are intermingled. Our analyses identify a striking historical
constraint in gene expression: the number of cell types in existence at the time
of a gene appearance (through duplication or de novo origination) tends to
determine its level of tissue specificity for tens or hundreds of millions of
years.
Collapse
Affiliation(s)
- Michel C. Milinkovitch
- Laboratory of Artificial and Natural Evolution,
Department of Zoology and Animal Biology, Genève, Switzerland
- Corresponding author: E-mail:
| | - Raphaël Helaers
- Department of Biology, Facultés Universitaires
Notre-Dame de la Paix, rue de Bruxelles, Belgium
| | - Athanasia C. Tzika
- Laboratory of Artificial and Natural Evolution,
Department of Zoology and Animal Biology, Genève, Switzerland
- Evolutionary Biology & Ecology,
Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
17
|
Sacrey LAR, Alaverdashvili M, Whishaw IQ. Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behav Brain Res 2009; 204:153-61. [DOI: 10.1016/j.bbr.2009.05.035] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 11/16/2022]
|
18
|
Schneider A, Cannarozzi GM. Support patterns from different outgroups provide a strong phylogenetic signal. Mol Biol Evol 2009; 26:1259-72. [PMID: 19240194 DOI: 10.1093/molbev/msp034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is known that the accuracy of phylogenetic reconstruction decreases when more distant outgroups are used. We quantify this phenomenon with a novel scoring method, the outgroup score pOG. This score expresses if the support for a particular branch of a tree decreases with increasingly distant outgroups. Large-scale simulations confirmed that the outgroup support follows this expectation and that the pOG score captures this pattern. The score often identifies the correct topology even when the primary reconstruction methods fail, particularly in the presence of model violations. In simulations of problematic phylogenetic scenarios such as rate variation among lineages (which can lead to long-branch attraction artifacts) and quartet-based reconstruction, the pOG analysis outperformed the primary reconstruction methods. Because the pOG method does not make any assumptions about the evolutionary model (besides the decreasing support from increasingly distant outgroups), it can detect cases of violations not treated by a specific model or too strong to be fully corrected. When used as an optimization criterion in the construction of a tree of 23 mammals, the outgroup signal confirmed many well-accepted mammalian orders and superorders. It supports Atlantogenata, a clade of Afrotheria and Xenarthra, and suggests an Artiodactyla-Chiroptera clade.
Collapse
Affiliation(s)
- Adrian Schneider
- ETH Zurich, Department of Computer Science, Zurich, Switzerland.
| | | |
Collapse
|
19
|
Buschiazzo E, Gemmell NJ. Evolutionary and phylogenetic significance of platypus microsatellites conserved in mammalian and other vertebrate genomes. AUST J ZOOL 2009. [DOI: 10.1071/zo09038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Building on the recent publication of the first monotreme genome, that of the platypus, and the discovery that many platypus microsatellites are found in the genomes of three mammals (opossum, human, mouse) and two non-mammalian vertebrates (chicken, lizard), we investigated further the evolutionary conservation of microsatellites identified in the monotreme lineage and tested whether the conservation of microsatellites we observe in vertebrates has phylogenetic signal. Most conserved platypus microsatellites (75%) were found in one species, with the platypus sharing many more microsatellites with mammals than with reptiles (83% versus 30%). Within mammals, unexpectedly, many more platypus microsatellites had orthologues in the opossum genome than in that of either human or mouse, which was at odds with the very well supported view that monotremes diverged from a lineage containing both eutherians and marsupials (Theria hypothesis). We investigated the phylogenetic significance of microsatellite conservation through Bayesian and maximum parsimony tree reconstruction using presence/absence data of microsatellite loci conserved in a total of 18 species, including the platypus. Although models of evolution implemented in current phylogenetic reconstruction algorithms are not tailor-made for microsatellite data, we were able to construct vertebrate phylogenies that correspond well to the accepted mammalian phylogeny, with two of our three reconstructions supporting the Theria hypothesis. Our analysis provides ground for new theoretical development in phylogeny-based analyses of conserved microsatellite data.
Collapse
|
20
|
Prasad AB, Allard MW, NISC Comparative Sequencing Program, Green ED. Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol 2008; 25:1795-808. [PMID: 18453548 PMCID: PMC2515873 DOI: 10.1093/molbev/msn104] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2008] [Indexed: 11/13/2022] Open
Abstract
The ongoing generation of prodigious amounts of genomic sequence data from myriad vertebrates is providing unparalleled opportunities for establishing definitive phylogenetic relationships among species. The size and complexities of such comparative sequence data sets not only allow smaller and more difficult branches to be resolved but also present unique challenges, including large computational requirements and the negative consequences of systematic biases. To explore these issues and to clarify the phylogenetic relationships among mammals, we have analyzed a large data set of over 60 megabase pairs (Mb) of high-quality genomic sequence, which we generated from 41 mammals and 3 other vertebrates. All sequences are orthologous to a 1.9-Mb region of the human genome that encompasses the cystic fibrosis transmembrane conductance regulator gene (CFTR). To understand the characteristics and challenges associated with phylogenetic analyses of such a large data set, we partitioned the sequence data in several ways and utilized maximum likelihood, maximum parsimony, and Neighbor-Joining algorithms, implemented in parallel on Linux clusters. These studies yielded well-supported phylogenetic trees, largely confirming other recent molecular phylogenetic analyses. Our results provide support for rooting the placental mammal tree between Atlantogenata (Xenarthra and Afrotheria) and Boreoeutheria (Euarchontoglires and Laurasiatheria), illustrate the difficulty in resolving some branches even with large amounts of data (e.g., in the case of Laurasiatheria), and demonstrate the valuable role that very large comparative sequence data sets can play in refining our understanding of the evolutionary relationships of vertebrates.
Collapse
Affiliation(s)
- Arjun B Prasad
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
21
|
Kay RF, Fleagle JG, Mitchell TRT, Colbert M, Bown T, Powers DW. The anatomy of Dolichocebus gaimanensis, a stem platyrrhine monkey from Argentina. J Hum Evol 2007; 54:323-82. [PMID: 18001820 DOI: 10.1016/j.jhevol.2007.09.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 09/07/2007] [Indexed: 11/19/2022]
Abstract
Dolichocebus is known from the type skull encased in a concretion, numerous isolated teeth, parts of two mandibles, and a talus. The specimens come from the Trelew Member (early Miocene, Colhuehuapian South American Land Mammal Age) of the Sarmiento Formation near the village of Gaiman, Chubut Province, Argentina, dated to about 20Ma. We describe all Dolichocebus fossil material using conventional surface anatomy and micro-CT data from the cranium. The new material and newly imaged internal anatomy of the skull demonstrate that anatomical characters hitherto supposed to support a phyletic link between Dolichocebus and either callitrichines (marmosets, tamarins, and Callimico) or Saimiri (squirrel monkeys) are either indeterminate or absent. To more fully explore the phyletic position of Dolichocebus, we undertook a comprehensive phylogenetic analysis. We examined 268 characters of the cranium and dentition of 16 living platyrrhine genera, some late Oligocene and early Miocene platyrrhines, Tarsius, some Eocene and Oligocene stem anthropoids, and several extant catarrhines. These analyses consistently indicate that Dolichocebus is a stem platyrrhine, as are late Oligocene Branisella and early Miocene Tremacebus, Soriacebus, and Carlocebus. Platyrrhine evolution often is conceived of as a single ancient adaptive radiation. Review of all available phyolgenetic data suggests a more layered evolutionary pattern, with several independent extinct clades filling modern platyrrhine niche space, and modern platyrrhine families and subfamilies appearing over a nine-million-year interval in the Miocene. The outcome of these analyses highlights the pervasiveness of homoplasy in dental and cranial characters. Homoplasy is a real evolutionary phenomenon that is present at all levels of biological analysis, from amino-acid sequences to aspects of adult bony morphology, behavior, and adaptation.
Collapse
Affiliation(s)
- Richard F Kay
- Department of Biological Anthropology and Anatomy, Duke University, Durham, NC 27708-0383, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Gerton Lunter
- Gerton Lunter () University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Abstract
Mobile elements have been recognized as powerful tools for phylogenetic and population-level analyses. However, issues regarding potential sources of homoplasy and other misleading events have been raised. We have collected available data for all phylogenetic and population level studies of primates utilizing Alu insertion data and examined them for potentially homoplasious and other misleading events. Very low levels of each potential confounding factor in a phylogenetic or population analysis (i.e., lineage sorting, parallel insertions, and precise excision) were found. Although taxa known to be subject to high levels of these types of events may indeed be subject to problems when using SINE analysis, we propose that most taxa will respond as the order Primates has--by the resolution of several long-standing problems observed using sequence-based methods.
Collapse
Affiliation(s)
- David A Ray
- Department of Biology, West Virginia University, PO Box 6057, Morgantown, West Virginia 26506, USA
| | | | | | | |
Collapse
|
24
|
Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W. Using genomic data to unravel the root of the placental mammal phylogeny. Genes Dev 2007; 17:413-21. [PMID: 17322288 PMCID: PMC1832088 DOI: 10.1101/gr.5918807] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 12/20/2006] [Indexed: 11/24/2022]
Abstract
The phylogeny of placental mammals is a critical framework for choosing future genome sequencing targets and for resolving the ancestral mammalian genome at the nucleotide level. Despite considerable recent progress defining superordinal relationships, several branches remain poorly resolved, including the root of the placental tree. Here we analyzed the genome sequence assemblies of human, armadillo, elephant, and opossum to identify informative coding indels that would serve as rare genomic changes to infer early events in placental mammal phylogeny. We also expanded our species sampling by including sequence data from >30 ongoing genome projects, followed by PCR and sequencing validation of each indel in additional taxa. Our data provide support for a sister-group relationship between Afrotheria and Xenarthra (the Atlantogenata hypothesis), which is in turn the sister-taxon to Boreoeutheria. We failed to recover any indels in support of a basal position for Xenarthra (Epitheria), which is suggested by morphology and a recent retroposon analysis, or a hypothesis with Afrotheria basal (Exafricoplacentalia), which is favored by phylogenetic analysis of large nuclear gene data sets. In addition, we identified two retroposon insertions that also support Atlantogenata and none for the alternative hypotheses. A revised molecular timescale based on these phylogenetic inferences suggests Afrotheria and Xenarthra diverged from other placental mammals approximately 103 (95-114) million years ago. We discuss the impacts of this topology on earlier phylogenetic reconstructions and repeat-based inferences of phylogeny.
Collapse
Affiliation(s)
- William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
25
|
Abstract
DNA sequence alignment is a prerequisite to virtually all comparative genomic analyses, including the identification of conserved sequence motifs, estimation of evolutionary divergence between sequences, and inference of historical relationships among genes and species. While it is mere common sense that inaccuracies in multiple sequence alignments can have detrimental effects on downstream analyses, it is important to know the extent to which the inferences drawn from these alignments are robust to errors and biases inherent in all sequence alignments. A survey of investigations into strengths and weaknesses of sequence alignments reveals, as expected, that alignment quality is generally poor for two distantly related sequences and can often be improved by adding additional sequences as stepping stones between distantly related species. Errors in sequence alignment are also found to have a significant negative effect on subsequent inference of sequence divergence, phylogenetic trees, and conserved motifs. However, our understanding of alignment biases remains rudimentary, and sequence alignment procedures continue to be used somewhat like benign formatting operations to make sequences equal in length. Because of the central role these alignments now play in our endeavors to establish the tree of life and to identify important parts of genomes through evolutionary functional genomics, we see a need for increased community effort to investigate influences of alignment bias on the accuracy of large-scale comparative genomics.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Evolutionary Functional Genomics, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287-5301, USA.
| | | |
Collapse
|
26
|
Abstract
We propose an approach for identifying microinversions across different species and show that microinversions provide a source of low-homoplasy evolutionary characters. These characters may be used as "certificates" to verify different branches in a phylogenetic tree, turning the challenging problem of phylogeny reconstruction into a relatively simple algorithmic problem. We estimate that there exist hundreds of thousands of microinversions in genomes of mammals from comparative sequencing projects, an untapped source of new phylogenetic characters.
Collapse
Affiliation(s)
- M J Chaisson
- Bioinformatics Program and Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
27
|
Sasaki T, Yasukawa Y, Takahashi K, Miura S, Shedlock AM, Okada N. Extensive Morphological Convergence and Rapid Radiation in the Evolutionary History of the Family Geoemydidae (Old World Pond Turtles) Revealed by SINE Insertion Analysis. Syst Biol 2006; 55:912-27. [PMID: 17345673 DOI: 10.1080/10635150601058014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The family Geoemydidae is one of three in the superfamily Testudinoidea and is the most diversified family of extant turtle species. The phylogenetic relationships in this family and among related families have been vigorously investigated from both morphological and molecular viewpoints. The evolutionary history of Geoemydidae, however, remains controversial. Therefore, to elucidate the phylogenetic relationships of Geoemydidae and related species, we applied the SINE insertion method to investigate 49 informative SINE loci in 28 species. We detected four major evolutionary lineages (Testudinidae, Batagur group, Siebenrockiella group, and Geoemyda group) in the clade Testuguria (a clade of Geoemydidae + Testudinidae). All five specimens of Testudinidae form a monophyletic clade. The Batagur group comprises five batagurines. The Siebenrockiella group has one species, Siebenrockiella crassicollis. The Geoemyda group comprises 15 geoemydines (including three former batagurines, Mauremys reevesii, Mauremys sinensis, and Heosemys annandalii). Among these four groups, the SINE insertion patterns were inconsistent at four loci, suggesting that an ancestral species of Testuguria radiated and rapidly diverged into the four lineages during the initial stage of its evolution. Furthermore, within the Geoemyda group we identified three evolutionary lineages, namely Mauremys, Cuora, and Heosemys. The Heosemys lineage comprises Heosemys, Sacalia, Notochelys, and Melanochelys species, and its monophyly is a novel assemblage in Geoemydidae. Our SINE phylogenetic tree demonstrates extensive convergent morphological evolution between the Batagur group and the three species of the Geoemyda group, M. reevesii, M. sinensis, and H. annandalii.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Nishihara H, Hasegawa M, Okada N. Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci U S A 2006; 103:9929-34. [PMID: 16785431 PMCID: PMC1479866 DOI: 10.1073/pnas.0603797103] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Indexed: 11/18/2022] Open
Abstract
Despite the recent large-scale efforts dedicated to comprehensive phylogenetic analyses using mitochondrial and nuclear DNA sequences, several relationships among mammalian orders remain controversial. Here, we present an extensive application of retroposon (L1) insertion analysis to the phylogenetic relationships among almost all mammalian orders. In addition to demonstrating the validity of Glires, Euarchontoglires, Laurasiatheria, and Boreoeutheria, we demonstrate an interordinal clade that links Chiroptera, Carnivora, and Perissodactyla within Laurasiatheria. Re-examination of a large DNA sequence data set yielded results consistent with our conclusion. We propose a superordinal name "Pegasoferae" for this clade of Chiroptera + Perissodactyla + Carnivora + Pholidota. The presence of a single incongruent L1 locus generates a tree in which the group of Carnivora + Perissodactyla associates with Cetartiodactyla but not with Chiroptera. This result suggests that incomplete lineage sorting of an ancestral dimorphism occurred with regard to the presence or absence of retroposon alleles in a common ancestor of Scrotifera (Pegasoferae + Cetartiodactyla), which was followed by rapid divergence into the extant orders over an evolutionarily short period. Accordingly, Euungulata (Cetartiodactyla + Perissodactyla) and Fereuungulata (Carnivora + Pholidota + Perissodactyla + Cetartiodactyla) cannot be validated as natural groups. The interordinal mammalian relationships presented here provide a cornerstone for future studies in the reconstruction of mammalian classifications, including extinct species, on evolution of large genomic sequences and structure, and in developmental analysis of morphological diversification.
Collapse
Affiliation(s)
- Hidenori Nishihara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masami Hasegawa
- Department of Statistical Modeling, Institute of Statistical Mathematics, Tokyo 106-8569, Japan
- Department of Biosystems Science, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan; and
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Division of Speciation, National Institute of Basic Biology, Okazaki 444-8585, Japan
| |
Collapse
|
29
|
Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J. Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 2006; 4:e91. [PMID: 16515367 PMCID: PMC1395351 DOI: 10.1371/journal.pbio.0040091] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 01/23/2006] [Indexed: 11/30/2022] Open
Abstract
Reconstruction of the placental mammalian (eutherian) evolutionary tree has undergone diverse revisions, and numerous aspects remain hotly debated. Initial hierarchical divisions based on morphology contained many misgroupings due to features that evolved independently by similar selection processes. Molecular analyses corrected many of these misgroupings and the superordinal hierarchy of placental mammals was recently assembled into four clades. However, long or rapid evolutionary periods, as well as directional mutation pressure, can produce molecular homoplasies, similar characteristics lacking common ancestors. Retroposed elements, by contrast, integrate randomly into genomes with negligible probabilities of the same element integrating independently into orthologous positions in different species. Thus, presence/absence analyses of these elements are a superior strategy for molecular systematics. By computationally scanning more than 160,000 chromosomal loci and judiciously selecting from only phylogenetically informative retroposons for experimental high-throughput PCR applications, we recovered 28 clear, independent monophyly markers that conclusively verify the earliest divergences in placental mammalian evolution. Using tests that take into account ancestral polymorphisms, multiple long interspersed elements and long terminal repeat element insertions provide highly significant evidence for the monophyletic clades Boreotheria (synonymous with Boreoeutheria), Supraprimates (synonymous with Euarchontoglires), and Laurasiatheria. More importantly, two retropositions provide new support for a prior scenario of early mammalian evolution that places the basal placental divergence between Xenarthra and Epitheria, the latter comprising all remaining placentals. Due to its virtually homoplasy-free nature, the analysis of retroposon presence/absence patterns avoids the pitfalls of other molecular methodologies and provides a rapid, unequivocal means for revealing the evolutionary history of organisms. The authors identified and sequenced retroposons in mammalian genomes. The presence and absence of these retroposons provided evolutionary markers from which the authors reconstructed the phylogenetic history of placental mammals.
Collapse
Affiliation(s)
- Jan Ole Kriegs
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Gennady Churakov
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Martin Kiefmann
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Ursula Jordan
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Jürgen Brosius
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Jürgen Schmitz
- 1Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| |
Collapse
|