1
|
Borzadaran FM, Rezakhani S, Kamali R, Esmaeilpour K. Maternal Separation Exhibits a Sex Dimorphism in Memory Impairments in Adolescent Rats: Acute Methylphenidate Administration as a Treatment. Birth Defects Res 2025; 117:e2441. [PMID: 39916605 PMCID: PMC11803433 DOI: 10.1002/bdr2.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION Rodents are highly dependent on maternal care after birth. Disturbing mother and pup interactions leads to detrimental alternations for the rat and the mother. Maternal separation (MS) is an accepted model for investigating disruption of mother and pup relationship. In addition to other detrimental effects, MS is a model known to induce permanent changes in learning and memory. Methylphenidate has been effective in memory enhancement in individuals suffering from memory deficits, attention-deficit hyperactive disorder (ADHD), as well as healthy subjects for better performance in exams. MATERIAL AND METHODS In this research, a 21-day separation for 3 h was implemented, and the effects of MS on spatial and passive avoidance learning, and memory were evaluated in the mid-adolescence period of rats, in both males and females. Also, a drug intervention of a high therapeutic dose of 5 mg per kg was used in a five-day period in different control and MS groups. Morris water maze was utilized for spatial learning and memory analysis, and a shuttle box paradigm was used for passive avoidance learning and memory. RESULTS Through our behavioral tests, we have shown that MS can alter spatial learning and memory in males. On the other hand, females are protected from the detrimental effects of MS on spatial learning and memory. Furthermore, passive avoidance learning was not different among groups, be it male or female. However, in the case of memory evaluation in the passive avoidance test, the male did not exhibit a significant difference in step-through latency. However, maternally separated females had poor performance in the memory phase with shorter step-through latencies. CONCLUSION Methylphenidate compensated for the deleterious effects of MS on learning and spatial memory for the male group and passive avoidance memory in the female group at the behavioral level.
Collapse
Affiliation(s)
| | - Soheila Rezakhani
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | | | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
- School of Public Health SciencesUniversity of WaterlooWaterlooOntarioCanada
| |
Collapse
|
2
|
Pulido LN, Pochapski JA, Sugi A, Esaki JY, Stresser JL, Sanchez WN, Baltazar G, Levcik D, Fuentes R, Da Cunha C. Pre-clinical evidence that methylphenidate increases motivation and/or reward preference to search for high value rewards. Behav Brain Res 2023; 437:114065. [PMID: 36037842 DOI: 10.1016/j.bbr.2022.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
Methylphenidate is a stimulant used to treat attention deficit and hyperactivity disorder (ADHD). In the last decade, illicit use of methylphenidate has increased among healthy young adults, who consume the drug under the assumption that it will improve cognitive performance. However, the studies that aimed to assess the methylphenidate effects on memory are not consistent. Here, we tested whether the effect of methylphenidate on a spatial memory task can be explained as a motivational and/or a reward effect. We tested the effects of acute and chronic i.p. administration of 0.3, 1 or 3 mg/kg of methylphenidate on motivation, learning and memory by using the 8-arm radial maze task. Adult male Wistar rats learned that 3 of the 8 arms of the maze were consistently baited with 1, 3, or 6 sucrose pellets, and the number of entries and reentries into reinforced and non-reinforced arms of the maze were scored. Neither acute nor chronic (20 days) methylphenidate treatment affected the number of entries in the non-baited arms. However, chronic, but not acute, 1-3 mg/kg methylphenidate increased the number of reentries in the higher reward arms, which suggests a motivational/rewarding effect rather than a working memory deficit. In agreement with this hypothesis, the methylphenidate treatment also decreased the approach latency to the higher reward arms, increased the approach latency to the low reward arm, and increased the time spent in the high, but not low, reward arm. These findings suggest that methylphenidate may act more as a motivational enhancer rather than a cognitive enhancer in healthy people.
Collapse
Affiliation(s)
- Laura N Pulido
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil
| | - Jose A Pochapski
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil
| | - Adam Sugi
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil
| | - Julie Y Esaki
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil
| | - Joao L Stresser
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil
| | - William N Sanchez
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil; Integrative Neurobiology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Gabriel Baltazar
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil
| | - David Levcik
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Romulo Fuentes
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Claudio Da Cunha
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil.
| |
Collapse
|
3
|
Piechal A, Jakimiuk A, Pyrzanowska J, Blecharz-Klin K, Joniec-Maciejak I, Wiercińska-Drapało A, Mirowska-Guzel D, Widy-Tyszkiewicz E. Long-term Administration of 3-Di-O-Tolylguanidine Modulates Spatial Learning and Memory in Rats and Causes Transition in the Concentration of Neurotransmitters in the Hippocampus, Prefrontal Cortex and Striatum. Neuroscience 2023; 510:129-146. [PMID: 36493909 DOI: 10.1016/j.neuroscience.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The sigma-1 and sigma-2 (σ1 and σ2) receptors are found in high concentrations in the brain, and their altered expression leads to a variety of neuropsychiatric disorders. 3-di-tolylguanidine (DTG) stimulates the activity of both of these receptors. We assessed the effects of administering DTG to adult male Sprague Dawley rats on learning and memory consolidation processes and on the levels of neurotransmitters in selected brain structures. Spatial learning and memory were evaluated in the water maze test. The DTG was administered orally at daily doses of 3 mg/kg (DTG3), 10 mg/kg (DTG10) or 30 mg/kg (DTG30) for 10 weeks before and during the water-maze test. After completion of the experiment, the concentration of monoamines and their metabolites as well as amino acids in structures involved in cognitive performance - the hippocampus, prefrontal cortex, and striatum - were determined using high performance liquid chromatography (HPLC). The DTG10 group showed an improvement in memory processes related to the "new" platform location, whereas the DTG30 group was worse at finding the "old" platform location. Since the administration of DTG led to differences in dopaminergic transmission, it was assumed to influence memory processes in this way. Changes in histidine, serine, alanine, taurine, and glutamic acid levels in selected structures of the brains of rats with memory impairment were also observed. We conclude that long-term administration of DTG modulates spatial learning and memory in rats and changes the concentrations of neurotransmitters in the hippocampus, prefrontal cortex, and striatum..
Collapse
Affiliation(s)
- Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Alicja Jakimiuk
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland.
| | - Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Alicja Wiercińska-Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Wolska 37, 01-201 Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Grochecki P, Smaga I, Wydra K, Marszalek-Grabska M, Slowik T, Kedzierska E, Listos J, Gibula-Tarlowska E, Filip M, Kotlinska JH. Impact of Mephedrone on Fear Memory in Adolescent Rats: Involvement of Matrix Metalloproteinase-9 (MMP-9) and N-Methyl-D-aspartate (NMDA) Receptor. Int J Mol Sci 2023; 24:ijms24031941. [PMID: 36768263 PMCID: PMC9915535 DOI: 10.3390/ijms24031941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Treatment of Post-Traumatic Stress Disorder (PTSD) is complicated by the presence of drug use disorder comorbidity. Here, we examine whether conditioned fear (PTSD model) modifies the rewarding effect of mephedrone and if repeated mephedrone injections have impact on trauma-related behaviors (fear sensitization, extinction, and recall of the fear reaction). We also analyzed whether these trauma-induced changes were associated with exacerbation in metalloproteinase-9 (MMP-9) and the GluN2A and GluN2B subunits of N-methyl-D-aspartate (NMDA) glutamate receptor expression in such brain structures as the hippocampus and basolateral amygdala. Male adolescent rats underwent trauma exposure (1.5 mA footshock), followed 7 days later by a conditioned place preference training with mephedrone. Next, the post-conditioning test was performed. Fear sensitization, conditioned fear, anxiety-like behavior, extinction acquisition and relapse were then assessed to evaluate behavioral changes. MMP-9, GluN2A and GluN2B were subsequently measured. Trauma-exposed rats subjected to mephedrone treatment acquired a strong place preference and exhibited impairment in fear extinction and reinstatement. Mephedrone had no effect on trauma-induced MMP-9 level in the basolateral amygdala, but decreased it in the hippocampus. GluN2B expression was decreased in the hippocampus, but increased in the basolateral amygdala of mephedrone-treated stressed rats. These data suggest that the modification of the hippocampus and basolateral amygdala due to mephedrone use can induce fear memory impairment and drug seeking behavior in adolescent male rats.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
5
|
Sperl MFJ, Panitz C, Skoluda N, Nater UM, Pizzagalli DA, Hermann C, Mueller EM. Alpha-2 Adrenoreceptor Antagonist Yohimbine Potentiates Consolidation of Conditioned Fear. Int J Neuropsychopharmacol 2022; 25:759-773. [PMID: 35748393 PMCID: PMC9515133 DOI: 10.1093/ijnp/pyac038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hyperconsolidation of aversive associations and poor extinction learning have been hypothesized to be crucial in the acquisition of pathological fear. Previous animal and human research points to the potential role of the catecholaminergic system, particularly noradrenaline and dopamine, in acquiring emotional memories. Here, we investigated in a between-participants design with 3 groups whether the noradrenergic alpha-2 adrenoreceptor antagonist yohimbine and the dopaminergic D2-receptor antagonist sulpiride modulate long-term fear conditioning and extinction in humans. METHODS Fifty-five healthy male students were recruited. The final sample consisted of n = 51 participants who were explicitly aware of the contingencies between conditioned stimuli (CS) and unconditioned stimuli after fear acquisition. The participants were then randomly assigned to 1 of the 3 groups and received either yohimbine (10 mg, n = 17), sulpiride (200 mg, n = 16), or placebo (n = 18) between fear acquisition and extinction. Recall of conditioned (non-extinguished CS+ vs CS-) and extinguished fear (extinguished CS+ vs CS-) was assessed 1 day later, and a 64-channel electroencephalogram was recorded. RESULTS The yohimbine group showed increased salivary alpha-amylase activity, confirming a successful manipulation of central noradrenergic release. Elevated fear-conditioned bradycardia and larger differential amplitudes of the N170 and late positive potential components in the event-related brain potential indicated that yohimbine treatment (compared with a placebo and sulpiride) enhanced fear recall during day 2. CONCLUSIONS These results suggest that yohimbine potentiates cardiac and central electrophysiological signatures of fear memory consolidation. They thereby elucidate the key role of noradrenaline in strengthening the consolidation of conditioned fear associations, which may be a key mechanism in the etiology of fear-related disorders.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Correspondence: Matthias F. J. Sperl, Justus Liebig University Giessen, Department of Psychology, Otto-Behaghel-Str. 10F, 35394 Giessen, Germany ()
| | - Christian Panitz
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany,Department of Psychology, Experimental Psychology and Methods, University of Leipzig, Leipzig, Germany,Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | - Nadine Skoluda
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Urs M Nater
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, & Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Christiane Hermann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany
| |
Collapse
|
6
|
Pantoni MM, Kim JL, Van Alstyne KR, Anagnostaras SG. MDMA and memory, addiction, and depression: dose-effect analysis. Psychopharmacology (Berl) 2022; 239:935-949. [PMID: 35179622 PMCID: PMC8891111 DOI: 10.1007/s00213-022-06086-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
RATIONALE ±3,4-Methylenedioxymethamphetamine (MDMA) is a recreational drug that shows substantial promise as a psychotherapeutic agent. Still, there is some concern regarding its behavioral toxicity, and its dose-effect relationship is poorly understood. We previously explored the role of dose in the cognitive effects of MDMA in a systematic review of existing literature and found no evidence in animals that MDMA impairs memory at low doses (< 3 mg/kg) but mixed results at high doses (≥ 3 mg/kg). Since this review comprised mostly of single-dose studies and an assortment of methodologies, an empirical dose-ranging study on this topic is warranted. OBJECTIVES The current study aims to evaluate the conclusion from our systematic review that 3 mg/kg may be the threshold for MDMA-induced amnesia, and to further understand the dose-effect relationship of MDMA on behavioral assays of memory, addiction, and depression. METHODS We systematically examined the effects of 0.01 to 10 mg/kg MDMA on Pavlovian fear conditioning; behavioral sensitization, conditioned place preference, and conditioned responding; and the Porsolt forced swim test in mice. RESULTS High doses of MDMA (≥ 3 mg/kg) produced amnesia of fear conditioning memory, some evidence of an addictive potential, and antidepressant effects, while low doses of MDMA (≤ 1 mg/kg) had no effect on these behaviors. CONCLUSIONS The present dose-ranging study provides further evidence that 3 mg/kg is the threshold for MDMA-induced amnesia. These findings, in addition to our systematic review, demonstrate that careful selection of MDMA dose is critical. High doses (≥ 3 mg/kg) should likely be avoided due to evidence that they can produce amnesia and addiction. Conversely, there is little evidence to suggest that low doses, which are usually administered in clinical studies (approximately 1-2 mg/kg), will lead to these same adverse effects. Ultra-low doses (< 1 mg/kg) are likely even safer and should be investigated for therapeutic effects in future studies.
Collapse
Affiliation(s)
- Madeline M. Pantoni
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA ,grid.266102.10000 0001 2297 6811Translational Psychedelic Research Program, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, CA San Francisco, USA
| | - Jinah L. Kim
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA
| | - Kaitlin R. Van Alstyne
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA
| | - Stephan G. Anagnostaras
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Program in Neurosciences, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
7
|
Lages YV, Maisonnette SS, Rosseti FP, Galvão BO, Landeira-Fernandez J. Haloperidol and methylphenidate alter motor behavior and responses to conditioned fear of Carioca Low-conditioned Freezing rats. Pharmacol Biochem Behav 2021; 211:173296. [PMID: 34752797 DOI: 10.1016/j.pbb.2021.173296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
Animal models are important tools for studying neuropsychological disorders. Considering their limitations, a more extensive translational research must encompass data that are generated from several models. Therefore, a comprehensive characterization of these models is needed in terms of behavior and neurophysiology. The present study evaluated the behavioral responses of Carioca Low-conditioned Freezing (CLF) rats to haloperidol and methylphenidate. The CLF breeding line is characterized by low freezing defensive responses to contextual cues that are associated with aversive stimuli. CLF rats exhibited a delayed response to haloperidol at lower doses, needing higher doses to reach similar levels of catatonia as control randomly bred animals. Methylphenidate increased freezing responses to conditioned fear and induced motor effects in the open field. Thus, CLF rats differ from controls in their responses to both haloperidol and methylphenidate. Because of the dopamine-related molecular targets of these drugs, we hypothesize that dopaminergic alterations related to those of animal models of hyperactivity and attention disorders might underlie the observed phenotypes of the CLF line of rats.
Collapse
Affiliation(s)
- Yury V Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia S Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia P Rosseti
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno O Galvão
- Department of Psychology, Santa Úrsula University, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Oliveira-Campos D, Reis HS, Libarino-Santos M, Cata-Preta EG, Dos Santos TB, Dos Anjos-Santos A, Oliveira TS, de Brito ACL, Patti CL, Marinho EAV, de Oliveira Lima AJ. The influence of early exposure to methylphenidate on addiction-related behaviors in mice. Pharmacol Biochem Behav 2021; 206:173208. [PMID: 34022293 DOI: 10.1016/j.pbb.2021.173208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 04/22/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Methylphenidate (MET) has a putative cognitive enhancer effect that has led adolescents and young adults to increase and indiscriminate its use aiming to ameliorate their productivity. However, the impacts of MET on addiction-related behaviors, emotional levels, and cognition are still not fully understood. To investigate the influence of chronic treatment with MET during adolescence on addiction-like behaviors, memory, and anxiety in adult mice. Thirty-day-old female mice received i.p. 10 mg/kg MET or Veh injections for 10 consecutive days. Forty days after the treatment (mice were 70-days-old), animals were submitted to the behavioral evaluation under the effects of MET, which included: MET-induced conditioned place preference (CPP), behavioral sensitization, and plus-maze discriminative avoidance task. Pre-exposure to MET during adolescence promoted an early expression of CPP and also facilitated the development of MET-induced behavioral sensitization during adulthood. These addictive-like behaviors were accompanied by anxiogenic effects of MET but not by any memory-enhancing effect. We demonstrated that exposure to MET during adolescence can increase the vulnerability to addiction-like behaviors and anxiety during adulthood. Our results reinforce the necessity of a more efficient system to control MET indiscriminate use, thus avoiding its potential tardive addictive effects.
Collapse
Affiliation(s)
| | - Henrique Sousa Reis
- Department of Health Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | - Matheus Libarino-Santos
- Department of Health Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | | | | | - Alexia Dos Anjos-Santos
- Department of Health Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | - Thaynara Silva Oliveira
- Department of Health Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | | | - Camilla L Patti
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | |
Collapse
|
9
|
Altered Phosphorylation of the Proteasome Subunit Rpt6 Has Minimal Impact on Synaptic Plasticity and Learning. eNeuro 2021; 8:ENEURO.0073-20.2021. [PMID: 33658307 PMCID: PMC8116113 DOI: 10.1523/eneuro.0073-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Dynamic control of protein degradation via the ubiquitin proteasome system (UPS) is thought to play a crucial role in neuronal function and synaptic plasticity. The proteasome subunit Rpt6, an AAA ATPase subunit of the 19S regulatory particle (RP), has emerged as an important site for regulation of 26S proteasome function in neurons. Phosphorylation of Rpt6 on serine 120 (S120) can stimulate the catalytic rate of substrate degradation by the 26S proteasome and this site is targeted by the plasticity-related kinase Ca2+/calmodulin-dependent kinase II (CaMKII), making it an attractive candidate for regulation of proteasome function in neurons. Several in vitro studies have shown that altered Rpt6 S120 phosphorylation can affect the structure and function of synapses. To evaluate the importance of Rpt6 S120 phosphorylation in vivo, we created two mouse models which feature mutations at S120 that block or mimic phosphorylation at this site. We find that peptidase and ATPase activities are upregulated in the phospho-mimetic mutant and downregulated in the phospho-dead mutant [S120 mutated to aspartic acid (S120D) or alanine (S120A), respectively]. Surprisingly, these mutations had no effect on basal synaptic transmission, long-term potentiation (LTP), and dendritic spine dynamics and density in the hippocampus. Furthermore, these mutants displayed no deficits in cued and contextual fear memory. Thus, in a mouse model that blocks or mimics phosphorylation at this site, either compensatory mechanisms negate these effects, or small variations in proteasome activity are not enough to induce significant changes in synaptic structure, plasticity, or behavior.
Collapse
|
10
|
Olsen D, Wellner N, Kaas M, de Jong IEM, Sotty F, Didriksen M, Glerup S, Nykjaer A. Altered dopaminergic firing pattern and novelty response underlie ADHD-like behavior of SorCS2-deficient mice. Transl Psychiatry 2021; 11:74. [PMID: 33495438 PMCID: PMC7835366 DOI: 10.1038/s41398-021-01199-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most frequently diagnosed neurodevelopmental disorder worldwide. Affected individuals present with hyperactivity, inattention, and cognitive deficits and display a characteristic paradoxical response to drugs affecting the dopaminergic system. However, the underlying pathophysiology of ADHD and how this relates to dopaminergic transmission remains to be fully understood. Sorcs2-/- mice uniquely recapitulate symptoms reminiscent of ADHD in humans. Here, we show that lack of SorCS2 in mice results in lower sucrose intake, indicating general reward deficits. Using in-vivo recordings, we further find that dopaminergic transmission in the ventral tegmental area (VTA) is shifted towards a more regular firing pattern with marked reductions in the relative occurrence of irregular firing in Sorcs2-/- mice. This was paralleled by abnormal acute behavioral responses to dopamine receptor agonists, suggesting fundamental differences in dopaminergic circuits and indicating a perturbation in the balance between the activities of the postsynaptic dopamine receptor DRD1 and the presynaptic inhibitory autoreceptor DRD2. Interestingly, the hyperactivity and drug response of Sorcs2-/- mice were markedly affected by novelty. Taken together, our findings show how loss of a candidate ADHD-risk gene has marked effects on dopaminergic circuit function and the behavioral response to the environment.
Collapse
Affiliation(s)
- Ditte Olsen
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark ,grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark ,grid.7048.b0000 0001 1956 2722Present Address: Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Niels Wellner
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark ,grid.7048.b0000 0001 1956 2722Danish Research Institute of Translational Neuroscience DANDRITE Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Mathias Kaas
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Inge E. M. de Jong
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Florence Sotty
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Michael Didriksen
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark.
| | - Anders Nykjaer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,Danish Research Institute of Translational Neuroscience DANDRITE Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,The Danish National Research Foundation Center PROMEMO, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,Department of Neurosurgery, Skejby University Hospital, Palle Juul-Jensens Blvd. 99, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
11
|
Rewarding information presented during reactivation attenuates fear memory: Methylphenidate and fear memory updating. Neuropharmacology 2020; 171:108107. [DOI: 10.1016/j.neuropharm.2020.108107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
|
12
|
Abstract
Animal studies have demonstrated that catecholamines regulate several aspects of fear conditioning. In humans, however, pharmacological manipulations of the catecholaminergic system have been scarce, and their primary focus has been to interfering with catecholaminergic activity after fear acquisition or expression had taken place, using L-Dopa, primarily, as catecholaminergic precursor. Here, we sought to determine if putative increases in presynaptic dopamine and norepinephrine by tyrosine administered before conditioning could affect fear expression. Electrodermal activity (EDA) of 46 healthy participants (24 placebo, 22 tyrosine) was measured in an instructed fear task. Results showed that tyrosine abolished fear expression compared to placebo. Importantly, tyrosine did not affect EDA responses to the aversive stimulus (UCS) or alter participants’ mood. Therefore, the effect of tyrosine on fear expression cannot be attributed to these factors. Taken together, these findings provide evidence that the catecholaminergic system influences fear expression in humans.
Collapse
|
13
|
Rohde PD, Jensen IR, Sarup PM, Ørsted M, Demontis D, Sørensen P, Kristensen TN. Genetic Signatures of Drug Response Variability in Drosophila melanogaster. Genetics 2019; 213:633-650. [PMID: 31455722 PMCID: PMC6781897 DOI: 10.1534/genetics.119.302381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022] Open
Abstract
Knowledge of the genetic basis underlying variation in response to environmental exposures or treatments is important in many research areas. For example, knowing the set of causal genetic variants for drug responses could revolutionize personalized medicine. We used Drosophila melanogaster to investigate the genetic signature underlying behavioral variability in response to methylphenidate (MPH), a drug used in the treatment of attention-deficit/hyperactivity disorder. We exposed a wild-type D. melanogaster population to MPH and a control treatment, and observed an increase in locomotor activity in MPH-exposed individuals. Whole-genome transcriptomic analyses revealed that the behavioral response to MPH was associated with abundant gene expression alterations. To confirm these patterns in a different genetic background and to further advance knowledge on the genetic signature of drug response variability, we used a system of inbred lines, the Drosophila Genetic Reference Panel (DGRP). Based on the DGRP, we showed that the behavioral response to MPH was strongly genotype-dependent. Using an integrative genomic approach, we incorporated known gene interactions into the genomic analyses of the DGRP, and identified putative candidate genes for variability in drug response. We successfully validated 71% of the investigated candidate genes by gene expression knockdown. Furthermore, we showed that MPH has cross-generational behavioral and transcriptomic effects. Our findings establish a foundation for understanding the genetic mechanisms driving genotype-specific responses to medical treatment, and highlight the opportunities that integrative genomic approaches have in optimizing medical treatment of complex diseases.
Collapse
Affiliation(s)
- Palle Duun Rohde
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus C, Denmark
- Center for Integrative Sequencing, Aarhus University, 8000, Denmark
| | - Iben Ravnborg Jensen
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
| | - Pernille Merete Sarup
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Michael Ørsted
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus C, Denmark
- Center for Integrative Sequencing, Aarhus University, 8000, Denmark
- Department of Biomedicine, Aarhus University, 8000, Denmark
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Torsten Nygaard Kristensen
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, 8000, Denmark
| |
Collapse
|
14
|
Pantoni MM, Carmack SA, Hammam L, Anagnostaras SG. Dopamine and norepinephrine transporter inhibition for long-term fear memory enhancement. Behav Brain Res 2019; 378:112266. [PMID: 31580915 DOI: 10.1016/j.bbr.2019.112266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Psychostimulants are highly effective cognitive-enhancing therapeutics yet have a significant potential for abuse and addiction. While psychostimulants likely exert their rewarding and addictive properties through dopamine transporter (DAT) inhibition, the mechanisms of their procognitive effects are less certain. By one prevalent view, psychostimulants exert their procognitive effects exclusively through norepinephrine transporter (NET) inhibition, however increasing evidence suggests that DAT also plays a critical role in their cognitive-enhancing properties, including long-term memory enhancement. The present experiments test the hypothesis that combined strong NET and weak DAT inhibition will mimic the fear memory-enhancing but not the addiction-related effects of psychostimulants in mice. We examined the effects of the high affinity NET inhibitors atomoxetine or nisoxetine and the low affinity DAT inhibitor bupropion, either alone or in combination, on short- and long-term memory of Pavlovian fear conditioning. We also examined the addiction-related effects of combined strong NET and weak DAT inhibition using conditioned place preference and a locomotor activity test. While atomoxetine or nisoxetine alone enhanced short-term fear memory, the addition of bupropion was required to significantly enhance long-term fear memory. Additionally, combined atomoxetine and bupropion did not produce substantial motor stimulation or place preference. These findings suggest that combining strong NET and weak DAT inhibition could lead to the development of a highly effective cognitive enhancer that lacks the potential for addiction.
Collapse
Affiliation(s)
- Madeline M Pantoni
- Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA.
| | - Stephanie A Carmack
- Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA
| | - Leen Hammam
- Division of Biology, University of California San Diego, La Jolla, CA 92093-0109, USA
| | - Stephan G Anagnostaras
- Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA; Program in Neurosciences, University of California San Diego, La Jolla, CA 92093-0109, USA
| |
Collapse
|
15
|
Pantoni MM, Anagnostaras SG. Cognitive Effects of MDMA in Laboratory Animals: A Systematic Review Focusing on Dose. Pharmacol Rev 2019; 71:413-449. [PMID: 31249067 PMCID: PMC6607799 DOI: 10.1124/pr.118.017087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
±3,4-Methylenedioxymethamphetamine (MDMA) is a synthetic, psychoactive drug that is primarily used recreationally but also may have some therapeutic value. At low doses, MDMA produces feelings of relaxation, empathy, emotional closeness, and euphoria. Higher doses can produce unpleasant psychostimulant- and hallucinogen-like adverse effects and therefore are usually not taken intentionally. There is considerable evidence that MDMA produces neurotoxicity and cognitive deficits at high doses; however, these findings may not generalize to typical recreational or therapeutic use of low-dose MDMA. Here, we systematically review 25 years of research on the cognitive effects of MDMA in animals, with a critical focus on dose. We found no evidence that doses of less than 3 mg/kg MDMA-the dose range that users typically take-produce cognitive deficits in animals. Doses of 3 mg/kg or greater, which were administered most often and frequently ranged from 5 to 20 times greater than an average dose, also did not produce cognitive deficits in a slight majority of experiments. Overall, the preclinical evidence of MDMA-induced cognitive deficits is weak and, if anything, may be the result of unrealistically high dosing. While factors associated with recreational use such as polydrug use, adulterants, hyperthermia, and hyponatremia can increase the potential for neurotoxicity, the short-term, infrequent, therapeutic use of ultra low-dose MDMA is unlikely to pose significant cognitive risks. Future studies must examine any adverse cognitive effects of MDMA using clinically relevant doses to reliably assess its potential as a psychotherapeutic.
Collapse
Affiliation(s)
- Madeline M Pantoni
- Molecular Cognition Laboratory, Department of Psychology (M.M.P., S.G.A.) and Program in Neurosciences (S.G.A.), University of California San Diego, La Jolla, California
| | - Stephan G Anagnostaras
- Molecular Cognition Laboratory, Department of Psychology (M.M.P., S.G.A.) and Program in Neurosciences (S.G.A.), University of California San Diego, La Jolla, California
| |
Collapse
|
16
|
PharmGKB summary: methylphenidate pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics 2019; 29:136-154. [PMID: 30950912 DOI: 10.1097/fpc.0000000000000376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Robins MT, Blaine AT, Ha JE, Brewster AL, van Rijn RM. Repeated Use of the Psychoactive Substance Ethylphenidate Impacts Neurochemistry and Reward Learning in Adolescent Male and Female Mice. Front Neurosci 2019; 13:124. [PMID: 30837836 PMCID: PMC6389692 DOI: 10.3389/fnins.2019.00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/04/2019] [Indexed: 02/03/2023] Open
Abstract
Schedule II prescription psychostimulants, such as methylphenidate (MPH), can be misused as nootropic drugs, i.e., drugs that enhance focus and cognition. When users are unable to obtain these prescribed medications, they may seek out novel psychoactive substances (NPSs) that are not yet scheduled. An example of a NPS reportedly being abused is ethylphenidate (EPH), a close analog of MPH but with a higher preference for the dopamine transporter compared with the norepinephrine transporter. Therefore, based upon this pharmacological profile and user self-reports, we hypothesized that repeated EPH exposure in adolescent mice may be rewarding and alter cognition. Here, we report that repeated exposure to 15 mg/kg EPH decreased spatial cognitive performance as assessed by the Barnes maze spatial learning task in adolescent male C57Bl/6 mice; however, male mice did not show alterations in the expression of mature BDNF - a protein associated with increased cognitive function - in key brain regions. Acute EPH exposure induced hyperlocomotion at a high dose (15 mg/kg, i.p.), but not a low dose (5 mg/kg, i.p.). Interestingly, mice exhibited significant conditioned place preference at the low EPH dose, suggesting that even non-stimulating doses of EPH are rewarding. In both males and females, repeated EPH exposure increased expression of deltaFosB - a marker associated with increased risk of drug abuse - in the dorsal striatum, nucleus accumbens, and prefrontal cortex. Overall, our results suggest that repeated EPH use in adolescence is psychostimulatory, rewarding, increases crucial brain markers of reward-related behaviors, and may negatively impact spatial performance.
Collapse
Affiliation(s)
- Meridith T Robins
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Arryn T Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.,Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Jiwon E Ha
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Amy L Brewster
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.,Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, United States.,Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.,Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
18
|
Jager A, Kanters D, Geers F, Buitelaar JK, Kozicz T, Glennon JC. Methylphenidate Dose-Dependently Affects Aggression and Improves Fear Extinction and Anxiety in BALB/cJ Mice. Front Psychiatry 2019; 10:768. [PMID: 31708820 PMCID: PMC6823535 DOI: 10.3389/fpsyt.2019.00768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Overt aggression, increased anxiety, and dysfunctional fear processing are often observed in individuals with conduct disorder (CD) and attention-deficit hyperactivity disorder (ADHD). Methylphenidate (MPH), a psychostimulant increasing dopamine and noradrenaline tone, is effective in reducing aggression in both CD and ADHD individuals. However, it is unclear to which extent these effects of MPH are dose dependent. Here, the effects of acute intraperitoneal MPH (3 and 10 mg/kg) on aggression, anxiety, social behavior, and fear extinction were investigated in BALB/cJ mice. Previous studies in BALB/cJ mice have revealed high levels of aggression and anxiety that are associated with reduced top-down cortical control. Administration of 3 mg/kg MPH prolonged the attack latency and prevented escalation of aggression over time compared to vehicle-treated mice, while 10 mg/kg MPH increased number of bites and attacks. In addition, 3 mg/kg MPH decreased social interaction slightly. A strong anxiolytic effect was found after administration of both the 3 and 10 mg/kg doses in the elevated plus maze and the open-field test. In addition, while vehicle-treated BALB/cJ animals showed intact freezing, both doses of MPH decreased freezing to the unconditioned stimulus in a fear-conditioning paradigm. A long-lasting effect on fear extinction was visible after treatment with the 10 mg/kg dose. The data support a role for MPH in the regulation of anxiety, fear processing, and aggression in BALB/cJ mice, with the latter effect in a dose-dependent manner. The findings provide a further context for examining the effects of MPH in clinical disorders such as ADHD and CD.
Collapse
Affiliation(s)
- Amanda Jager
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Netherlands
| | - Doranda Kanters
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Netherlands
| | - Femke Geers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Netherlands.,Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
19
|
Hutten NRPW, Kuypers KPC, van Wel JHP, Theunissen EL, Toennes SW, Verkes RJ, Ramaekers JG. A single dose of cocaine enhances prospective memory performance. J Psychopharmacol 2018; 32:883-892. [PMID: 29947572 PMCID: PMC6058404 DOI: 10.1177/0269881118783299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Prospective memory is the ability to recall intended actions or events at the right time or in the right context. While cannabis is known to impair prospective memory, the acute effect of cocaine is unknown. In addition, it is not clear whether changes in prospective memory represent specific alterations in memory processing or result from more general effects on cognition that spread across multiple domains such as arousal and attention. AIMS The main objective of the study was, therefore, to determine whether drug-induced changes in prospective memory are memory specific or associated with more general drug-induced changes in attention and arousal. METHODS A placebo-controlled, three-way, cross-over study including 15 regular poly-drug users was set up to test the influence of oral cocaine (300 mg) and vaporised cannabis (300+150 'booster' µg/kg bodyweight) on an event-based prospective memory task. Attentional performance was assessed using a divided attention task and subjective arousal was assessed with the Profile of Mood States questionnaire. RESULTS Results showed that cocaine enhanced prospective memory, attention and arousal. Mean performance of prospective memory and attention, as well as levels of arousal were lowest during treatment with cannabis as compared with placebo and cocaine as evinced by a significantly increased trend across treatment conditions. Prospective memory performance was only weakly positively associated to measures of attention and arousal. CONCLUSION Together, these results indicate that cocaine enhancement of prospective memory performance cannot be fully explained by parallel changes in arousal and attention levels, and is likely to represent a direct change in the neural network underlying prospective memory.
Collapse
Affiliation(s)
- Nadia RPW Hutten
- Department of Neuropsychology and Psychopharmacology, Maastricht University, The Netherlands,Nadia RPW Hutten, Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht 6200MD, The Netherlands.
| | - Kim PC Kuypers
- Department of Neuropsychology and Psychopharmacology, Maastricht University, The Netherlands
| | - Janelle HP van Wel
- Department of Neuropsychology and Psychopharmacology, Maastricht University, The Netherlands
| | - Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Maastricht University, The Netherlands
| | - Stefan W Toennes
- Department of Forensic Toxicology, Goethe University of Frankfurt, Germany
| | - Robbert-Jan Verkes
- Department of Psychiatry, Radboud University Nijmegen Medical Centre, The Netherlands,Cognition and Behaviour, Donders Institute for Brain, Radboud University Nijmegen, The Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Maastricht University, The Netherlands
| |
Collapse
|
20
|
Menezes CEDS, McIntyre RS, Chaves Filho AJM, Vasconcelos SMM, de Sousa FCF, Quevedo J, Hyphantis TN, Carvalho AF, Macêdo D. The effect of paroxetine, venlafaxine and bupropion administration alone and combined on spatial and aversive memory performance in rats. Pharmacol Rep 2018; 70:1173-1179. [PMID: 30321807 DOI: 10.1016/j.pharep.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/07/2018] [Accepted: 07/20/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND The use of antidepressants in combination is common practice following non-response to single antidepressant agents. Nevertheless, the scientific literature lacks preclinical studies regarding the combined administration of antidepressants across multiple behavioral measures including, but not limited to, cognition. Hence, we aimed to determine the effects of paroxetine (PAR), venlafaxine (VEN) and bupropion (BUP) alone or combined (PAR+BUP or VEN+BUP) on spatial and affective memory tasks to advance the knowledge about the combined use of antidepressants in cognition. METHODS Adult rats received daily injections (15 days) of PAR (20mg/kg, ip), VEN (20mg/kg, ip), BUP (20mg/kg, ip) alone or combined and were submitted to behavioral measures of spatial memory (radial-arm maze - RAM), aversive memory (passive avoidance - PA), open field (OF) and forced swimming (FST) tests. RESULTS In the RAM, VEN or VEN+BUP impaired learning, while short-term memory (STM) was impaired by PAR, BUP and their combination. VEN+BUP improved STM as compared to BUP. PAR impaired long-term memory (LTM). VEN or BUP alone impaired STM and long-term fear memory, whilst PAR+BUP or VEN+BUP did not induce significant alterations. CONCLUSIONS The effects of VEN, PAR or BUP alone and in combination on measures of memory are variable and vary as a function of the pharmacodynamics profile of each drug as well as the specific memory paradigm.
Collapse
Affiliation(s)
| | - Roger S McIntyre
- Department of Psychiatry, Department of Pharmacology and Toxicology, Mood Disorders Psychopharmacology Unit, University of Toronto, Toronto, ON, Canada
| | | | | | | | - João Quevedo
- Laboratory of Neurosciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | | | - André F Carvalho
- Department of Psychiatry, Department of Pharmacology and Toxicology, Mood Disorders Psychopharmacology Unit, University of Toronto, Toronto, ON, Canada; Centre for Addiction & Mental Health (CAMH), University of Toronto, Toronto, ON, Canada
| | - Danielle Macêdo
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil.
| |
Collapse
|
21
|
Giustino TF, Maren S. Noradrenergic Modulation of Fear Conditioning and Extinction. Front Behav Neurosci 2018; 12:43. [PMID: 29593511 PMCID: PMC5859179 DOI: 10.3389/fnbeh.2018.00043] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning) the locus coeruleus (LC) promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC) might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC) which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP). Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
22
|
Fole A, Miguéns M, Morales L, González-Martín C, Ambrosio E, Del Olmo N. Lewis and Fischer 344 rats as a model for genetic differences in spatial learning and memory: Cocaine effects. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:49-57. [PMID: 28263897 DOI: 10.1016/j.pnpbp.2017.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 01/31/2023]
Abstract
Lewis (LEW) and Fischer 344 (F344) rats are considered a model of genetic vulnerability to drug addiction. We previously showed important differences in spatial learning and memory between them, but in contrast with previous experiments demonstrating cocaine-induced enhanced learning in Morris water maze (MWM) highly demanding tasks, the eight-arm radial maze (RAM) performance was not modified either in LEW or F344 rats after chronic cocaine treatment. In the present work, chronically cocaine-treated LEW and F344 adult rats have been evaluated in learning and memory performance using the Y-maze, two RAM protocols that differ in difficulty, and a reversal protocol that tests cognitive flexibility. After one of the RAM protocols, we quantified dendritic spine density in hippocampal CA1 neurons and compared it to animals treated with cocaine but not submitted to RAM. LEW cocaine treated rats showed a better performance in the Y maze than their saline counterparts, an effect that was not evident in the F344 strain. F344 rats significantly took more time to learn the RAM task and made a greater number of errors than LEW animals in both protocols tested, whereas cocaine treatment induced deleterious effects in learning and memory in the highly difficult protocol. Moreover, hippocampal spine density was cocaine-modulated in LEW animals whereas no effects were found in F344 rats. We propose that differences in addictive-like behavior between LEW and F344 rats could be related to differences in hippocampal learning and memory processes that could be on the basis of individual vulnerability to cocaine addiction.
Collapse
Affiliation(s)
- Alberto Fole
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Miguel Miguéns
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Spain
| | - Lidia Morales
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Carmen González-Martín
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Spain
| | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain.
| |
Collapse
|
23
|
Extinction memory is facilitated by methylphenidate and regulated by dopamine and noradrenaline receptors. Behav Brain Res 2017; 326:303-306. [DOI: 10.1016/j.bbr.2017.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/16/2023]
|
24
|
Harrison EM, Carmack SA, Block CL, Sun J, Anagnostaras SG, Gorman MR. Circadian waveform bifurcation, but not phase-shifting, leaves cued fear memory intact. Physiol Behav 2017; 169:106-113. [DOI: 10.1016/j.physbeh.2016.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022]
|
25
|
Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci U S A 2016; 113:14835-14840. [PMID: 27930324 DOI: 10.1073/pnas.1616515114] [Citation(s) in RCA: 409] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory.
Collapse
|
26
|
Gómez MC, Redolat R, Carrasco MC. Differential effects of bupropion on acquisition and performance of an active avoidance task in male mice. Behav Processes 2015; 124:32-7. [PMID: 26688488 DOI: 10.1016/j.beproc.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 01/01/2023]
Abstract
Bupropion is an antidepressant drug that is known to aid smoking cessation, although little experimental evidence exists about its actions on active avoidance learning tasks. Our aim was to evaluate the effects of this drug on two-way active avoidance conditioning. In this study, NMRI mice received bupropion (10, 20 and 40mg/kg) or saline before a daily training session (learning phase, days 1-4) in the active avoidance task. Performance was evaluated on the fifth day (retention phase): in each bupropion-treated group half of the mice continued with the same dose of bupropion, and the other half received saline. Among the vehicle-treated mice, different sub-groups were challenged with different doses of bupropion. Results indicated that mice treated with 10 and 20mg/kg bupropion exhibited more number of avoidances during acquisition. The response latency confirmed this learning improvement, since this parameter decreased after bupropion administration. No differences between groups were observed in the retention phase. In conclusion, our data show that bupropion influences the learning process during active avoidance conditioning, suggesting that this drug can improve the control of emotional responses.
Collapse
Affiliation(s)
- M C Gómez
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Blasco Ibañez, 21, Valencia 46010, Spain.
| | - R Redolat
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Blasco Ibañez, 21, Valencia 46010, Spain.
| | - M C Carrasco
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Blasco Ibañez, 21, Valencia 46010, Spain.
| |
Collapse
|
27
|
Yang MT, Lu DH, Chen JC, Fu WM. Inhibition of hyperactivity and impulsivity by carbonic anhydrase inhibitors in spontaneously hypertensive rats, an animal model of ADHD. Psychopharmacology (Berl) 2015; 232:3763-72. [PMID: 26228972 DOI: 10.1007/s00213-015-4036-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/20/2015] [Indexed: 01/07/2023]
Abstract
RATIONALE Dysregulation of noradrenergic and dopaminergic systems is involved in the pathology of attention deficit hyperactivity disorder (ADHD). Carbonic anhydrase (CA) has been reported to affect monoamine transmission in the central nervous system. OBJECTIVES The aim of this study is to investigate the effect of CA inhibitors on the hyperactivity and impulsivity of the spontaneously hypertensive rat (SHR), which is currently the best-validated animal model of ADHD. METHODS SHRs and Wistar Kyoto rats at 6 to 8 weeks of age were pretreated with intraperitoneal injections of acetazolamide and methazolamide, both carbonic anhydrase inhibitors, before the behavior tests. The open-field locomotion test and the electro-foot shock aversive water drinking test were then applied to quantify their hyperactivity and impulsivity, respectively. The Morris water maze test, on the other hand, monitored their spatial learning. RESULTS Acetazolamide and methazolamide significantly inhibited the hyperactivity of SHRs but had no effects in Wistar Kyoto rats. Acetazolamide also inhibited the impulsivity of SHRs. Low doses of acetazolamide had the greater inhibitory effects on the hyperactivity and impulsivity, but did not impair the spatial learning of SHRs. CONCLUSIONS This is the first study to show that carbonic anhydrase inhibitors can strain-specifically antagonize the hyperactivity and impulsivity of SHRs. Under a low dose of acetazolamide, there was no cognition impairment in SHRs. Carbonic anhydrase inhibitors may be the novel drugs for treatment for patients with ADHD.
Collapse
Affiliation(s)
- Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, No. 21, Section 2, Nanya South Road, Banciao District, New Taipei City, 220, Taiwan
| | | | | | | |
Collapse
|
28
|
Ebstein RP, Monakhov MV, Lu Y, Jiang Y, Lai PS, Chew SH. Association between the dopamine D4 receptor gene exon III variable number of tandem repeats and political attitudes in female Han Chinese. Proc Biol Sci 2015; 282:20151360. [PMID: 26246555 DOI: 10.1098/rspb.2015.1360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal-conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified.
Collapse
Affiliation(s)
- Richard P Ebstein
- Department of Psychology, National University of Singapore, AS4, 1 Arts Link, 117570, Singapore
| | - Mikhail V Monakhov
- Department of Psychology, National University of Singapore, AS4, 1 Arts Link, 117570, Singapore
| | - Yunfeng Lu
- Department of Economics, National University of Singapore, AS2, 1 Arts Link, 117570, Singapore
| | - Yushi Jiang
- Department of Economics, National University of Singapore, AS2, 1 Arts Link, 117570, Singapore
| | - Poh San Lai
- Department of Paediatrics, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore
| | - Soo Hong Chew
- Department of Economics, National University of Singapore, AS2, 1 Arts Link, 117570, Singapore
| |
Collapse
|
29
|
Kim KH, Jung HB, Choi DK, Park GH, Cho ST. Does Methylphenidate Affect Cystometric Parameters in Spontaneously Hypertensive Rats? Int Neurourol J 2015; 19:67-73. [PMID: 26126435 PMCID: PMC4490317 DOI: 10.5213/inj.2015.19.2.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 05/31/2015] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Methylphenidate (MPH) is one of the most commonly prescribed psychostimulants for attention deficit hyperactivity disorder (ADHD). However, there is limited research on its effects on lower urinary tract function. This study investigated changes in cystometric parameters after intragastric administration of MPH in conscious spontaneously hypertensive rats (SHRs), an animal model of ADHD. METHODS Fourteen- to 16-week-old male SHRs (n=10), weighing between 280 and 315 g, were used. Three micturition cycles were recorded before administering MPH. One hour after each intragastric MPH injection, three cycles of cystometrogram were obtained in the awake condition. Various cystometric parameters were evaluated, including basal pressure (BP), maximal pressure (MP), threshold pressure (TP), bladder capacity (BC), micturition volume (MV), micturition interval (MI), and residual volume (RV). The data were analyzed using paired Student t-tests. RESULTS Five SHRs were each administered a dose of 3-mg/kg MPH, and the other five received a dose of 6-mg/kg MPH. BP and MP increased significantly in the rats that received the 3-mg/kg MPH injection, but not in those that received the 6-mg/kg injection. BC, MV, and MI significantly increased in the rats that received the 6-mg/kg MPH injection, but not in those that received the 3-mg/kg injection. There were no significant changes in TP after either injection. CONCLUSIONS Significant increases in BC, MV, and MI after the 6-mg/kg MPH injection suggest that the peripheral and the central nervous systems may play important roles in bladder function in those receiving MPH for ADHD.
Collapse
Affiliation(s)
- Khae Hawn Kim
- Department of Urology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Ha Bum Jung
- Department of Urology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Don Kyoung Choi
- Department of Urology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Geun Ho Park
- Department of Pharmacology, Inha University College of Medicine, Incheon, Korea
| | - Sung Tae Cho
- Department of Urology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Haleem DJ, Inam QUA, Haleem MA. Effects of clinically relevant doses of methyphenidate on spatial memory, behavioral sensitization and open field habituation: A time related study. Behav Brain Res 2015; 281:208-14. [DOI: 10.1016/j.bbr.2014.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/09/2014] [Accepted: 12/14/2014] [Indexed: 02/05/2023]
|
31
|
Schneider F, Baldauf K, Wetzel W, Reymann KG. Effects of methylphenidate on the behavior of male 5xFAD mice. Pharmacol Biochem Behav 2014; 128:68-77. [PMID: 25449360 DOI: 10.1016/j.pbb.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/30/2014] [Accepted: 11/01/2014] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by a loss of memory and spatial orientation. It is also reported that the dopamine system is affected. Dopamine plays a prominent role in motor functions, motivation, emotion, arousal and reward, and it is important for learning and memory. One model that represents characteristic hallmarks of Alzheimer's disease is the 5xFAD mouse model, in which parenchymal plaque load starts at 2months of age. Transgenic 5xFAD mice show the first behavioral deficits at 6months, which are evident at 9months of age. In this study, we investigated the pharmacological influence of methylphenidate (MPH) on behavioral deficits of 5xFAD mice. Using a battery of behavioral tests, we observed no influence of MPH on anxiety in the elevated plus maze, whereas the locomotion and explorative activity in the open field was increased in transgenic and non-transgenic 5xFAD mice after the application of MPH. Further MPH inhibits habituation in the open field in healthy 5xFAD littermates after the application of 10mg/kg MPH. On the other hand, 10mg/kg MPH improved spatial memory in 6-month-old transgenic 5xFAD males, i.e., at a time point when deficits start to occur. However, in 9-month-old transgenic mice, MPH did not improve persisting learning and memory deficits. We concluded that MPH might improve the non-cognitive, apathy-like behavior (indicated by a reduced exploration), but it has no influence on sustained Alzheimer typical learning and memory deficits.
Collapse
Affiliation(s)
- F Schneider
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg D-39120, Germany.
| | - K Baldauf
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg D-39120, Germany.
| | - W Wetzel
- Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg D-39118, Germany.
| | - K G Reymann
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg D-39120, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg D-39118, Germany.
| |
Collapse
|
32
|
Kishikawa Y, Kawahara Y, Yamada M, Kaneko F, Kawahara H, Nishi A. The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: therapeutic implications of low-dose methylphenidate. Behav Brain Res 2014; 274:235-42. [PMID: 25151620 DOI: 10.1016/j.bbr.2014.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023]
Abstract
The spontaneously hypertensive rat (SHR) has been used as a genetic animal model of attention deficit/hyperactivity disorder (ADHD). SHR/Izm is derived from stroke-resistant SHR as SHR/NIH and SHR/NCrl but from 22nd to 23rd generation descendants of the SHR/NIH ancestor and therefore may show different behavioral phenotypes compared to other SHR sub-strains. In this study, ADHD-like behaviors in SHR/Izm were evaluated compared to Wistar rats. SHR/Izm showed high locomotor activity in the habituation phase in a novel environment, although locomotor activity in the initial exploratory phase was low. In a behavioral test for attention, spontaneous alternation behavior in the Y-maze test was impaired in SHR/Izm. However, impulsive behavior in the elevated-plus maze test, which is designed to detect anxiety-related behavior but also reflects impulsivity for novelty seeking, was comparable to Wistar rats. Hyperactivity and inattention, detected as ADHD-like behaviors in SHR/Izm, were ameliorated with methylphenidate at a low dose (0.05mg/kg, i.p.). Therefore, SHR/Izm represents a unique animal model of ADHD without anxiety-related impulsive behavior.
Collapse
Affiliation(s)
- Yuki Kishikawa
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Makiko Yamada
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan; Department of Psychiatry, Tokyo Women's Medical University, Kawada-Cho 8-1, Shinjuku-ku, Tokyo 168-8666, Japan.
| | - Fumi Kaneko
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Hiroshi Kawahara
- Department of Dental Anesthesiology, School of Dentistry, Tsurumi University, Tsurumi 2-1-3, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan.
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| |
Collapse
|
33
|
Carmack SA, Block CL, Howell KK, Anagnostaras SG. Methylphenidate enhances acquisition and retention of spatial memory. Neurosci Lett 2014; 567:45-50. [PMID: 24680747 DOI: 10.1016/j.neulet.2014.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/07/2014] [Accepted: 03/18/2014] [Indexed: 11/20/2022]
Abstract
Psychostimulants containing methylphenidate (MPH) are increasingly being used both on and off-label to enhance learning and memory. Still, almost no studies have investigated MPH's ability to specifically improve spatial or long-term memory. Here we examined the effect of training with 1 or 10mg/kg MPH on hidden platform learning in the Morris water maze. 10mg/kg MPH improved memory acquisition and retention, while 1mg/kg MPH improved memory retention. Taken together with prior evidence that low, clinically relevant, doses of MPH (0.01-1mg/kg MPH) enhance fear memory we conclude that MPH broadly enhances memory.
Collapse
Affiliation(s)
- Stephanie A Carmack
- Molecular Cognition Laboratory, Department of Psychology, University of California, San Diego 92093-0109, United States
| | - Carina L Block
- Molecular Cognition Laboratory, Department of Psychology, University of California, San Diego 92093-0109, United States
| | - Kristin K Howell
- Molecular Cognition Laboratory, Department of Psychology, University of California, San Diego 92093-0109, United States
| | - Stephan G Anagnostaras
- Molecular Cognition Laboratory, Department of Psychology, University of California, San Diego 92093-0109, United States; Program in Neurosciences, University of California, San Diego 92093-0109, United States.
| |
Collapse
|