1
|
Sanz-Moreno A, Becker L, Xie K, da Silva-Buttkus P, Dragano NRV, Aguilar-Pimentel A, Amarie OV, Calzada-Wack J, Kraiger M, Leuchtenberger S, Seisenberger C, Marschall S, Rathkolb B, Scifo E, Liu T, Thanabalasingam A, Sanchez-Vazquez R, Martinez P, Blasco MA, Savage SA, Fuchs H, Ehninger D, Gailus-Durner V, de Angelis MH. Loss of Ten1 in mice induces telomere shortening and models human dyskeratosis congenita. SCIENCE ADVANCES 2025; 11:eadp8093. [PMID: 40215293 PMCID: PMC11988282 DOI: 10.1126/sciadv.adp8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Telomere length regulation is essential for genome stability as short telomeres can trigger cellular senescence and apoptosis constituting an integral aspect of biological aging. Telomere biology disorders (TBDs) such as dyskeratosis congenita (DC) are rare, inherited diseases with known mutations in at least 16 different genes encoding components of the telomere maintenance complexes. The precise role of TEN1, part of the CST complex (CTC1, STN1, and TEN1), and the consequences of its loss of function in vivo are not yet known. We investigated the first viable murine model of Ten1 deficiency created by CRISPR-Cas9-mediated exon 3 deletion. Ten1 homozygous knockout mice present with telomere attrition, short life span, skin hyperpigmentation, aplastic anemia, and cerebellar hypoplasia. Molecular analyses revealed a reduction of proliferating cells, increased apoptosis, and stem cell depletion with activation of the p53/p21 signaling pathway. Our data demonstrate that Ten1 deficiency causes telomere shortening and associates with accelerated aging.
Collapse
Affiliation(s)
- Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Nathalia R. V. Dragano
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Oana V. Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377 Munich, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Anoja Thanabalasingam
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Raul Sanchez-Vazquez
- Telomeres and Telomerase Group–Fundación Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martinez
- Telomeres and Telomerase Group–Fundación Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group–Fundación Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Hrabê de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany
| |
Collapse
|
2
|
Seok J, Kwak HJ, Kang CK, Kim AR, Choi WS, Park HK, Paick SH, Kim HG, Kwak Y, Jeon TI, Lim KM, Lee B, Kim A, Cho SG. Development of a Technique for Diagnosis and Screening of Superficial Bladder Cancer by Cell-Pellet DNA From Urine Sample. J Transl Med 2025; 105:104124. [PMID: 40043910 DOI: 10.1016/j.labinv.2025.104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/15/2025] [Accepted: 02/23/2025] [Indexed: 03/24/2025] Open
Abstract
Bladder cancer (BCa) is the most common malignancy of the urinary system with high incidence and recurrence rates. There are several ways to detect BCa. However, different approaches have different accuracy, which essentially depends on the sensitivity and specificity of the technique. Alternative noninvasive diagnostic tools for BCa are needed. We isolated and compared urinary cell-pellet DNA (cpDNA), cell-free DNA, and exosomal DNA from patients with localized BCa. Consequently, we analyzed 12 tissues and cpDNA samples by next-generation sequencing and then used bioinformatic tools to analyze genomic and transcriptomic alterations in coding and noncoding sequences. Then, cpDNA and tissue DNA from 12 patients were analyzed using next-generation sequencing to verify that the genomic characteristics of cpDNA are concordant with those of tissue. We also detected somatic mutation patterns between tissues and their corresponding cpDNA samples. An overlapping variant analysis was performed based on somatic mutation data and a high similarity was observed. Moreover, we identified frequently mutated signaling pathways. In these results, several point mutations were analyzed in FGFR3, TTN, and LEPROTL1 from the cpDNA of patients with BCa. Tumor mutational burden analysis showed that cpDNA had no significant difference in tumor mutational burden compared with tumor tissue. These results provide that cpDNA is a potential diagnostic source for detecting and managing BCa using alternative noninvasive methods from patient urine. Our findings may serve as a clinical tool for early detection or recurrence screening of nonmuscle invasive BCa using urinary cpDNA.
Collapse
Affiliation(s)
- Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea
| | - Hee Jeong Kwak
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea
| | - Chan-Koo Kang
- School of Life Science, Handong Global University, Pohang, South Korea; Department of Advanced Convergence, Handong Global University, Pohang, South Korea
| | - Ah Ram Kim
- School of Life Science, Handong Global University, Pohang, South Korea; Department of Advanced Convergence, Handong Global University, Pohang, South Korea
| | - Woo Suk Choi
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Hyoung Keun Park
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Sung Hyun Paick
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Hyeong Gon Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea
| | - Tak-Il Jeon
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea; R&D Team, StemExOne Co., Ltd., Seoul, South Korea
| | | | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul, South Korea; R&D Team, StemExOne Co., Ltd., Seoul, South Korea.
| |
Collapse
|
3
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Gallardo-Dodd CJ, Kutter C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum Genomics 2024; 18:109. [PMID: 39334294 PMCID: PMC11437681 DOI: 10.1186/s40246-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Biological systems encompass intricate networks governed by RNA-protein interactions that play pivotal roles in cellular functions. RNA and proteins constituting 1.1% and 18% of the mammalian cell weight, respectively, orchestrate vital processes from genome organization to translation. To date, disentangling the functional fraction of the human genome has presented a major challenge, particularly for noncoding regions, yet recent discoveries have started to unveil a host of regulatory functions for noncoding RNAs (ncRNAs). While ncRNAs exist at different sizes, structures, degrees of evolutionary conservation and abundances within the cell, they partake in diverse roles either alone or in combination. However, certain ncRNA subtypes, including those that have been described or remain to be discovered, are poorly characterized given their heterogeneous nature. RNA activity is in most cases coordinated through interactions with RNA-binding proteins (RBPs). Extensive efforts are being made to accurately reconstruct RNA-RBP regulatory networks, which have provided unprecedented insight into cellular physiology and human disease. In this review, we provide a comprehensive view of RNAs and RBPs, focusing on how their interactions generate functional signals in living cells, particularly in the context of post-transcriptional regulatory processes and cancer.
Collapse
Affiliation(s)
- Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
5
|
Walter NG. Are non-protein coding RNAs junk or treasure?: An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non-functional or functional RNAs. Bioessays 2024; 46:e2300201. [PMID: 38351661 DOI: 10.1002/bies.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non-protein coding, or non-coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is "junk", a term still championed by some geneticists and evolutionary biologists. In contrast, molecular biologists and biochemists studying the vast number of transcripts produced from most of this genome "junk" often surmise that these ncRNAs have biological significance. What gives? This essay contrasts the two opposing, extant viewpoints, aiming to explain their bases, which arise from distinct reference frames of the underlying scientific disciplines. Finally, it aims to reconcile these divergent mindsets in hopes of stimulating synergy between scientific fields.
Collapse
Affiliation(s)
- Nils G Walter
- Center for RNA Biomedicine, Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
7
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
8
|
Xu D, Tang L, Zhou J, Wang F, Cao H, Huang Y, Kapranov P. Evidence for widespread existence of functional novel and non-canonical human transcripts. BMC Biol 2023; 21:271. [PMID: 38001496 PMCID: PMC10675921 DOI: 10.1186/s12915-023-01753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Fraction of functional sequence in the human genome remains a key unresolved question in Biology and the subject of vigorous debate. While a plethora of studies have connected a significant fraction of human DNA to various biochemical processes, the classical definition of function requires evidence of effects on cellular or organismal fitness that such studies do not provide. Although multiple high-throughput reverse genetics screens have been developed to address this issue, they are limited to annotated genomic elements and suffer from non-specific effects, arguing for a strong need to develop additional functional genomics approaches. RESULTS In this work, we established a high-throughput lentivirus-based insertional mutagenesis strategy as a forward genetics screen tool in aneuploid cells. Application of this approach to human cell lines in multiple phenotypic screens suggested the presence of many yet uncharacterized functional elements in the human genome, represented at least in part by novel exons of known and novel genes. The novel transcripts containing these exons can be massively, up to thousands-fold, induced by specific stresses, and at least some can represent bi-cistronic protein-coding mRNAs. CONCLUSIONS Altogether, these results argue that many unannotated and non-canonical human transcripts, including those that appear as aberrant splice products, have biological relevance under specific biological conditions.
Collapse
Affiliation(s)
- Dongyang Xu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Lu Tang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Junjun Zhou
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Yu Huang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Mattick JS. A Kuhnian revolution in molecular biology: Most genes in complex organisms express regulatory RNAs. Bioessays 2023; 45:e2300080. [PMID: 37318305 DOI: 10.1002/bies.202300080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Thomas Kuhn described the progress of science as comprising occasional paradigm shifts separated by interludes of 'normal science'. The paradigm that has held sway since the inception of molecular biology is that genes (mainly) encode proteins. In parallel, theoreticians posited that mutation is random, inferred that most of the genome in complex organisms is non-functional, and asserted that somatic information is not communicated to the germline. However, many anomalies appeared, particularly in plants and animals: the strange genetic phenomena of paramutation and transvection; introns; repetitive sequences; a complex epigenome; lack of scaling of (protein-coding) genes and increase in 'noncoding' sequences with developmental complexity; genetic loci termed 'enhancers' that control spatiotemporal gene expression patterns during development; and a plethora of 'intergenic', overlapping, antisense and intronic transcripts. These observations suggest that the original conception of genetic information was deficient and that most genes in complex organisms specify regulatory RNAs, some of which convey intergenerational information. Also see the video abstract here: https://youtu.be/qxeGwahBANw.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Fan K, Pfister E, Weng Z. Toward a comprehensive catalog of regulatory elements. Hum Genet 2023; 142:1091-1111. [PMID: 36935423 DOI: 10.1007/s00439-023-02519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 03/21/2023]
Abstract
Regulatory elements are the genomic regions that interact with transcription factors to control cell-type-specific gene expression in different cellular environments. A precise and complete catalog of functional elements encoded by the human genome is key to understanding mammalian gene regulation. Here, we review the current state of regulatory element annotation. We first provide an overview of assays for characterizing functional elements, including genome, epigenome, transcriptome, three-dimensional chromatin interaction, and functional validation assays. We then discuss computational methods for defining regulatory elements, including peak-calling and other statistical modeling methods. Finally, we introduce several high-quality lists of regulatory element annotations and suggest potential future directions.
Collapse
Affiliation(s)
- Kaili Fan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Edith Pfister
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA.
| |
Collapse
|
11
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 885] [Impact Index Per Article: 442.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
13
|
Lee H, Min JW, Mun S, Han K. Human Retrotransposons and Effective Computational Detection Methods for Next-Generation Sequencing Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101583. [PMID: 36295018 PMCID: PMC9605557 DOI: 10.3390/life12101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are classified into two classes according to their mobilization mechanism. Compared to DNA transposons that move by the "cut and paste" mechanism, retrotransposons mobilize via the "copy and paste" method. They have been an essential research topic because some of the active elements, such as Long interspersed element 1 (LINE-1), Alu, and SVA elements, have contributed to the genetic diversity of primates beyond humans. In addition, they can cause genetic disorders by altering gene expression and generating structural variations (SVs). The development and rapid technological advances in next-generation sequencing (NGS) have led to new perspectives on detecting retrotransposon-mediated SVs, especially insertions. Moreover, various computational methods have been developed based on NGS data to precisely detect the insertions and deletions in the human genome. Therefore, this review discusses details about the recently studied and utilized NGS technologies and the effective computational approaches for discovering retrotransposons through it. The final part covers a diverse range of computational methods for detecting retrotransposon insertions with human NGS data. This review will give researchers insights into understanding the TEs and how to investigate them and find connections with research interests.
Collapse
Affiliation(s)
- Haeun Lee
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
| | - Jun Won Min
- Department of Surgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- Correspondence: (S.M.); (K.H.)
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- HuNbiome Co., Ltd., R&D Center, Seoul 08507, Korea
- Correspondence: (S.M.); (K.H.)
| |
Collapse
|
14
|
Gaber MA, Omar OHM, El-Deek SEM, Hassan AKM, Mahmoud MS, Meki ARMA. Copeptin, miRNA-208, and miRNA-499 as New Biomarkers for Early Detection of Acute Coronary Syndrome. Appl Biochem Biotechnol 2022; 194:1193-1205. [PMID: 34637111 DOI: 10.1007/s12010-021-03695-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
cTn and CK-MB are gold standard biomarkers for acute coronary syndrome (ACS) but are less sensitive in the first 3 h after onset of symptoms. A need thus exists for novel biomarkers for early detection of ACS. We evaluated circulating copeptin, miRNA-208, and miRNA-499 as possible biomarkers for early detection of unstable angina (UA) and non-ST-segment elevation myocardial infarction (NSTEMI). Sixty-five patients with probable ACS that presented within 4 h of the onset of chest pain (23 UA and 42 NSTEMI) and 25 apparently healthy individuals were studied. Two sets of blood samples collected in the first 3 h and at 6 h after onset were analyzed for copeptin levels via ELISA and miRNA-208 and miRNA-499 expression via real-time PCR. Copeptin, miRNA-208, and miRNA-499 expression levels were significantly increased in UA and NSTEMI patients compared with controls (p < 0.001) and in NSTEMT compared with UA patients (p < 0.001). Levels were also significantly elevated in UA and NSTEMI patients with negative cardiac troponin in the first 3 h (p < 0.001). ROC curves displayed AUC for prediction of ACS of 0.96 for copeptin, 0.97 for miRNA-208, and 0.97 for miRNA-499. Their combination improved AUC to 0.98. Copeptin and miRNA-208 and miRNA-499 expression are promising biomarkers for UA and NSTEMI that present in the first 3 h of pain onset. A combination of these markers with cTn may increase the accuracy of diagnosis by avoiding the gray zone of cTn as a biomarker.
Collapse
Affiliation(s)
- Marwa A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Omnia H M Omar
- Assiut International Center of Nanomedicine, El-rajhy liver Hospital, Assiut University, Assiut, Egypt
| | - Sahar E M El-Deek
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ayman K M Hassan
- Cardiology Department, Faculty of Medicine,, Assiut University, Assiut, Egypt
| | - Marwan S Mahmoud
- Cardiology Department, Faculty of Medicine,, Assiut University, Assiut, Egypt
| | - Abdel-Raheim M A Meki
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- iochemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt Corresponding author: Assistant Professor Marwa A Gaber, Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Qi X, Chen D, Yu W, Wang L, Liu L, Tao X. Long non-coding RNA PRNCR1 promotes ovarian cancer cell proliferation, migration and invasion by targeting the miR-653-5p/ELF2 axis. Mol Cell Biochem 2022; 477:1463-1475. [PMID: 35166984 DOI: 10.1007/s11010-022-04371-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023]
Abstract
Recent studies have shown that prostate cancer-associated long non-coding RNA, PRNCR1, plays crucial roles in the development of multiple human cancers. However, its role in ovarian cancer is barely known. This study was carried out to investigate the role of PRNCR1 and the underlying mechanisms in OC. The expression of PRNCR1 and miR-653-5p in OC cell lines and tissues were detected by qRT-PCR. The expression of ELF2 protein was evaluated by Western blot analysis. Cell proliferation was measured by colony formation and MTT assay. Cell invasion and migration were evaluated by Transwell and wound healing assay. Luciferase reporter assay and RNA-binding protein immunoprecipitation assay were performed to determine the interaction between miR-653-5p and PRNCR1, as well as between miR-653-5p and ELF2. In vivo tumor xenograft model was established to evaluate the role of PRNCR1 in tumor growth. Our results demonstrated that PRNCR1 was significantly upregulated in both OC cell lines and tissues, and high expression of PRNCR1 was correlated with poor survival of OC patients. Overexpression of PRNCR1 accelerated OC cell invasion, migration and proliferation. Besides, the expression of PRNCR1 was negatively correlated with the expression of miR-653-5p, while positively correlated with the expression of E74-like factor 2 in OC tissues. Importantly, ELF2 could target miR-653-5p, and PRNCR1 increased the expression levels of ELF2 by sponging miR-653-5p in OC cells. Furthermore, the miR-145-5p/ELF2 axis was involved in the regulation of PRNCR1 in OC progression in vivo. PRNCR1 promotes OC tumor progress via the miR-653-5p/ELF2 axis and might be a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Xing Qi
- Department of Gynecology, Hubei Provincial Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province, 430070, People's Republic of China
| | - Dejun Chen
- Department of Gynecology, Hubei Provincial Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province, 430070, People's Republic of China
| | - Weichang Yu
- Department of Gynecology, Hubei Provincial Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province, 430070, People's Republic of China
| | - Liming Wang
- Department of Gynecology, Hubei Provincial Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province, 430070, People's Republic of China
| | - Lu Liu
- Department of Gynecology, Hubei Provincial Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province, 430070, People's Republic of China
| | - Xiaoling Tao
- Department of Gynecology, Hubei Provincial Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province, 430070, People's Republic of China.
| |
Collapse
|
16
|
Xiao X, Zhang CY, Zhang Z, Hu Z, Li M, Li T. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry 2022; 27:466-475. [PMID: 34650204 DOI: 10.1038/s41380-021-01329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/28/2023]
Abstract
Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the "missing heritability" of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
17
|
Akhlaghpour H. An RNA-Based Theory of Natural Universal Computation. J Theor Biol 2021; 537:110984. [PMID: 34979104 DOI: 10.1016/j.jtbi.2021.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Life is confronted with computation problems in a variety of domains including animal behavior, single-cell behavior, and embryonic development. Yet we currently do not know of a naturally existing biological system that is capable of universal computation, i.e., Turing-equivalent in scope. Generic finite-dimensional dynamical systems (which encompass most models of neural networks, intracellular signaling cascades, and gene regulatory networks) fall short of universal computation, but are assumed to be capable of explaining cognition and development. I present a class of models that bridge two concepts from distant fields: combinatory logic (or, equivalently, lambda calculus) and RNA molecular biology. A set of basic RNA editing rules can make it possible to compute any computable function with identical algorithmic complexity to that of Turing machines. The models do not assume extraordinarily complex molecular machinery or any processes that radically differ from what we already know to occur in cells. Distinct independent enzymes can mediate each of the rules and RNA molecules solve the problem of parenthesis matching through their secondary structure. In the most plausible of these models all of the editing rules can be implemented with merely cleavage and ligation operations at fixed positions relative to predefined motifs. This demonstrates that universal computation is well within the reach of molecular biology. It is therefore reasonable to assume that life has evolved - or possibly began with - a universal computer that yet remains to be discovered. The variety of seemingly unrelated computational problems across many scales can potentially be solved using the same RNA-based computation system. Experimental validation of this theory may immensely impact our understanding of memory, cognition, development, disease, evolution, and the early stages of life.
Collapse
Affiliation(s)
- Hessameddin Akhlaghpour
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
18
|
Far from the nuclear crowd: Cytoplasmic lncRNA and their implications in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 185:107522. [PMID: 34547434 DOI: 10.1016/j.nlm.2021.107522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
A striking proportion of long non-coding RNAs are expressed specifically in the mammalian brain. Advances in genome-wide sequencing detected widespread diversity in neuronal lncRNAs based on their expression pattern, localization and function. A growing body of literature proposes that localization of lncRNAs is a critical determinant of their function. A rising number of recent findings documented distinct cytoplasmic functions of lncRNAs that are linked to activity-induced control of synaptic plasticity. However, the comprehensive role of cytoplasmic lncRNAs in neuronal functions is less understood. This review surveys our current understanding of lncRNAs that regulate the cytoplasmic life of mRNAs. We discuss the necessity of subcellular localization of lncRNAs in neuronal dendrites and the impact of their compartmentalized positioning on localized translation at the synapse. We have highlighted how lncRNAs modify a functional compartment to meet the demand for input-specific control of synaptic plasticity and memory.
Collapse
|
19
|
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22:589-607. [PMID: 34140671 PMCID: PMC9612635 DOI: 10.1038/s41580-021-00382-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The human genome contains over one million short tandem repeats. Expansion of a subset of these repeat tracts underlies over fifty human disorders, including common genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72), polyglutamine-associated ataxias and Huntington disease, myotonic dystrophy, and intellectual disability disorders such as Fragile X syndrome. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chase P Kelley
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Zhang M, Zhu W, Haeryfar M, Jiang S, Jiang X, Chen W, Li J. Long Non-Coding RNA TRG-AS1 Promoted Proliferation and Invasion of Lung Cancer Cells Through the miR-224-5p/SMAD4 Axis. Onco Targets Ther 2021; 14:4415-4426. [PMID: 34408438 PMCID: PMC8364376 DOI: 10.2147/ott.s297336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The aim of this study was to investigate the role and mechanism of long non-coding RNA (lncRNA) TRG-AS1 in mediating the proliferation, invasion and migration of lung cancer cells as well lung tumor growth. METHODS Firstly, the expression levels of TRG-AS1, miR-224-5p in lung cancer tissues or cells were quantified by quantitative real-time PCR. Western blot analysis was conducted to measure the expression levels of protein SMAD4. CCK-8 assay, wound healing assay and transwell assay were conducted to evaluate cell proliferation, migration and invasion, respectively. The interaction between TRG-AS1 and miR-224-5p was predicted by bioinformatics analysis. Dual-luciferase assay and RNA pull-down assay were performed to further confirm their interaction. In addition, the interaction between miR-224-5p and SMAD4 was detected by RIP assay. RESULTS The results showed that TRG-AS1 was highly upregulated and miR-224-5p was downregulated in lung cancer. A negative correlation was found between TRG-AS1 and miR-224-5p. Furthermore, upregulation of TRG-AS1 promoted cell proliferation and invasion, while overexpression of miR-224-5p attenuated the effects of TRG-AS1. The downstream protein SMAD4 played an important role. In vivo study showed that knockdown of TRG-AS1 effectively retarded tumor growth. DISCUSSION Our data suggested that the TRG-AS1/miR-224-5p/SMAD4 axis may be a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Mengyan Zhang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
| | - Weiguo Zhu
- Department of Radiotherapy, The Affiliated Huaian No.1 People’ s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, 223300, People’s Republic of China
| | - Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, N6A 3K7, Canada
| | - Sumei Jiang
- Department of B-ultrasound, The Affiliated Huaian No.1 People’ s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, 223300, People’s Republic of China
| | - Xiang Jiang
- Department of Hernia Surgery, The Affiliated Huaian No.1 People’ s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, 223300, People’s Republic of China
| | - Wei Chen
- Department of Respiratory Medicine, The Affiliated Huaian No.1 People’ s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, 223300, People’s Republic of China
| | - Jiancheng Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
| |
Collapse
|
21
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
22
|
Abstract
RNA editing is a post-transcriptional process increasing transcript diversity, thereby regulating different biological processes. We recently observed that mutations resulting from RNA editing due to hydrolytic deamination of adenosine increase during the development of mesothelioma, a rare cancer linked to chronic exposure to asbestos. This review gathers information from the published literature and public data mining to explore several aspects of RNA editing and their possible implications for cancer growth and therapy. We address possible links between RNA editing and particular types of mesothelioma genetic and epigenetic alterations and discuss the relevance of an edited substrate in the context of current chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| |
Collapse
|
23
|
Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, Liu X, Yan K, Hu J, Jing Y, Wang S, Zhang W, Liu GH, Qu J. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res 2020; 48:6001-6018. [PMID: 32427330 PMCID: PMC7293006 DOI: 10.1093/nar/gkaa425] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has long been known as a master transcriptional repressor of autophagy. Here, we identify a novel role for ZKSCAN3 in alleviating senescence that is independent of its autophagy-related activity. Downregulation of ZKSCAN3 is observed in aged human mesenchymal stem cells (hMSCs) and depletion of ZKSCAN3 accelerates senescence of these cells. Mechanistically, ZKSCAN3 maintains heterochromatin stability via interaction with heterochromatin-associated proteins and nuclear lamina proteins. Further study shows that ZKSCAN3 deficiency results in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, loss of heterochromatin, a more accessible chromatin status and consequently, aberrant transcription of repetitive sequences. Overexpression of ZKSCAN3 not only rescues premature senescence phenotypes in ZKSCAN3-deficient hMSCs but also rejuvenates physiologically and pathologically senescent hMSCs. Together, these data reveal for the first time that ZKSCAN3 functions as an epigenetic modulator to maintain heterochromatin organization and thereby attenuate cellular senescence. Our findings establish a new functional link among ZKSCAN3, epigenetic regulation, and stem cell aging.
Collapse
Affiliation(s)
- Huifang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Huber CD, Kim BY, Lohmueller KE. Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. PLoS Genet 2020; 16:e1008827. [PMID: 32469868 PMCID: PMC7286533 DOI: 10.1371/journal.pgen.1008827] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/10/2020] [Accepted: 05/05/2020] [Indexed: 01/20/2023] Open
Abstract
Comparative genomic approaches have been used to identify sites where mutations are under purifying selection and of functional consequence by searching for sequences that are conserved across distantly related species. However, the performance of these approaches has not been rigorously evaluated under population genetic models. Further, short-lived functional elements may not leave a footprint of sequence conservation across many species. We use simulations to study how one measure of conservation, the Genomic Evolutionary Rate Profiling (GERP) score, relates to the strength of selection (Nes). We show that the GERP score is related to the strength of purifying selection. However, changes in selection coefficients or functional elements over time (i.e. functional turnover) can strongly affect the GERP distribution, leading to unexpected relationships between GERP and Nes. Further, we show that for functional elements that have a high turnover rate, adding more species to the analysis does not necessarily increase statistical power. Finally, we use the distribution of GERP scores across the human genome to compare models with and without turnover of sites where mutations are under purifying selection. We show that mutations in 4.51% of the noncoding human genome are under purifying selection and that most of this sequence has likely experienced changes in selection coefficients throughout mammalian evolution. Our work reveals limitations to using comparative genomic approaches to identify deleterious mutations. Commonly used GERP score thresholds miss over half of the noncoding sites in the human genome where mutations are under purifying selection. One of the most significant and challenging tasks in modern genomics is to assess the functional consequences of a particular nucleotide change in a genome. A common approach to address this challenge prioritizes sequences that share similar nucleotides across distantly related species, with the rationale that mutations at such positions were deleterious and removed from the population by purifying natural selection. Our manuscript shows that one popular measure of sequence conservation, the GERP score, performs well at identifying selected mutations if mutations at a site were under selection across all of mammalian evolution. Changes in selection at a given site dramatically reduces the power of GERP to detect selected mutations in humans. We also combine population genetic models with the distribution of GERP scores at noncoding sites across the human genome to show that the degree of selection at individual sites has changed throughout mammalian evolution. Importantly, we demonstrate that at least 80 Mb of noncoding sequence under purifying selection in humans will not have extreme GERP scores and will likely be missed by modern comparative genomic approaches. Our work argues that new approaches, potentially based on genetic variation within species, will be required to identify deleterious mutations.
Collapse
Affiliation(s)
- Christian D. Huber
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zu W, Zhang H, Lan X, Tan X. Genome-wide evolution analysis reveals low CpG contents of fast-evolving genes and identifies antiviral microRNAs. J Genet Genomics 2020; 47:49-60. [DOI: 10.1016/j.jgg.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 01/28/2023]
|
26
|
Sterol-O acyltransferase 1 is inhibited by gga-miR-181a-5p and gga-miR-429-3p through the TGFβ pathway in endodermal epithelial cells of Japanese quail. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110376. [PMID: 31678270 DOI: 10.1016/j.cbpb.2019.110376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/22/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022]
Abstract
Nutrients are utilized and re-constructed by endodermal epithelial cells (EECs) of yolk sac membrane (YSM) in avian species during embryonic development. Sterol O-acyltransferase 1 (SOAT1) is the key enzyme to convert cholesterol to cholesteryl ester for delivery to growing embryos. During embryonic development, yolk absorption is concomitant with significant changes of SOAT1 mRNA concentration and enzyme activity in YSM. Presence of microRNAs (miRNAs) are observed in the embryonic liver and muscle during avian embryogenesis. However, the expression of miRNAs in YSM during embryogenesis and the involvement of miRNAs in lipid utilization are not known. Using a miRNA sequencing technique, we found several miRNA candidates and confirmed their expression patterns individually by real time PCR. MiRNA candidates were selected based on the expression pattern and their possible roles in inhibiting transforming growth factor beta receptor type 1 (TGFBR1) that would regulate the function of SOAT1. Similar to SOAT1 mRNA, the gga-miR-181a-5p expression was gradually elevated during embryonic development. However, the expression of gga-miR-429-3p in YSM was gradually decreased during embryonic development. The inhibitory effects of gga-miR-181a-5p or gga-miR-429-3p on the potential targets (SOAT1 and TGFBR1) were demonstrated by transient miRNA transfections in EECs. We also found that mutated TGFBR1 3'UTR prevented the direct pairings of gga-miR-181a-5p and gga-miR-429-3p. Treatment of TGFBR1 inhibitor, LY364947, further decreased SOAT1 transcription. Similar results were also observed by the miRNA transfection studies. The results showed the vital participations of gga-miR-181a-5p and gga-miR-429-3p in regulating TGFβ pathway, and affecting downstream SOAT1 expression and function in the YSM. This is indicative of possible regulation of avian yolk lipid utilization by changing YSM miRNA expressions.
Collapse
|
27
|
Grinman E, Espadas I, Puthanveettil SV. Emerging roles for long noncoding RNAs in learning, memory and associated disorders. Neurobiol Learn Mem 2019; 163:107034. [DOI: 10.1016/j.nlm.2019.107034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
|
28
|
Soares RJ, Maglieri G, Gutschner T, Diederichs S, Lund AH, Nielsen BS, Holmstrøm K. Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Res 2019; 46:e4. [PMID: 29059327 PMCID: PMC5758870 DOI: 10.1093/nar/gkx946] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
Deciphering the functions of long non-coding RNAs (lncRNAs) is facilitated by visualization of their subcellular localization using in situ hybridization (ISH) techniques. We evaluated four different ISH methods for detection of MALAT1 and CYTOR in cultured cells: a multiple probe detection approach with or without enzymatic signal amplification, a branched-DNA (bDNA) probe and an LNA-modified probe with enzymatic signal amplification. All four methods adequately stained MALAT1 in the nucleus in all of three cell lines investigated, HeLa, NHDF and T47D, and three of the methods detected the less expressed CYTOR. The sensitivity of the four ISH methods was evaluated by image analysis. In all three cell lines, the two methods involving enzymatic amplification gave the most intense MALAT1 signal, but the signal-to-background ratios were not different. CYTOR was best detected using the bDNA method. All four ISH methods showed significantly reduced MALAT1 signal in knock-out cells, and siRNA-induced knock-down of CYTOR resulted in significantly reduced CYTOR ISH signal, indicating good specificity of the probe designs and detection systems. Our data suggest that the ISH methods allow detection of both abundant and less abundantly expressed lncRNAs, although the latter required the use of the most specific and sensitive probe detection system.
Collapse
Affiliation(s)
| | - Giulia Maglieri
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tony Gutschner
- Division of RNA Biology & Cancer (B150), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer (B150), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.,Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), Partner Site Freiburg, D-79106 Freiburg, Germany
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Kim Holmstrøm
- Bioneer A/S, Kogle Allé 2, DK-2970 Hørsholm, Denmark
| |
Collapse
|
29
|
Vandevenne M, Delmarcelle M, Galleni M. RNA Regulatory Networks as a Control of Stochasticity in Biological Systems. Front Genet 2019; 10:403. [PMID: 31134128 PMCID: PMC6514243 DOI: 10.3389/fgene.2019.00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/12/2019] [Indexed: 01/24/2023] Open
Abstract
The discovery that the non-protein coding part of human genome, dismissed as "junk DNA," is actively transcripted and carries out crucial functions is probably one of the most important discoveries of the past decades. These transcripts are becoming the rising stars of modern biology. In this review, we have casted a new light on RNAs. We have placed these molecules in the context of life origins, evolution with a big emphasize on the "RNA networks" concept. We discuss how this view can help us to understand the global role of RNA networks in modern cells, and can change our perception of the cell biology and therapy. Finally, although high-throughput methods as well as traditional case-to-case studies have laid the groundwork for our current knowledge of transcriptomes, we would like to discuss new strategies that are better suited to uncover and tackle these integrated and complex RNA networks.
Collapse
Affiliation(s)
- Marylène Vandevenne
- InBioS - Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Michael Delmarcelle
- InBioS - Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS - Center for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
30
|
Hardwick SA, Bassett SD, Kaczorowski D, Blackburn J, Barton K, Bartonicek N, Carswell SL, Tilgner HU, Loy C, Halliday G, Mercer TR, Smith MA, Mattick JS. Targeted, High-Resolution RNA Sequencing of Non-coding Genomic Regions Associated With Neuropsychiatric Functions. Front Genet 2019; 10:309. [PMID: 31031799 PMCID: PMC6473190 DOI: 10.3389/fgene.2019.00309] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
The human brain is one of the last frontiers of biomedical research. Genome-wide association studies (GWAS) have succeeded in identifying thousands of haplotype blocks associated with a range of neuropsychiatric traits, including disorders such as schizophrenia, Alzheimer's and Parkinson's disease. However, the majority of single nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-coding regions of the genome, hindering their functional validation. While some of these GWAS loci may contain cis-acting regulatory DNA elements such as enhancers, we hypothesized that many are also transcribed into non-coding RNAs that are missing from publicly available transcriptome annotations. Here, we use targeted RNA capture ('RNA CaptureSeq') in combination with nanopore long-read cDNA sequencing to transcriptionally profile 1,023 haplotype blocks across the genome containing non-coding GWAS SNPs associated with neuropsychiatric traits, using post-mortem human brain tissue from three neurologically healthy donors. We find that the majority (62%) of targeted haplotype blocks, including 13% of intergenic blocks, are transcribed into novel, multi-exonic RNAs, most of which are not yet recorded in GENCODE annotations. We validated our findings with short-read RNA-seq, providing orthogonal confirmation of novel splice junctions and enabling a quantitative assessment of the long-read assemblies. Many novel transcripts are supported by independent evidence of transcription including cap analysis of gene expression (CAGE) data and epigenetic marks, and some show signs of potential functional roles. We present these transcriptomes as a preliminary atlas of non-coding transcription in human brain that can be used to connect neurological phenotypes with gene expression.
Collapse
Affiliation(s)
- Simon A. Hardwick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, United States
| | - Samuel D. Bassett
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Dominik Kaczorowski
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - James Blackburn
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Kirston Barton
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Nenad Bartonicek
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Shaun L. Carswell
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Hagen U. Tilgner
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, United States
| | - Clement Loy
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Glenda Halliday
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Tim R. Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| | - Martin A. Smith
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
| | - John S. Mattick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
- Green Templeton College, Oxford, United Kingdom
| |
Collapse
|
31
|
Song Y, Hu M, Zhang J, Teng ZQ, Chen C. A novel mechanism of synaptic and cognitive impairments mediated via microRNA-30b in Alzheimer's disease. EBioMedicine 2019; 39:409-421. [PMID: 30522932 PMCID: PMC6354659 DOI: 10.1016/j.ebiom.2018.11.059] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND It is widely accepted that cognitive and memory deficits in Alzheimer's disease (AD) primarily result from synaptic failure. However, the mechanisms that underlie synaptic and cognitive dysfunction remain unclear. METHODS We utilized molecular biology techniques, electrophysiological recordings, fluorescence in situ hybridization (FISH), immuno- and Golgi-staining, chromatin immunoprecipitation (CHIP); lentivirus (LV)-based microRNA overexpression and 'sponging', and behavioral tests to assess upregulated miR-30b causing synaptic and cognitive declines in APP transgenic (TG) mice. FINDINGS We provide evidence that expression of miR-30b, which targets molecules important for maintaining synaptic integrity, including ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate ionotropic receptor AMPA type subunit 2 (GluA2), is robustly upregulated in the brains of both AD patients and APP transgenic (TG) mice, an animal model of AD, while expression of its targets is significantly downregulated. Overexpression of miR-30b in the hippocampus of normal wild-type (WT) mice impairs synaptic and cognitive functions, mimicking those seen in TG mice. Conversely, knockdown of endogenous miR-30b in TG mice prevents synaptic and cognitive decline. We further observed that expression of miR-30b is upregulated by proinflammatory cytokines and Aβ42 through NF-κB signaling. INTERPRETATION Our results provide a previously undefined mechanism by which unregulated miR-30b causes synaptic and cognitive dysfunction in AD, suggesting that reversal of dysregulated miR-30b in the brain may prevent or slow cognitive declines in AD. FUND: This work was supported by National Institutes of Health grants R01NS076815, R01MH113535, R01AG058621, P30GM103340 Pilot Project, and by the LSUHSC School of Medicine Research Enhancement Program grant (to C.C.).
Collapse
Affiliation(s)
- Yunping Song
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Mei Hu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jian Zhang
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhao-Qian Teng
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chu Chen
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
32
|
The State of Long Non-Coding RNA Biology. Noncoding RNA 2018; 4:ncrna4030017. [PMID: 30103474 PMCID: PMC6162524 DOI: 10.3390/ncrna4030017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptomic studies have demonstrated that the vast majority of the genomes of mammals and other complex organisms is expressed in highly dynamic and cell-specific patterns to produce large numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Despite well characterized examples, their scaling with developmental complexity, and many demonstrations of their association with cellular processes, development and diseases, lncRNAs are still to be widely accepted as major players in gene regulation. This may reflect an underappreciation of the extent and precision of the epigenetic control of differentiation and development, where lncRNAs appear to have a central role, likely as organizational and guide molecules: most lncRNAs are nuclear-localized and chromatin-associated, with some involved in the formation of specialized subcellular domains. I suggest that a reassessment of the conceptual framework of genetic information and gene expression in the 4-dimensional ontogeny of spatially organized multicellular organisms is required. Together with this and further studies on their biology, the key challenges now are to determine the structure–function relationships of lncRNAs, which may be aided by emerging evidence of their modular structure, the role of RNA editing and modification in enabling epigenetic plasticity, and the role of RNA signaling in transgenerational inheritance of experience.
Collapse
|
33
|
Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression. Proc Natl Acad Sci U S A 2018; 115:E5526-E5535. [PMID: 29802231 PMCID: PMC6004460 DOI: 10.1073/pnas.1722565115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) represent a substantial fraction of many eukaryotic genomes, and transcriptional regulation of these factors is important to determine TE activities in human cells. However, due to the repetitive nature of TEs, identifying transcription factor (TF)-binding sites from ChIP-sequencing (ChIP-seq) datasets is challenging. Current algorithms are focused on subtle differences between TE copies and thus bias the analysis to relatively old and inactive TEs. Here we describe an approach termed "MapRRCon" (mapping repeat reads to a consensus) which allows us to identify proteins binding to TE DNA sequences by mapping ChIP-seq reads to the TE consensus sequence after whole-genome alignment. Although this method does not assign binding sites to individual insertions in the genome, it provides a landscape of interacting TFs by capturing factors that bind to TEs under various conditions. We applied this method to screen TFs' interaction with L1 in human cells/tissues using ENCODE ChIP-seq datasets and identified 178 of the 512 TFs tested as bound to L1 in at least one biological condition with most of them (138) localized to the promoter. Among these L1-binding factors, we focused on Myc and CTCF, as they play important roles in cancer progression and 3D chromatin structure formation. Furthermore, we explored the transcriptomes of The Cancer Genome Atlas breast and ovarian tumor samples in which a consistent anti-/correlation between L1 and Myc/CTCF expression was observed, suggesting that these two factors may play roles in regulating L1 transcription during the development of such tumors.
Collapse
|
34
|
Abstract
The idea that much of our genome is irrelevant to fitness-is not the product of positive natural selection at the organismal level-remains viable. Claims to the contrary, and specifically that the notion of "junk DNA" should be abandoned, are based on conflating meanings of the word "function". Recent estimates suggest that perhaps 90% of our DNA, though biochemically active, does not contribute to fitness in any sequence-dependent way, and possibly in no way at all. Comparisons to vertebrates with much larger and smaller genomes (the lungfish and the pufferfish) strongly align with such a conclusion, as they have done for the last half-century.
Collapse
Affiliation(s)
- W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Tyler D P Brunet
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Ferlaino M, Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt TR, Campbell C. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome. BMC Bioinformatics 2017; 18:442. [PMID: 28985712 PMCID: PMC5955213 DOI: 10.1186/s12859-017-1862-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/02/2017] [Indexed: 11/30/2022] Open
Abstract
Background Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. Results We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. Conclusions FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1862-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Ferlaino
- Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK. .,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, OX3 9DU, UK.
| | - Mark F Rogers
- Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1UB, UK
| | - Hashem A Shihab
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Matthew Mort
- Institute of Medical Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Colin Campbell
- Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1UB, UK
| |
Collapse
|
36
|
Deveson IW, Hardwick SA, Mercer TR, Mattick JS. The Dimensions, Dynamics, and Relevance of the Mammalian Noncoding Transcriptome. Trends Genet 2017; 33:464-478. [PMID: 28535931 DOI: 10.1016/j.tig.2017.04.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
The combination of pervasive transcription and prolific alternative splicing produces a mammalian transcriptome of great breadth and diversity. The majority of transcribed genomic bases are intronic, antisense, or intergenic to protein-coding genes, yielding a plethora of short and long non-protein-coding regulatory RNAs. Long noncoding RNAs (lncRNAs) share most aspects of their biogenesis, processing, and regulation with mRNAs. However, lncRNAs are typically expressed in more restricted patterns, frequently from enhancers, and exhibit almost universal alternative splicing. These features are consistent with their role as modular epigenetic regulators. We describe here the key studies and technological advances that have shaped our understanding of the dimensions, dynamics, and biological relevance of the mammalian noncoding transcriptome.
Collapse
Affiliation(s)
- Ira W Deveson
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Simon A Hardwick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tim R Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - John S Mattick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Biglino G, Caputo M, Rajakaruna C, Angelini G, van Rooij E, Emanueli C. Modulating microRNAs in cardiac surgery patients: Novel therapeutic opportunities? Pharmacol Ther 2016; 170:192-204. [PMID: 27902930 DOI: 10.1016/j.pharmthera.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review focuses on microRNAs (miRs) in cardiac surgery, where they are emerging as potential targets for therapeutic intervention as well as novel clinical biomarkers. Identification of the up/down-regulation of specific miRs in defined groups of cardiac surgery patients can lead to the development of novel strategies for targeted treatment in order to maximise therapeutic results and minimise acute, delayed or chronic complications. MiRs could also be involved in determining the outcome independently of complications, for example in relation to myocardial perfusion and fibrosis. Because of their relevance in disease, their known sequence and pharmacological properties, miRs are attractive candidates for therapeutic manipulation. Pharmacological inhibition of individual miRs can be achieved by modified antisense oligonucleotides, referred to as antimiRs, while miR replacement can be achieved by miR mimics to increase the level of a specific miR. MiR mimics can restore the function of a lost or down-regulated miR, while antimiRs can inhibit the levels of disease-driving or aberrantly expressed miRs, thus de-repressing the expression of mRNAs targeted by the miR. The main delivery methods for miR therapeutics involve lipid-based vehicles, viral systems, cationic polymers, and intravenous or local injection of an antagomiR. Local delivery is particularly desirable for miR therapeutics and options include the development of devices specific for local delivery, light-induced antimiR, and vesicle-encapsulated miRs serving as therapeutic delivery agents able to improve intracellular uptake. Here, we discuss the potential therapeutic use of miRNAs in the context of cardiac surgery.
Collapse
Affiliation(s)
| | - Massimo Caputo
- Bristol Heart Institute, University of Bristol, Bristol, UK; RUSH University Medical Center, Chicago, IL, USA
| | - Cha Rajakaruna
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | | | | | - Costanza Emanueli
- Bristol Heart Institute, University of Bristol, Bristol, UK; National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
38
|
Weikard R, Demasius W, Kuehn C. Mining long noncoding RNA in livestock. Anim Genet 2016; 48:3-18. [DOI: 10.1111/age.12493] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 02/01/2023]
Affiliation(s)
- R. Weikard
- Institute Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); 18196 Dummerstorf Germany
| | - W. Demasius
- Institute Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); 18196 Dummerstorf Germany
| | - C. Kuehn
- Institute Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); 18196 Dummerstorf Germany
- Faculty of Agricultural and Environmental Sciences; University Rostock; 18059 Rostock Germany
| |
Collapse
|
39
|
Nitsche A, Stadler PF. Evolutionary clues in lncRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27436689 DOI: 10.1002/wrna.1376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022]
Abstract
The diversity of long non-coding RNAs (lncRNAs) in the human transcriptome is in stark contrast to the sparse exploration of their functions concomitant with their conservation and evolution. The pervasive transcription of the largely non-coding human genome makes the evolutionary age and conservation patterns of lncRNAs to a topic of interest. Yet it is a fairly unexplored field and not that easy to determine as for protein-coding genes. Although there are a few experimentally studied cases, which are conserved at the sequence level, most lncRNAs exhibit weak or untraceable primary sequence conservation. Recent studies shed light on the interspecies conservation of secondary structures among lncRNA homologs by using diverse computational methods. This highlights the importance of structure on functionality of lncRNAs as opposed to the poor impact of primary sequence changes. Further clues in the evolution of lncRNAs are given by selective constraints on non-coding gene structures (e.g., promoters or splice sites) as well as the conservation of prevalent spatio-temporal expression patterns. However, a rapid evolutionary turnover is observable throughout the heterogeneous group of lncRNAs. This still gives rise to questions about its functional meaning. WIREs RNA 2017, 8:e1376. doi: 10.1002/wrna.1376 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Anne Nitsche
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Institute de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Cedex, France
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology - IZI, Leipzig, Germany.,Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.,Department of Theoretical Chemistry, University of Vienna, Wien, Austria.,Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
40
|
Liu X, Fan Z, Zhao T, Cao W, Zhang L, Li H, Xie Q, Tian Y, Wang B. Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: An independent study of Han population. Exp Gerontol 2015; 72:230-8. [DOI: 10.1016/j.exger.2015.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/13/2015] [Accepted: 10/21/2015] [Indexed: 01/15/2023]
|
41
|
Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution. Neuron 2015; 88:861-877. [DOI: 10.1016/j.neuron.2015.09.045] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Friedli M, Trono D. The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol 2015; 31:429-51. [PMID: 26393776 DOI: 10.1146/annurev-cellbio-100814-125514] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transposable elements (TEs) account for at least 50% of the human genome. They constitute essential motors of evolution through their ability to modify genomic architecture, mutate genes and regulate gene expression. Accordingly, TEs are subject to tight epigenetic control during the earliest phases of embryonic development via histone and DNA methylation. Key to this process is recognition by sequence-specific RNA- and protein-based repressors. Collectively, these mediators are responsible for silencing a very broad range of TEs in an evolutionarily dynamic fashion. As a consequence, mobile elements and their controllers exert a marked influence on transcriptional networks in embryonic stem cells and a variety of adult tissues. The emerging picture is not that of a simple arms race but rather of a massive and sophisticated enterprise of TE domestication for the evolutionary benefit of the host.
Collapse
Affiliation(s)
- Marc Friedli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; ,
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; ,
| |
Collapse
|
43
|
Kruse H, Mladek A, Gkionis K, Hansen A, Grimme S, Sponer J. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. J Chem Theory Comput 2015; 11:4972-91. [PMID: 26574283 DOI: 10.1021/acs.jctc.5b00515] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields.
Collapse
Affiliation(s)
- Holger Kruse
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Arnost Mladek
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Konstantinos Gkionis
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
44
|
Blythe AJ, Fox AH, Bond CS. The ins and outs of lncRNA structure: How, why and what comes next? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:46-58. [PMID: 26325022 DOI: 10.1016/j.bbagrm.2015.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/07/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022]
Abstract
The field of structural biology has the unique advantage of being able to provide a comprehensive picture of biological mechanisms at the molecular and atomic level. Long noncoding RNAs (lncRNAs) represent the new frontier in the molecular biology of complex organisms yet remain the least characterised of all the classes of RNA. Thousands of new lncRNAs are being reported each year yet very little structural data exists for this rapidly expanding field. The length of lncRNAs ranges from 200 nt to over 100 kb in length and they generally exhibit low cellular abundance. Therefore, obtaining sufficient quantities of lncRNA to use for structural analysis is challenging. However, as technologies develop structures of lncRNAs are starting to emerge providing important information regarding their mechanism of action. Here we review the current methods used to determine the structure of lncRNA and lncRNA:protein complexes and describe the significant contribution structural biology has and will make to the field of lncRNA research. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Amanda J Blythe
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Archa H Fox
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
45
|
Lyon KF, Strong CL, Schooler SG, Young RJ, Roy N, Ozar B, Bachmeier M, Rajasekaran S, Schiller MR. Natural variability of minimotifs in 1092 people indicates that minimotifs are targets of evolution. Nucleic Acids Res 2015; 43:6399-412. [PMID: 26068475 PMCID: PMC4513861 DOI: 10.1093/nar/gkv580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/17/2015] [Accepted: 05/21/2015] [Indexed: 01/05/2023] Open
Abstract
Since the function of a short contiguous peptide minimotif can be introduced or eliminated by a single point mutation, these functional elements may be a source of human variation and a target of selection. We analyzed the variability of ∼300 000 minimotifs in 1092 human genomes from the 1000 Genomes Project. Most minimotifs have been purified by selection, with a 94% invariance, which supports important functional roles for minimotifs. Minimotifs are generally under negative selection, possessing high genomic evolutionary rate profiling (GERP) and sitewise likelihood-ratio (SLR) scores. Some are subject to neutral drift or positive selection, similar to coding regions. Most SNPs in minimotif were common variants, but with minor allele frequencies generally <10%. This was supported by low substation rates and few newly derived minimotifs. Several minimotif alleles showed different intercontinental and regional geographic distributions, strongly suggesting a role for minimotifs in adaptive evolution. We also note that 4% of PTM minimotif sites in histone tails were common variants, which has the potential to differentially affect DNA packaging among individuals. In conclusion, minimotifs are a source of functional genetic variation in the human population; thus, they are likely to be an important target of selection and evolution.
Collapse
Affiliation(s)
- Kenneth F Lyon
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Christy L Strong
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Steve G Schooler
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Richard J Young
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-2155, USA
| | - Nervik Roy
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Brittany Ozar
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Mark Bachmeier
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Sanguthevar Rajasekaran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-2155, USA
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
46
|
Collective effects of SNPs on transgenerational inheritance in Caenorhabditis elegans and budding yeast. Genomics 2015; 106:23-9. [DOI: 10.1016/j.ygeno.2015.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/06/2015] [Indexed: 01/08/2023]
|
47
|
Lee B, Mazar J, Aftab MN, Qi F, Shelley J, Li JL, Govindarajan S, Valerio F, Rivera I, Thurn T, Tran TA, Kameh D, Patel V, Perera RJ. Long noncoding RNAs as putative biomarkers for prostate cancer detection. J Mol Diagn 2015; 16:615-26. [PMID: 25307116 DOI: 10.1016/j.jmoldx.2014.06.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is one of the leading causes of mortality among US males. There is an urgent unmet need to develop sensitive and specific biomarkers for the early detection of prostate cancer to reduce overtreatment and accompanying morbidity. We identified a group of differentially expressed long noncoding RNAs in prostate cancer cell lines and patient samples and further characterized six long noncoding RNAs (AK024556, XLOC_007697, LOC100287482, XLOC_005327, XLOC_008559, and XLOC_009911) in prostatic adenocarcinoma tissue samples (Gleason score >6.0) and compared them with matched normal (healthy) tissues. Interestingly, these markers were also successfully detected in patient urine samples and were found to be up-regulated when compared with normal (healthy) urine. AK024556 (SPRY4-IT1) was highly up-regulated in human prostate cancer cell line PC3 but not in LNCaP, and siRNA knockdown of SPRY4-IT1 in PC3 cells inhibited cell proliferation and invasion and increased cell apoptosis. Chromogenic in situ hybridization assay was developed to detect long noncoding RNAs in primary prostatic adenocarcinoma tissue samples, paving the way for clinical diagnostics. We believe that these results will set the stage for more extensive studies to develop novel long noncoding RNA-based diagnostic assays for early prostate cancer detection and will help to distinguish benign prostate cancer from precancerous lesions.
Collapse
|
48
|
When Competing Viruses Unify: Evolution, Conservation, and Plasticity of Genetic Identities. J Mol Evol 2015; 80:305-18. [PMID: 26014757 DOI: 10.1007/s00239-015-9683-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
Abstract
In the early 1970s, Manfred Eigen and colleagues developed the quasispecies model (qs) for the population-based origin of RNAs representing the early genetic code. The Eigen idea is basically that a halo of mutants is generated by error-prone replication around the master fittest type which will behave similarly as a biological population. But almost from the start, very interesting and unexpected observations were made regarding competition versus co-operation which suggested more complex interactions. It thus became increasingly clear that although viruses functioned similar to biological species, their behavior was much more complex than the original theory could explain, especially adaptation without changing the consensus involving minority populations. With respect to the origin of natural codes, meaning, and code-use in interactions (communication), it also became clear that individual fittest type-based mechanisms were likewise unable to explain the origin of natural codes such as the genetic code with their context- and consortia-dependence (pragmatic nature). This, instead, required the participation of groups of agents competent in the code and able to edit code because natural codes do not code themselves. Three lines of inquiry, experimental virology, quasispecies theory, and the study of natural codes converged to indicate that consortia of co-operative RNA agents such as viruses must be involved in the fitness of RNA and its involvement in communication, i.e., code-competent interactions. We called this co-operative form quasispecies consortia (qs-c). They are the essential agents that constitute the possibility of evolution of biological group identity. Finally, the basic interactional motifs for the emergence of group identity, communication, and co-operation-together with its opposing functions-are explained by the "Gangen" hypothesis.
Collapse
|
49
|
Mammalian introns: when the junk generates molecular diversity. Int J Mol Sci 2015; 16:4429-52. [PMID: 25710723 PMCID: PMC4394429 DOI: 10.3390/ijms16034429] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 01/14/2023] Open
Abstract
Introns represent almost half of the human genome, yet their vast majority is eliminated from eukaryotic transcripts through RNA splicing. Nevertheless, they feature key elements and functions that deserve further interest. At the level of DNA, introns are genomic segments that can shelter independent transcription units for coding and non-coding RNAs which transcription may interfere with that of the host gene, and regulatory elements that can influence gene expression and splicing itself. From the RNA perspective, some introns can be subjected to alternative splicing. Intron retention appear to provide some plasticity to the nature of the protein produced, its distribution in a given cell type and timing of its translation. Intron retention may also serve as a switch to produce coding or non-coding RNAs from the same transcription unit. Conversely, splicing of introns has been directly implicated in the production of small regulatory RNAs. Hence, splicing of introns also appears to provide plasticity to the type of RNA produced from a genetic locus (coding, non-coding, short or long). We addressed these aspects to add to our understanding of mechanisms that control the fate of introns and could be instrumental in regulating genomic output and hence cell fate.
Collapse
|
50
|
Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution. BMC Genomics 2015; 16:87. [PMID: 25765714 PMCID: PMC4333152 DOI: 10.1186/s12864-015-1245-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/15/2015] [Indexed: 11/29/2022] Open
Abstract
Background Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. Results We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos – target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. Conclusion We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the extent of the shared regulatory sequence across TFs and cell types under study. Importantly, a large part of the shared regulatory sequence is repurposed on the other species. This sequence, fueled by turnover events, provides a strong case for exaptation in regulatory elements. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1245-6) contains supplementary material, which is available to authorized users.
Collapse
|