1
|
Feng H, Larrivee CL, Demireva EY, Xie H, Leipprandt JR, Neubig RR. Mouse models of GNAO1-associated movement disorder: Allele- and sex-specific differences in phenotypes. PLoS One 2019; 14:e0211066. [PMID: 30682176 PMCID: PMC6347370 DOI: 10.1371/journal.pone.0211066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Infants and children with dominant de novo mutations in GNAO1 exhibit movement disorders, epilepsy, or both. Children with loss-of-function (LOF) mutations exhibit Epileptiform Encephalopathy 17 (EIEE17). Gain-of-function (GOF) mutations or those with normal function are found in patients with Neurodevelopmental Disorder with Involuntary Movements (NEDIM). There is no animal model with a human mutant GNAO1 allele. OBJECTIVES Here we develop a mouse model carrying a human GNAO1 mutation (G203R) and determine whether the clinical features of patients with this GNAO1 mutation, which includes both epilepsy and movement disorder, would be evident in the mouse model. METHODS A mouse Gnao1 knock-in GOF mutation (G203R) was created by CRISPR/Cas9 methods. The resulting offspring and littermate controls were subjected to a battery of behavioral tests. A previously reported GOF mutant mouse knock-in (Gnao1+/G184S), which has not been found in patients, was also studied for comparison. RESULTS Gnao1+/G203R mutant mice are viable and gain weight comparably to controls. Homozygotes are non-viable. Grip strength was decreased in both males and females. Male Gnao1+/G203R mice were strongly affected in movement assays (RotaRod and DigiGait) while females were not. Male Gnao1+/G203R mice also showed enhanced seizure propensity in the pentylenetetrazole kindling test. Mice with a G184S GOF knock-in also showed movement-related behavioral phenotypes but females were more strongly affected than males. CONCLUSIONS Gnao1+/G203R mice phenocopy children with heterozygous GNAO1 G203R mutations, showing both movement disorder and a relatively mild epilepsy pattern. This mouse model should be useful in mechanistic and preclinical studies of GNAO1-related movement disorders.
Collapse
Affiliation(s)
- Huijie Feng
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States of America
| | - Casandra L. Larrivee
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Elena Y. Demireva
- Transgenic and Genome Editing Facility, Michigan State University, East Lansing, MI, United States of America
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Michigan State University, East Lansing, MI, United States of America
| | - Jeff R. Leipprandt
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States of America
| | - Richard R. Neubig
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
2
|
Bozler J, Kacsoh BZ, Chen H, Theurkauf WE, Weng Z, Bosco G. A systems level approach to temporal expression dynamics in Drosophila reveals clusters of long term memory genes. PLoS Genet 2017; 13:e1007054. [PMID: 29084214 PMCID: PMC5679645 DOI: 10.1371/journal.pgen.1007054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/09/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
The ability to integrate experiential information and recall it in the form of memory is observed in a wide range of taxa, and is a hallmark of highly derived nervous systems. Storage of past experiences is critical for adaptive behaviors that anticipate both adverse and positive environmental factors. The process of memory formation and consolidation involve many synchronized biological events including gene transcription, protein modification, and intracellular trafficking: However, many of these molecular mechanisms remain illusive. With Drosophila as a model system we use a nonassociative memory paradigm and a systems level approach to uncover novel transcriptional patterns. RNA sequencing of Drosophila heads during and after memory formation identified a number of novel memory genes. Tracking the dynamic expression of these genes over time revealed complex gene networks involved in long term memory. In particular, this study focuses on two functional gene clusters of signal peptides and proteases. Bioinformatics network analysis and prediction in combination with high-throughput RNA sequencing identified previously unknown memory genes, which when genetically knocked down resulted in behaviorally validated memory defects.
Collapse
Affiliation(s)
- Julianna Bozler
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Balint Z. Kacsoh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Hao Chen
- Bioinformatics Program, Boston University, Boston, MA, United States of America
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - William E. Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| |
Collapse
|
3
|
Walkinshaw E, Gai Y, Farkas C, Richter D, Nicholas E, Keleman K, Davis RL. Identification of genes that promote or inhibit olfactory memory formation in Drosophila. Genetics 2015; 199:1173-82. [PMID: 25644700 PMCID: PMC4391555 DOI: 10.1534/genetics.114.173575] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified >500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified >40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the α/β and γ mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources.
Collapse
Affiliation(s)
- Erica Walkinshaw
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | - Yunchao Gai
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | - Caitlin Farkas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | - Daniel Richter
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | - Eric Nicholas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | | | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| |
Collapse
|
4
|
Yi W, Zhang Y, Tian Y, Guo J, Li Y, Guo A. A subset of cholinergic mushroom body neurons requires Go signaling to regulate sleep in Drosophila. Sleep 2013; 36:1809-21. [PMID: 24293755 DOI: 10.5665/sleep.3206] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
STUDY OBJECTIVES Identifying the neurochemistry and neural circuitry of sleep regulation is critical for understanding sleep and various sleep disorders. Fruit flies display sleep-like behavior, sharing essential features with sleep of vertebrate. In the fruit fly's central brain, the mushroom body (MB) has been highlighted as a sleep center; however, its neurochemical nature remains unclear, and whether it promotes sleep or wake is still a topic of controversy. DESIGN We used a video recording system to accurately monitor the locomotor activity and sleep status. Gene expression was temporally and regionally manipulated by heat induction and the Gal4/UAS system. MEASUREMENTS AND RESULTS We found that expressing pertussis toxin (PTX) in the MB by c309-Gal4 to block Go activity led to unique sleep defects as dramatic sleep increase in daytime and fragmented sleep in nighttime. We narrowed down the c309-Gal4 expressing brain regions to the MB α/β core neurons that are responsible for the Go-mediated sleep effects. Using genetic tools of neurotransmitter-specific Gal80 and RNA interference approach to suppress acetylcholine signal, we demonstrated that these MB α/β core neurons were cholinergic and sleep-promoting neurons, supporting that Go mediates an inhibitory signal. Interestingly, we found that adjacent MB α/β neurons were also cholinergic but wake-promoting neurons, in which Go signal was also required. CONCLUSION Our findings in fruit flies characterized a group of sleep-promoting neurons surrounded by a group of wake-promoting neurons. The two groups of neurons are both cholinergic and use Go inhibitory signal to regulate sleep.
Collapse
Affiliation(s)
- Wei Yi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
5
|
Zhang S, Roman G. Presynaptic inhibition of gamma lobe neurons is required for olfactory learning in Drosophila. Curr Biol 2013; 23:2519-27. [PMID: 24291093 DOI: 10.1016/j.cub.2013.10.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/09/2013] [Accepted: 10/17/2013] [Indexed: 11/25/2022]
Abstract
The loss of heterotrimeric G(o) signaling through the expression of pertussis toxin (PTX) within either the α/β or γ lobe mushroom body neurons of Drosophila results in the impaired aversive olfactory associative memory formation. Herein, we focus on the cellular effects of G(o) signaling in the γ lobe mushroom body neurons during memory formation. Expression of PTX in the γ lobes specifically inhibits G(o) activation, leading to poor olfactory learning and an increase in odor-elicited synaptic vesicle release. In the γ lobe neurons, training decreases synaptic vesicle release elicited by the unpaired conditioned stimulus -, while leaving presynaptic activation by the paired conditioned stimulus + unchanged. PTX expression in γ lobe neurons inhibits the generation of this differential synaptic activation by conditioned stimuli after negative reinforcement. Hyperpolarization of the γ lobe neurons or the inhibition of presynaptic activity through the expression of dominant negative dynamin transgenes ameliorated the memory impairment caused by PTX, indicating that the disinhibition of these neurons by PTX was responsible for the poor memory formation. The role for γ lobe inhibition, carried out by G(o) activation, indicates that an inhibitory circuit involving these neurons plays a positive role in memory acquisition. This newly uncovered requirement for inhibition of odor-elicited activity within the γ lobes is consistent with these neurons serving as comparators during learning, perhaps as part of an odor salience modification mechanism.
Collapse
Affiliation(s)
- Shixing Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Biology of Behavior Institute, University of Houston, Houston, TX 77204, USA
| | - Gregg Roman
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Biology of Behavior Institute, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
6
|
Haussmann IU, Hemani Y, Wijesekera T, Dauwalder B, Soller M. Multiple pathways mediate the sex-peptide-regulated switch in female Drosophila reproductive behaviours. Proc Biol Sci 2013; 280:20131938. [PMID: 24089336 DOI: 10.1098/rspb.2013.1938] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Male-derived sex-peptide (SP) induces profound changes in the behaviour of Drosophila females, resulting in decreased receptivity to further mating and increased egg laying. SP can mediate the switch in female reproductive behaviours via a G protein-coupled receptor, SPR, in neurons expressing fruitless, doublesex and pickpocket. Whether SPR is the sole receptor and whether SP induces the postmating switch in a single pathway has not, to our knowledge been tested. Here we report that the SP response can be induced in the absence of SPR when SP is ectopically expressed in neurons or when SP, transferred by mating, can access neurons through a leaky blood brain barrier. Membrane-tethered SP can induce oviposition via doublesex, but not fruitless and pickpocket neurons in SPR mutant females. Although pickpocket and doublesex neurons rely on G(o) signalling to reduce receptivity and induce oviposition, G(o) signalling in fruitless neurons is required only to induce oviposition, but not to reduce receptivity. Our results show that SP's action in reducing receptivity and inducing oviposition can be separated in fruitless and doublesex neurons. Hence, the SP-induced postmating switch incorporates shared, but also distinct circuitry of fruitless, doublesex and pickpocket neurons and additional receptors.
Collapse
Affiliation(s)
- Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, , Birmingham B15 2TT, UK, Department of Biology and Biochemistry, University of Houston, , Houston, TX, USA
| | | | | | | | | |
Collapse
|
7
|
Appetitive learning requires the alpha1-like octopamine receptor OAMB in the Drosophila mushroom body neurons. J Neurosci 2013; 33:1672-7. [PMID: 23345239 DOI: 10.1523/jneurosci.3042-12.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Associative learning is a fundamental form of behavioral plasticity. Octopamine plays central roles in various learning types in invertebrates; however, the target receptors and underlying mechanisms are poorly understood. Drosophila provides a powerful system to uncover the mechanisms for learning and memory. Here, we report that OAMB in the mushroom body neurons mediates the octopamine's signal for appetitive olfactory learning. The octopamine receptor OAMB has two isoforms (OAMB-K3 and OAMB-AS), differing in the third cytoplasmic loop and downstream sequence. The activation of each OAMB isoform increases intracellular Ca(2+) similar to the alpha1 adrenergic receptor, while OAMB-K3 additionally stimulates cAMP production. The oamb-null mutants showed severely impaired learning in appetitive olfactory conditioning that tests flies' capacity to learn and remember the odor associated with sugar reward. This deficit was also seen in the hypomorphic mutant with reduced OAMB expression in the mushroom bodies, the brain structure crucial for olfactory conditioning. Consistently, the oamb mutant's learning phenotype was fully rescued by conditional expression of either OAMB isoform in the mushroom body αβ and γ neurons. These results indicate that the OAMB receptor is a key molecule mediating the octopamine's signal for appetitive olfactory learning and its functional site is the mushroom body αβ and γ neurons. This study represents a critical step forward in understanding the cellular mechanism and neural circuit mediating reward learning and memory.
Collapse
|
8
|
Drosophila Memory Research through Four Eras. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Kuo SY, Tu CH, Hsu YT, Wang HD, Wen RK, Lin CT, Wu CL, Huang YT, Huang GS, Lan TH, Fu TF. A hormone receptor-based transactivator bridges different binary systems to precisely control spatial-temporal gene expression in Drosophila. PLoS One 2012; 7:e50855. [PMID: 23239992 PMCID: PMC3519826 DOI: 10.1371/journal.pone.0050855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/29/2012] [Indexed: 12/23/2022] Open
Abstract
The GAL4/UAS gene expression system is a precise means of targeted gene expression employed to study biological phenomena in Drosophila. A modified GAL4/UAS system can be conditionally regulated using a temporal and regional gene expression targeting (TARGET) system that responds to heat shock induction. However heat shock-related temperature shifts sometimes cause unexpected physiological responses that confound behavioral analyses. We describe here the construction of a drug-inducible version of this system that takes advantage of tissue-specific GAL4 driver lines to yield either RU486-activated LexA-progesterone receptor chimeras (LexPR) or β-estradiol-activated LexA-estrogen receptor chimeras (XVE). Upon induction, these chimeras bind to a LexA operator (LexAop) and activate transgene expression. Using GFP expression as a marker for induction in fly brain cells, both approaches are capable of tightly and precisely modulating transgene expression in a temporal and dosage-dependent manner. Additionally, tissue-specific GAL4 drivers resulted in target gene expression that was restricted to those specific tissues. Constitutive expression of the active PKA catalytic subunit using these systems altered the sleep pattern of flies, demonstrating that both systems can regulate transgene expression that precisely mimics regulation that was previously engineered using the GeneSwitch/UAS system. Unlike the limited number of GeneSwitch drivers, this approach allows for the usage of the multitudinous, tissue-specific GAL4 lines for studying temporal gene regulation and tissue-specific gene expression. Together, these new inducible systems provide additional, highly valuable tools available to study gene function in Drosophila.
Collapse
Affiliation(s)
- Shu-Yun Kuo
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi-Nan University, Nantou, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|