1
|
Lou L, Tu ZJ, Lahondère C, Vinauger C. Rhythms in insect olfactory systems: underlying mechanisms and outstanding questions. J Exp Biol 2024; 227:jeb244182. [PMID: 39508241 PMCID: PMC11574354 DOI: 10.1242/jeb.244182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Olfaction is a critical sensory modality for invertebrates, and it mediates a wide range of behaviors and physiological processes. Like most living organisms, insects live in rhythmic environments: the succession of nights and days is accompanied by cyclic variations in light intensity and temperature, as well as in the availability of resources and the activity of predators. Responding to olfactory cues in the proper temporal context is thus highly adaptive and allows for the efficient allocation of energy resources. Given the agricultural or epidemiological importance of some insect species, understanding olfactory rhythms is critical for the development of effective control strategies. Although the vinegar fly Drosophila melanogaster has been a classical model for the study of olfaction and circadian rhythms, recent studies focusing on non-model species have expanded our understanding of insect olfactory rhythms. Additionally, recent evidence revealing receptor co-expression by sensory neurons has brought about an ongoing paradigm shift in our understanding of insect olfaction, making it timely to review the state of our knowledge on olfactory rhythms and identify critical future directions for the field. In this Review, we discuss the multiple biological scales at which insect olfactory rhythms are being analyzed, and identify outstanding questions.
Collapse
Affiliation(s)
- Lan Lou
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Global Change Center, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Jones JD, Holder BL, Eiken KR, Vogt A, Velarde AI, Elder AJ, McEllin JA, Dissel S. Regulation of sleep by cholinergic neurons located outside the central brain in Drosophila. PLoS Biol 2023; 21:e3002012. [PMID: 36862736 PMCID: PMC10013921 DOI: 10.1371/journal.pbio.3002012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/14/2023] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
Sleep is a complex and plastic behavior regulated by multiple brain regions and influenced by numerous internal and external stimuli. Thus, to fully uncover the function(s) of sleep, cellular resolution of sleep-regulating neurons needs to be achieved. Doing so will help to unequivocally assign a role or function to a given neuron or group of neurons in sleep behavior. In the Drosophila brain, neurons projecting to the dorsal fan-shaped body (dFB) have emerged as a key sleep-regulating area. To dissect the contribution of individual dFB neurons to sleep, we undertook an intersectional Split-GAL4 genetic screen focusing on cells contained within the 23E10-GAL4 driver, the most widely used tool to manipulate dFB neurons. In this study, we demonstrate that 23E10-GAL4 expresses in neurons outside the dFB and in the fly equivalent of the spinal cord, the ventral nerve cord (VNC). Furthermore, we show that 2 VNC cholinergic neurons strongly contribute to the sleep-promoting capacity of the 23E10-GAL4 driver under baseline conditions. However, in contrast to other 23E10-GAL4 neurons, silencing these VNC cells does not block sleep homeostasis. Thus, our data demonstrate that the 23E10-GAL4 driver contains at least 2 different types of sleep-regulating neurons controlling distinct aspects of sleep behavior.
Collapse
Affiliation(s)
- Joseph D. Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Brandon L. Holder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Kiran R. Eiken
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alex Vogt
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Adriana I. Velarde
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alexandra J. Elder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jennifer A. McEllin
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Stephane Dissel
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| |
Collapse
|
3
|
Wang J, Fan JY, Zhao Z, Dissel S, Price J. DBT affects sleep in both circadian and non-circadian neurons. PLoS Genet 2022; 18:e1010035. [PMID: 35139068 PMCID: PMC8827452 DOI: 10.1371/journal.pgen.1010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep is a very important behavior observed in almost all animals. Importantly, sleep is subject to both circadian and homeostatic regulation. The circadian rhythm determines the daily alternation of the sleep-wake cycle, while homeostasis mediates the rise and dissipation of sleep pressure during the wake and sleep period. As an important kinase, dbt plays a central role in both circadian rhythms and development. We investigated the sleep patterns of several ethyl methanesulfonate-induced dbt mutants and discuss the possible reasons why different sleep phenotypes were shown in these mutants. In order to reduce DBT in all neurons in which it is expressed, CRISPR-Cas9 was used to produce flies that expressed GAL4 in frame with the dbt gene at its endogenous locus, and knock-down of DBT with this construct produced elevated sleep during the day and reduced sleep at night. Loss of sleep at night is mediated by dbt loss during the sleep/wake cycle in the adult, while the increased sleep during the day is produced by reductions in dbt during development and not by reductions in the adult. Additionally, using targeted RNA interference, we uncovered the contribution of dbt on sleep in different subsets of neurons in which dbt is normally expressed. Reduction of dbt in circadian neurons produced less sleep at night, while lower expression of dbt in noncircadian neurons produced increased sleep during the day. Importantly, independently of the types of neurons where dbt affects sleep, we demonstrate that the PER protein is involved in DBT mediated sleep regulation. Doubletime (dbt) is known as a kinase orthologous to mammalian Casein Kinase I ε (CKIε) and Casein Kinase I δ (CKIδ), which are involved in various biological processes and play an important role in regulation of circadian rhythm. In this study, we first analyzed the role of dbt on sleep in Drosophila, and then mapped its expression pattern and further neuronal mechanisms, in which DBT importantly regulates sleep through PER in both non-clock neurons and clock neurons.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jin-Yuan Fan
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- * E-mail: (ZZ); (SD); (JP)
| | - Stephane Dissel
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail: (ZZ); (SD); (JP)
| | - Jeffrey Price
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail: (ZZ); (SD); (JP)
| |
Collapse
|
4
|
Suzuki Y, Kurata Y, Sakai T. Dorsal‐lateral clock neurons modulate consolidation and maintenance of long‐term memory in
Drosophila. Genes Cells 2022; 27:266-279. [DOI: 10.1111/gtc.12923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Yuki Suzuki
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| | - Yuto Kurata
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| | - Takaomi Sakai
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| |
Collapse
|
5
|
Bedont JL, Toda H, Shi M, Park CH, Quake C, Stein C, Kolesnik A, Sehgal A. Short and long sleeping mutants reveal links between sleep and macroautophagy. eLife 2021; 10:64140. [PMID: 34085929 PMCID: PMC8177895 DOI: 10.7554/elife.64140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/20/2021] [Indexed: 02/03/2023] Open
Abstract
Sleep is a conserved and essential behavior, but its mechanistic and functional underpinnings remain poorly defined. Through unbiased genetic screening in Drosophila, we discovered a novel short-sleep mutant we named argus. Positional cloning and subsequent complementation, CRISPR/Cas9 knock-out, and RNAi studies identified Argus as a transmembrane protein that acts in adult peptidergic neurons to regulate sleep. argus mutants accumulate undigested Atg8a(+) autophagosomes, and genetic manipulations impeding autophagosome formation suppress argus sleep phenotypes, indicating that autophagosome accumulation drives argus short-sleep. Conversely, a blue cheese neurodegenerative mutant that impairs autophagosome formation was identified independently as a gain-of-sleep mutant, and targeted RNAi screens identified additional genes involved in autophagosome formation whose knockdown increases sleep. Finally, autophagosomes normally accumulate during the daytime and nighttime sleep deprivation extends this accumulation into the following morning, while daytime gaboxadol feeding promotes sleep and reduces autophagosome accumulation at nightfall. In sum, our results paradoxically demonstrate that wakefulness increases and sleep decreases autophagosome levels under unperturbed conditions, yet strong and sustained upregulation of autophagosomes decreases sleep, whereas strong and sustained downregulation of autophagosomes increases sleep. The complex relationship between sleep and autophagy suggested by our findings may have implications for pathological states including chronic sleep disorders and neurodegeneration, as well as for integration of sleep need with other homeostats, such as under conditions of starvation.
Collapse
Affiliation(s)
- Joseph L Bedont
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Hirofumi Toda
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Mi Shi
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Christine H Park
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Christine Quake
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Carly Stein
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Anna Kolesnik
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States.,Howard Hughes Medical Institute, Philadelphia, United States
| |
Collapse
|
6
|
Lee SS, Adams ME. Regulation of Drosophila Long-Term Courtship Memory by Ecdysis Triggering Hormone. Front Neurosci 2021; 15:670322. [PMID: 33967686 PMCID: PMC8100193 DOI: 10.3389/fnins.2021.670322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Endocrine state is an important determinant of learning and memory in animals. In Drosophila, rejection of male courtship overtures by mated females leads to an aversive response manifested as courtship memory. Here we report that ecdysis triggering hormone (ETH) is an obligatory enabler of long-term courtship memory (LTM). ETH deficiency suppresses LTM, whereas augmented ETH release reduces the minimum training period required for LTM induction. ETH receptor knockdown either in the mushroom body (MB) γ lobe or in octopaminergic dorsal-anterior-lateral (DAL) neurons impairs memory performance, indicating its direct action in these brain areas. Consistent with these findings, brain exposure to ETH mobilizes calcium in MB γ lobe neuropils and DAL neurons. ETH receptor (ETHR) knockdown in the corpus allatum (CA) to create juvenile hormone (JH) deficiency also suppresses LTM, as does knockdown of the JH receptor Met in the MB γ lobe, indicating a convergence of ETH and JH signaling in this region of the brain. Our findings identify endocrine-enabled neural circuit components in the brain that are critical for persistent behavioral changes resulting from aversive social experience.
Collapse
Affiliation(s)
- Sang Soo Lee
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Michael E Adams
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA, United States.,Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
8
|
Abstract
Drosophila melanogaster males reduce courtship behaviour after mating failure. In the lab, such conditioned courtship suppression, aka 'courtship conditioning', serves as a complex learning and memory assay. Interestingly, variations in the courtship conditioning assay can establish different types of memory. Here, we review research investigating the underlying cellular and molecular mechanisms that allow male flies to form memories of previous mating failures.
Collapse
Affiliation(s)
- Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Spencer Jones
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Dissel S. Drosophila as a Model to Study the Relationship Between Sleep, Plasticity, and Memory. Front Physiol 2020; 11:533. [PMID: 32547415 PMCID: PMC7270326 DOI: 10.3389/fphys.2020.00533] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
Humans spend nearly a third of their life sleeping, yet, despite decades of research the function of sleep still remains a mystery. Sleep has been linked with various biological systems and functions, including metabolism, immunity, the cardiovascular system, and cognitive functions. Importantly, sleep appears to be present throughout the animal kingdom suggesting that it must provide an evolutionary advantage. Among the many possible functions of sleep, the relationship between sleep, and cognition has received a lot of support. We have all experienced the negative cognitive effects associated with a night of sleep deprivation. These can include increased emotional reactivity, poor judgment, deficit in attention, impairment in learning and memory, and obviously increase in daytime sleepiness. Furthermore, many neurological diseases like Alzheimer’s disease often have a sleep disorder component. In some cases, the sleep disorder can exacerbate the progression of the neurological disease. Thus, it is clear that sleep plays an important role for many brain functions. In particular, sleep has been shown to play a positive role in the consolidation of long-term memory while sleep deprivation negatively impacts learning and memory. Importantly, sleep is a behavior that is adapted to an individual’s need and influenced by many external and internal stimuli. In addition to being an adaptive behavior, sleep can also modulate plasticity in the brain at the level of synaptic connections between neurons and neuronal plasticity influences sleep. Understanding how sleep is modulated by internal and external stimuli and how sleep can modulate memory and plasticity is a key question in neuroscience. In order to address this question, several animal models have been developed. Among them, the fruit fly Drosophila melanogaster with its unparalleled genetics has proved to be extremely valuable. In addition to sleep, Drosophila has been shown to be an excellent model to study many complex behaviors, including learning, and memory. This review describes our current knowledge of the relationship between sleep, plasticity, and memory using the fly model.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
10
|
Shiozaki HM, Ohta K, Kazama H. A Multi-regional Network Encoding Heading and Steering Maneuvers in Drosophila. Neuron 2020; 106:126-141.e5. [PMID: 32023429 DOI: 10.1016/j.neuron.2020.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
An internal sense of heading direction is computed from various cues, including steering maneuvers of the animal. Although neurons encoding heading and steering have been found in multiple brain regions, it is unclear whether and how they are organized into neural circuits. Here we show that, in flying Drosophila, heading and turning behaviors are encoded by population dynamics of specific cell types connecting the subregions of the central complex (CX), a brain structure implicated in navigation. Columnar neurons in the fan-shaped body (FB) of the CX exhibit circular dynamics that multiplex information about turning behavior and heading. These dynamics are coordinated with those in the ellipsoid body, another CX subregion containing a heading representation, although only FB neurons flip turn preference depending on the visual environment. Thus, the navigational system spans multiple subregions of the CX, where specific cell types show coordinated but distinct context-dependent dynamics.
Collapse
Affiliation(s)
- Hiroshi M Shiozaki
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kazumi Ohta
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
11
|
Brenman-Suttner DB, Yost RT, Frame AK, Robinson JW, Moehring AJ, Simon AF. Social behavior and aging: A fly model. GENES BRAIN AND BEHAVIOR 2019; 19:e12598. [PMID: 31286644 DOI: 10.1111/gbb.12598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.
Collapse
Affiliation(s)
- Dova B Brenman-Suttner
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Ryley T Yost
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Ariel K Frame
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - J Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Amanda J Moehring
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Anne F Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Fropf R, Zhou H, Yin JCP. The clock gene period differentially regulates sleep and memory in Drosophila. Neurobiol Learn Mem 2018; 153:2-12. [PMID: 29474956 PMCID: PMC6064670 DOI: 10.1016/j.nlm.2018.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/20/2018] [Accepted: 02/19/2018] [Indexed: 11/21/2022]
Abstract
Circadian regulation is a conserved phenomenon across the animal kingdom, and its disruption can have severe behavioral and physiological consequences. Core circadian clock proteins are likewise well conserved from Drosophila to humans. While the molecular clock interactions that regulate circadian rhythms have been extensively described, additional roles for clock genes during complex behaviors are less understood. Here, we show that mutations in the clock gene period result in differential time-of-day effects on acquisition and long-term memory of aversive olfactory conditioning. Sleep is also altered in period mutants: while its overall levels don't correlate with memory, sleep plasticity in different genotypes correlates with immediate performance after training. We further describe distinct anatomical bases for Period function by manipulating Period activity in restricted brain cells and testing the effects on specific aspects of memory and sleep. In the null mutant background, different features of sleep and memory are affected when we reintroduce a form of the period gene in glia, lateral neurons, and the fan-shaped body. Our results indicate that the role of the clock gene period may be separable in specific aspects of sleep or memory; further studies into the molecular mechanisms of these processes suggest independent neural circuits and molecular cascades that mediate connections between the distinct phenomena.
Collapse
Affiliation(s)
- Robin Fropf
- Neuroscience Training Program, 1300 University Ave., University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Hong Zhou
- Laboratory of Genetics, 3434 Genetics/Biotechnology, 425 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Jerry C P Yin
- Laboratory of Genetics, 3434 Genetics/Biotechnology, 425 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Ave., Madison, WI 53706, United States.
| |
Collapse
|
13
|
Mushroom body signaling is required for locomotor activity rhythms in Drosophila. Neurosci Res 2016; 111:25-33. [PMID: 27106579 DOI: 10.1016/j.neures.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 02/01/2023]
Abstract
In the fruitfly Drosophila melanogaster, circadian rhythms of locomotor activity under constant darkness are controlled by pacemaker neurons. To understand how behavioral rhythmicity is generated by the nervous system, it is essential to identify the output circuits from the pacemaker neurons. A recent study of Drosophila has suggested that pacemaker neurons project to mushroom body (MB) neurons, which are considered the memory center in Drosophila. MBs also regulate spontaneous locomotor activity without learning, suggesting that MB neuronal activity regulates behavioral rhythms. However, the importance of MBs in generating behavioral rhythmicity remains controversial because contradicting results have been reported as follows: (1) locomotor activity in MB-ablated flies is substantially rhythmic, but (2) activation of restricted neuronal populations including MB neurons induces arrhythmic locomotor activity. Here, we report that neurotransmission in MBs is required for behavioral rhythmicity. For adult-specific disruption of neurotransmission in MBs, we used the GAL80/GAL4/UAS ternary gene expression system in combination with the temperature-sensitive dynamin mutation shibire(ts1). Blocking of neurotransmission in GAL4-positive neurons including MB neurons induced arrhythmic locomotor activity, whereas this arrhythmicity was rescued by the MB-specific expression of GAL80. Our results indicate that MB signaling plays a key role in locomotor activity rhythms in Drosophila.
Collapse
|
14
|
Chouhan NS, Wolf R, Helfrich-Förster C, Heisenberg M. Flies remember the time of day. Curr Biol 2015; 25:1619-24. [PMID: 26028434 DOI: 10.1016/j.cub.2015.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/19/2015] [Accepted: 04/15/2015] [Indexed: 11/25/2022]
Abstract
The circadian clock enables organisms to anticipate daily environmental cycles and drives corresponding changes in behavior [1, 2]. Such endogenous oscillators also enable animals to display time-specific memory [1, 3-5]. For instance, mice and honeybees associate the location of a stimulus (like food or mate) with a certain time of day (time-place learning) [6, 7]. However, the mechanism underlying time-related learning and memory is not known. In the present study, we investigate time-specific odor learning. We use a genetically tractable animal, the fly Drosophila melanogaster. Starved flies are trained in the morning and afternoon to associate distinct odors with sucrose reward. The training is repeated the next day, and their time-dependent odor preference is tested on the third day. Our results indicate that Drosophila can express appetitive memory at the relevant time of day if the two conditioning events are separated by more than 4 hr. Flies can form time-odor associations in constant darkness (DD) as well as in a daily light-dark (LD) cycle, but not when kept under constant light (LL) conditions. Circadian clock mutants, period(01) (per(01)) and clock(AR) (clk(AR)), learned to associate sucrose reward with a certain odor but were unable to form time-odor associations. Our findings show that flies can utilize temporal information as an additional cue in appetitive learning. Time-odor learning in flies depends on a per- and clk-dependent endogenous mechanism that is independent of environmental light cues.
Collapse
Affiliation(s)
- Nitin S Chouhan
- Rudolf Virchow Center, Joseph-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Reinhard Wolf
- Rudolf Virchow Center, Joseph-Schneider-Strasse 2, 97080 Würzburg, Germany
| | | | - Martin Heisenberg
- Rudolf Virchow Center, Joseph-Schneider-Strasse 2, 97080 Würzburg, Germany.
| |
Collapse
|
15
|
Zordan MA, Sandrelli F. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say? Front Neurol 2015; 6:80. [PMID: 25941512 PMCID: PMC4403521 DOI: 10.3389/fneur.2015.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.
Collapse
Affiliation(s)
- Mauro Agostino Zordan
- Department of Biology, University of Padova, Padova, Italy
- Cognitive Neuroscience Center, University of Padova, Padova, Italy
| | | |
Collapse
|