1
|
Kobayashi S, Kajiwara M, Cui Y, Sako T, Sasabe T, Hayashinaka E, Wada Y, Kobayashi M. Activation of multiple neuromodulatory systems in alert rats acquiring conditioned taste aversion revealed by positron emission tomography. Brain Res 2024; 1822:148617. [PMID: 37805008 DOI: 10.1016/j.brainres.2023.148617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Conditioned taste aversion (CTA) is an essential ability for animals to consume food safely and is regulated by neuromodulatory systems including the dopamine, noradrenaline, serotonin, and acetylcholine systems. However, because few studies focused on a comprehensive understanding of whole-brain activities, how these neuromodulators contribute to the process of CTA remains an open issue. 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) can visualize activated regions within the whole brain simultaneously and noninvasively. This study aimed to understand the mechanisms of CTA, especially focusing on the retrieval process after CTA acquisition by FDG-PET imaging. CTA was established in rats who received an intraoral application of saccharin solution (IOAS) on the first day (Day 1), a LiCl i.p. injection after an IOAS on Day 2, and an IOAS on Day 3 (CTA group). The subtraction images of Day 3 of the SHAM group, which received a 0.9 % NaCl (saline) injection instead of a LiCl on Day 2, from those of Day 3 of the CTA group revealed increases in FDG signals in multiple brain regions including the substantia nigra, ventral tegmental area, locus coeruleus, dorsal raphe, and nucleus basalis magnocellularis, in addition to the hippocampus and nociception-related regions, including the parabrachial nucleus and solitary nucleus. On the other hand, the visceral pain induced by the LiCl injection increased FDG signals in the primary and secondary somatosensory and insular cortices in addition to the parabrachial nucleus and solitary nucleus. These results suggest that the retrieval process of CTA induces brain regions producing neuromodulators and pain-related brainstem.
Collapse
Affiliation(s)
- Satomi Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Mie Kajiwara
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yilong Cui
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takeo Sako
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tetsuya Sasabe
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Emi Hayashinaka
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yasuhiro Wada
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
2
|
Rodríguez-Durán LF, López-Ibarra DL, Herrera-Xithe G, Bermúdez-Rattoni F, Osorio-Gómez D, Escobar ML. Synergistic photoactivation of VTA-catecholaminergic and BLA-glutamatergic projections induces long-term potentiation in the insular cortex. Neurobiol Learn Mem 2023; 205:107845. [PMID: 37865264 DOI: 10.1016/j.nlm.2023.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The presentation of novel stimuli induces a reliable dopamine release in the insular cortex (IC) from the ventral tegmental area (VTA). The novel stimuli could be associated with motivational and emotional signals induced by cortical glutamate release from the basolateral amygdala (BLA). Dopamine and glutamate are essential for acquiring and maintaining behavioral tasks, including visual and taste recognition memories. In this study, we hypothesize that the simultaneous activation of dopaminergic and glutamatergic projections to the neocortex can underlie synaptic plasticity. High-frequency stimulation of the BLA-IC circuit has demonstrated a reliable long-term potentiation (LTP), a widely acknowledged synaptic plasticity that underlies memory consolidation. Therefore, the concurrent optogenetic stimulation of the insula's glutamatergic and dopaminergic terminal fibers would induce reliable LTP. Our results confirmed that combined photostimulation of the VTA and BLA projections to the IC induces a slow-onset LTP. We also found that optogenetically-induced LTP in the IC relies on both glutamatergic NMDA receptors and dopaminergic D1/D5 receptors, suggesting that the combined effects of these neurotransmitters can trigger synaptic plasticity in the neocortex. Overall, our findings provide compelling evidence supporting the essential role of both dopaminergic and glutamatergic projections in modulating synaptic plasticity within the IC. Furthermore, our results suggest that the synergistic actions of these projections have a pivotal influence on the formation of motivational memories.
Collapse
Affiliation(s)
- Luis F Rodríguez-Durán
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Diana L López-Ibarra
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Gabriela Herrera-Xithe
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Daniel Osorio-Gómez
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico.
| | - Martha L Escobar
- Facultad de Psicología, UNAM, División de Investigación y Estudios de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico City, Mexico.
| |
Collapse
|
3
|
Osorio-Gómez D, Miranda MI, Guzmán-Ramos K, Bermúdez-Rattoni F. Transforming experiences: Neurobiology of memory updating/editing. Front Syst Neurosci 2023; 17:1103770. [PMID: 36896148 PMCID: PMC9989287 DOI: 10.3389/fnsys.2023.1103770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Long-term memory is achieved through a consolidation process where structural and molecular changes integrate information into a stable memory. However, environmental conditions constantly change, and organisms must adapt their behavior by updating their memories, providing dynamic flexibility for adaptive responses. Consequently, novel stimulation/experiences can be integrated during memory retrieval; where consolidated memories are updated by a dynamic process after the appearance of a prediction error or by the exposure to new information, generating edited memories. This review will discuss the neurobiological systems involved in memory updating including recognition memory and emotional memories. In this regard, we will review the salient and emotional experiences that promote the gradual shifting from displeasure to pleasure (or vice versa), leading to hedonic or aversive responses, throughout memory updating. Finally, we will discuss evidence regarding memory updating and its potential clinical implication in drug addiction, phobias, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Kioko Guzmán-Ramos
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Lerma de Villada, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Osorio-Gómez D, Guzmán-Ramos K, Bermúdez-Rattoni F. Dopamine activity on the perceptual salience for recognition memory. Front Behav Neurosci 2022; 16:963739. [PMID: 36275849 PMCID: PMC9583835 DOI: 10.3389/fnbeh.2022.963739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
To survive, animals must recognize relevant stimuli and distinguish them from inconspicuous information. Usually, the properties of the stimuli, such as intensity, duration, frequency, and novelty, among others, determine the salience of the stimulus. However, previously learned experiences also facilitate the perception and processing of information to establish their salience. Here, we propose “perceptual salience” to define how memory mediates the integration of inconspicuous stimuli into a relevant memory trace without apparently altering the recognition of the physical attributes or valence, enabling the detection of stimuli changes in future encounters. The sense of familiarity is essential for successful recognition memory; in general, familiarization allows the transition of labeling a stimulus from the novel (salient) to the familiar (non-salient). The novel object recognition (NOR) and object location recognition (OLRM) memory paradigms represent experimental models of recognition memory that allow us to study the neurobiological mechanisms involved in episodic memory. The catecholaminergic system has been of vital interest due to its role in several aspects of recognition memory. This review will discuss the evidence that indicates changes in dopaminergic activity during exposure to novel objects or places, promoting the consolidation and persistence of memory. We will discuss the relationship between dopaminergic activity and perceptual salience of stimuli enabling learning and consolidation processes necessary for the novel-familiar transition. Finally, we will describe the effect of dopaminergic deregulation observed in some pathologies and its impact on recognition memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
- *Correspondence: Federico Bermúdez-Rattoni
| |
Collapse
|
5
|
Gil-Lievana E, Ramírez-Mejía G, Urrego-Morales O, Luis-Islas J, Gutierrez R, Bermúdez-Rattoni F. Photostimulation of Ventral Tegmental Area-Insular Cortex Dopaminergic Inputs Enhances the Salience to Consolidate Aversive Taste Recognition Memory via D1-Like Receptors. Front Cell Neurosci 2022; 16:823220. [PMID: 35360496 PMCID: PMC8962201 DOI: 10.3389/fncel.2022.823220] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Taste memory involves storing information through plasticity changes in the neural network of taste, including the insular cortex (IC) and ventral tegmental area (VTA), a critical provider of dopamine. Although a VTA-IC dopaminergic pathway has been demonstrated, its role to consolidate taste recognition memory remains poorly understood. We found that photostimulation of dopaminergic neurons in the VTA or VTA-IC dopaminergic terminals of TH-Cre mice improves the salience to consolidate a subthreshold novel taste stimulus regardless of its hedonic value, without altering their taste palatability. Importantly, the inhibition of the D1-like receptor into the IC impairs the salience to facilitate consolidation of an aversive taste recognition memory. Finally, our results showed that VTA photostimulation improves the salience to consolidate a conditioned taste aversion memory through the D1-like receptor into the IC. It is concluded that the dopamine activity from the VTA into IC is required to increase the salience enabling the consolidation of a taste recognition memory. Notably, the D1-like receptor activity into the IC is required to consolidate both innate and learned aversive taste memories but not appetitive taste memory.
Collapse
Affiliation(s)
- Elvi Gil-Lievana
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Ramírez-Mejía
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Urrego-Morales
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Luis-Islas
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV, Mexico City, Mexico
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Federico Bermúdez-Rattoni,
| |
Collapse
|
6
|
José Olvera M, Miranda MI. Differential effects of NMDA receptors activation in the insular cortex during memory formation and updating of a motivational conflict task. Neuroscience 2022; 497:39-52. [PMID: 35276308 DOI: 10.1016/j.neuroscience.2022.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Recognizing and weighing the value of stimuli is necessary for survival, as it allows living things to respond quickly and adequately to new experiences by comparing them with previous ones. Recent evidence shows that context change could affect flavor learning, suggesting a more intricate scenario during complex associations of stimuli with opposite or different valence in a motivational conflict task. Furthermore, linked to the ability to weigh the value of stimuli is the ability to predict the consequences associated with them from previous experiences. The insular cortex (IC) is a brain hub connecting and integrating different sensory, emotional, motivational, and cognitive processing systems. In this regard, previous evidence indicates that glutamatergic activity in this area, mediated by N-methyl-D-aspartate receptors (NMDARs), could be important during positive or negative valence encoding. Hence, the present study examines the involvement of NMDARs in the IC during a complex association of stimuli with opposite valence through the modified inhibitory avoidance (MIA) task and memory updating of a previously learned appetitive context during latent inhibition of the MIA process. This study demonstrates that during a motivational conflict-learning task with stimuli of opposite valences, avoidance memory formation will prevail. NMDARs activation in the IC decreases avoidance memory formation during a complex task (MIA) but not memory formation for an appetitive context. Furthermore, NMDARs activation does not affect the transition from appetitive to aversive learning. Overall, our results propose a different IC-NMDARs function during novel learning and memory updating.
Collapse
Affiliation(s)
- María José Olvera
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, México
| | - María-Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, México.
| |
Collapse
|
7
|
Dai ZH, Xu X, Chen WQ, Nie LN, Liu Y, Sui N, Liang J. The role of hippocampus in memory reactivation: an implication for a therapeutic target against opioid use disorder. CURRENT ADDICTION REPORTS 2022; 9:67-79. [PMID: 35223369 PMCID: PMC8857535 DOI: 10.1007/s40429-022-00407-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Abstract
Purpose of the review The abuse of opioids induces many terrible problems in human health and social stability. For opioid-dependent individuals, withdrawal memory can be reactivated by context, which is then associated with extremely unpleasant physical and emotional feelings during opioid withdrawal. The reactivation of withdrawal memory is considered one of the most important reasons for opioid relapse, and it also allows for memory modulation based on the reconsolidation phenomenon. However, studies exploring withdrawal memory modulation during the reconsolidation window are lacking. By summarizing the previous findings about the reactivation of negative emotional memories, we are going to suggest potential neural regions and systems for modulating opioid withdrawal memory. Recent findings Here, we first present the role of memory reactivation in its modification, discuss how the hippocampus participates in memory reactivation, and discuss the importance of noradrenergic signaling in the hippocampus for memory reactivation. Then, we review the engagement of other limbic regions receiving noradrenergic signaling in memory reactivation. We suggest that noradrenergic signaling targeting hippocampus neurons might play a potential role in strengthening the disruptive effect of withdrawal memory extinction by facilitating the degree of memory reactivation. Summary This review will contribute to a better understanding of the mechanisms underlying reactivation-dependent memory malleability and will provide new therapeutic avenues for treating opioid use disorders.
Collapse
Affiliation(s)
- Zhong-hua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-qi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Li-na Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Pereyra M, Medina JH. AMPA Receptors: A Key Piece in the Puzzle of Memory Retrieval. Front Hum Neurosci 2021; 15:729051. [PMID: 34621161 PMCID: PMC8490764 DOI: 10.3389/fnhum.2021.729051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
Retrieval constitutes a highly regulated and dynamic phase in memory processing. Its rapid temporal scales require a coordinated molecular chain of events at the synaptic level that support transient memory trace reactivation. AMPA receptors (AMPAR) drive the majority of excitatory transmission in the brain and its dynamic features match the singular fast timescales of memory retrieval. Here we provide a review on AMPAR contribution to memory retrieval regarding its dynamic movements along the synaptic compartments, its changes in receptor number and subunit composition that take place in activity dependent processes associated with retrieval. We highlight on the differential regulations exerted by AMPAR subunits in plasticity processes and its impact on memory recall.
Collapse
Affiliation(s)
- Magdalena Pereyra
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencia "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
9
|
Kawahara Y, Ohnishi YN, Ohnishi YH, Kawahara H, Nishi A. Distinct Role of Dopamine in the PFC and NAc During Exposure to Cocaine-Associated Cues. Int J Neuropsychopharmacol 2021; 24:988-1001. [PMID: 34626116 PMCID: PMC8653875 DOI: 10.1093/ijnp/pyab067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dopamine neurotransmission plays a critical role in reward in drug abuse and drug addiction. However, the role of dopamine in the recognition of drug-associated environmental stimuli, retrieval of drug-associated memory, and drug-seeking behaviors is not fully understood. METHODS Roles of dopamine neurotransmission in the prefrontal cortex (PFC) and nucleus accumbens (NAc) in the cocaine-conditioned place preference (CPP) paradigm were evaluated using in vivo microdialysis. RESULTS In mice that had acquired cocaine CPP, dopamine levels in the PFC, but not in the NAc, increased in response to cocaine-associated cues when mice were placed in the cocaine chamber of an apparatus with 2 separated chambers. The induction of the dopamine response and the development of cocaine CPP were mediated through activation of glutamate NMDA (N-methyl-D-aspartate)/AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor signaling in the PFC during conditioning. Activation of dopamine D1 or D2 receptor signaling in the PFC was required for cocaine-induced locomotion, but not for the induction of the dopamine response or the development of cocaine CPP. Interestingly, dopamine levels in the NAc increased in response to cocaine-associated cues when mice were placed at the center of an apparatus with 2 connected chambers, which requires motivated exploration associated with cocaine reward. CONCLUSIONS Dopamine neurotransmission in the PFC is activated by the exposure to the cocaine-associated cues, whereas dopamine neurotransmission in the NAc is activated in a process of motivated exploration of cues associated with cocaine reward. Furthermore, the glutamate signaling cascade in the PFC is suggested to be a potential therapeutic target to prevent the progression of drug addiction.
Collapse
Affiliation(s)
- Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan,Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan,Correspondence: Yukie Kawahara, DDS, PhD, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan ()
| | - Yoshinori N Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Yoko H Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroshi Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
10
|
Osorio-Gómez D, Bermúdez-Rattoni F, Guzmán-Ramos KR. Cortical neurochemical signaling of gustatory stimuli and their visceral consequences during the acquisition and consolidation of taste aversion memory. Neurobiol Learn Mem 2021; 181:107437. [PMID: 33831511 DOI: 10.1016/j.nlm.2021.107437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022]
Abstract
The insular cortex (IC) has a crucial role in taste recognition memory, including conditioned taste aversion (CTA). CTA is a learning paradigm in which a novel taste stimulus (CS) is associated with gastric malaise (US), inducing aversion to the CS in future encounters. The role of the IC in CTA memory formation has been extensively studied. However, the functional significance of neurotransmitter release during the presentation of taste stimuli and gastric malaise-inducing agents remains unclear. Using microdialysis in free-moving animals, we evaluated simultaneous changes in glutamate, norepinephrine and dopamine release in response to the presentation of an innate appetitive or aversive gustatory novel stimulus, as well as after i.p. administration of isotonic or hypertonic gastric malaise-inducing solutions. Our results demonstrate that the presentation of novel stimuli, regardless of their innate valence, induces an elevation of norepinephrine and dopamine. Administration of a gastric malaise inducing agent (LiCl) promotes an elevation of glutamate regardless of its concentration. In comparison, norepinephrine release is related to the LiCl concentration and its equimolar NaCl control. Additionally, we evaluated their functional role on short and long-term taste aversion memory. Results indicate that the blockade of noradrenergic β1,2 receptors in the IC spares CTA acquisition and memory consolidation. In contrast, blockade of dopamine D1/D5 receptors impaired CTA consolidation, whereas the NMDA receptor blockade impedes both acquisition and consolidation of CTA. These results suggest that dopaminergic and noradrenergic release are related to the salience of conditioned taste stimuli. However, only cortical D1/D5 dopaminergic activity, but not the noradrenergic β1,2 activity, is involved in the acquisition and consolidation of taste memory formation. Additionally, glutamatergic activity signals visceral distress caused by LiCl administration and activates NMDA receptors necessary for the acquisition and consolidation of long-lasting taste aversion memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico.
| | - Kioko R Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma. Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Estado de México C.P. 52005, Mexico.
| |
Collapse
|
11
|
Alejandro Borja GP, Alejandro Navarro E, Beatriz GC, Ignacio M, Milagros G. Accumbens and amygdala in taste recognition memory: The role of d1 dopamine receptors. Neurobiol Learn Mem 2020; 174:107277. [PMID: 32707274 DOI: 10.1016/j.nlm.2020.107277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022]
Abstract
The attenuation of taste neophobia (AN) is a good model for studying the structural and neurochemical mechanisms of the emotional component of memory because taste recognition memory exhibits the unique feature of being necessarily linked to hedonic properties. Whilst novel tastes elicit cautious neophobic responses, taste exposures which are not followed by aversive consequences attenuate neophobia as the taste becomes safe and palatable. Given the involvement of the nucleus accumbens in reward and of the amygdala in emotional memories, we applied c-Fos immunohistochemistry as an index of neural activity in Wistar rats that were exposed to a vinegar solution for one, two or six days. An inverse pattern of accumbens nucleus vs amygdala activity was found on the second exposure day on which AN occurred. The number of c-Fos positive cells in the nucleus accumbens shell increased whilst the number of c-Fos positive cells in the basolateral amygdala decreased. Further analyses revealed a positive correlation between AN and the number of c-Fos positive cells in the accumbens shell but a negative correlation in the basolateral amygdala. Furthermore the accumbens-amygdala interplay relevant for AN seems to be mediated by dopamine D1 receptors (D1DR). The injection of SCH23390 (D1DR antagonist) in both the accumbens shell and the basolateral amygdala on the second taste exposure resulted in selectively impaired AN but had opposite long term effects. This finding supports the relevance of a dopaminergic network mediated by D1DRs in the nucleus accumbens shell and basolateral amygdala which is critical for adding the emotional component during the formation of taste memory.
Collapse
Affiliation(s)
- Grau-Perales Alejandro Borja
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain.
| | - Expósito Alejandro Navarro
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| | - Gómez-Chacón Beatriz
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| | - Morón Ignacio
- Department of Psychobiology, Centre of Investigation of Mind and Behaviour (CIMCYC), University of Granada, Spain
| | - Gallo Milagros
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| |
Collapse
|
12
|
Gil-Lievana E, Balderas I, Moreno-Castilla P, Luis-Islas J, McDevitt RA, Tecuapetla F, Gutierrez R, Bonci A, Bermúdez-Rattoni F. Glutamatergic basolateral amygdala to anterior insular cortex circuitry maintains rewarding contextual memory. Commun Biol 2020; 3:139. [PMID: 32198461 PMCID: PMC7083952 DOI: 10.1038/s42003-020-0862-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Findings have shown that anterior insular cortex (aIC) lesions disrupt the maintenance of drug addiction, while imaging studies suggest that connections between amygdala and aIC participate in drug-seeking. However, the role of the BLA → aIC pathway in rewarding contextual memory has not been assessed. Using a cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model to induce a real-time conditioned place preference (rtCPP), we show that photoactivation of TH+ neurons induced electrophysiological responses in VTA neurons, dopamine release and neuronal modulation in the aIC. Conversely, memory retrieval induced a strong release of glutamate, dopamine, and norepinephrine in the aIC. Only intra-aIC blockade of the glutamatergic N-methyl-D-aspartate receptor accelerated rtCPP extinction. Finally, photoinhibition of glutamatergic BLA → aIC pathway produced disinhibition of local circuits in the aIC, accelerating rtCPP extinction and impairing reinstatement. Thus, activity of the glutamatergic projection from the BLA to the aIC is critical for maintenance of rewarding contextual memory.
Collapse
Affiliation(s)
- Elvi Gil-Lievana
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Perla Moreno-Castilla
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico.,Global Institutes on Addiction, 1221 Brickell Ave, Miami, FL33131, USA
| | - Jorge Luis-Islas
- Departamento de Farmacología, Centro de Estudios Avanzados, Instituto Politécnico Nacional, 07360, México City, Mexico
| | - Ross A McDevitt
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Fatuel Tecuapetla
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Ranier Gutierrez
- Departamento de Farmacología, Centro de Estudios Avanzados, Instituto Politécnico Nacional, 07360, México City, Mexico
| | - Antonello Bonci
- Global Institutes on Addiction, 1221 Brickell Ave, Miami, FL33131, USA
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico.
| |
Collapse
|
13
|
Osorio-Gómez D, Bermúdez-Rattoni F, Guzmán-Ramos K. Artificial taste avoidance memory induced by coactivation of NMDA and β-adrenergic receptors in the amygdala. Behav Brain Res 2019; 376:112193. [PMID: 31473281 DOI: 10.1016/j.bbr.2019.112193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
Abstract
The association between a taste and gastric malaise allows animals to avoid the ingestion of potentially toxic food. This association has been termed conditioned taste aversion (CTA) and relies on the activity of key brain structures such as the amygdala and the insular cortex. The establishment of this gustatory-avoidance memory is related to glutamatergic and noradrenergic activity within the amygdala during two crucial events: gastric malaise (unconditioned stimulus, US) and the post-acquisition spontaneous activity related to the association of both stimuli. To understand the functional implications of these neurochemical changes on avoidance memory formation, we assessed the effects of pharmacological stimulation of β-adrenergic and glutamatergic NMDA receptors through the administration of a mixture of L-homocysteic acid and isoproterenol into the amygdala after saccharin exposure on specific times to emulate the US and post-acquisition local signals that would be occurring naturally under CTA training. Our results show that activation of NMDA and β-adrenergic receptors generated a long-term avoidance response to saccharin, like a naturally induced rejection with LiCl. Moreover, the behavioral outcome was accompanied by changes in glutamate, norepinephrine and dopamine levels within the insular cortex, analogous to those displayed during memory retrieval of taste aversion memory. Therefore, we suggest that taste avoidance memory can be induced artificially through the emulation of specific amygdalar neurochemical signals, promoting changes in the amygdala-insular cortex circuit enabling memory establishment.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud Universidad Autónoma Metropolitana, Unidad Lerma Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Estado de México, C.P. 52005, Mexico.
| |
Collapse
|
14
|
Ibrahim C, Le Foll B, French L. Transcriptomic Characterization of the Human Insular Cortex and Claustrum. Front Neuroanat 2019; 13:94. [PMID: 31827426 PMCID: PMC6890825 DOI: 10.3389/fnana.2019.00094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
The insular cortex has been linked to a multitude of functions. In contrast, the nearby claustrum is a densely connected subcortical region with unclear function. To view the insula-claustrum region from the molecular perspective we analyzed the transcriptomic profile of these areas in six adult and four fetal human brains. We identified marker genes with specific expression and performed transcriptome-wide tests for enrichment of biological processes, molecular functions, and cellular components. In addition, specific insular and claustral expression of genes pertaining to diseases, addiction, and depression was tested. At the anatomical level, we used brain-wide analyses to determine the specificity of our results and to determine the transcriptomic similarity of the insula-claustrum region. We found UCMA to be the most significantly enriched gene in the insular cortex and confirmed specific expression of NR4A2, NTNG2, and LXN in the claustrum. Furthermore, the insula was found to have enriched expression of genes associated with mood disorders, learning, cardiac muscle contraction, oxygen transport, glutamate and dopamine signaling. Specific expression in the claustrum was enriched for genes pertaining to human immunodeficiency virus (HIV), severe intellectual disability, epileptic encephalopathy, intracellular transport, spine development, and macroautophagy. We tested for enrichment of genes related to addiction and depression, but they were generally not highly specific to the insula-claustrum region. Exceptions include high insular expression of genes linked to cocaine abuse and genes associated with ever smoking in the claustrum. Brain-wide, we find that markers of the adult claustrum are most specifically expressed in the fetal and adult insula. Altogether, our results provide a novel molecular perspective on the unique properties of the insula and claustrum.
Collapse
Affiliation(s)
- Christine Ibrahim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Leon French
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
15
|
Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. J Neurosci 2019; 39:9369-9382. [PMID: 31597726 DOI: 10.1523/jneurosci.0752-19.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Conditioned taste aversion (CTA) is an associative learning paradigm, wherein consumption of an appetitive tastant (e.g., saccharin) is paired to the administration of a malaise-inducing agent, such as intraperitoneal injection of LiCl. Aversive taste learning and retrieval require neuronal activity within the anterior insula (aIC) and the basolateral amygdala (BLA). Here, we labeled neurons of the aIC projecting to the BLA in adult male mice using a retro-AAV construct and assessed their necessity in aversive and appetitive taste learning. By restricting the expression of chemogenetic receptors in aIC-to-BLA neurons, we demonstrate that activity within the aIC-to-BLA projection is necessary for both aversive taste memory acquisition and retrieval, but not for its maintenance, nor its extinction. Moreover, inhibition of the projection did not affect incidental taste learning per se, but effectively suppressed aversive taste memory retrieval when applied either during or before the encoding of the unconditioned stimulus for CTA (i.e., malaise). Remarkably, activation of the projection after novel taste consumption, without experiencing any internal discomfort, was sufficient to form an artificial aversive taste memory, resulting in strong aversive behavior upon retrieval. Our results indicate that aIC-to-BLA projecting neurons are an essential component in the ability of the brain to associate taste sensory stimuli with body states of negative valence and guide the expression of valence-specific behavior upon taste memory retrieval.SIGNIFICANCE STATEMENT In the present study we subjected mice to the conditioned taste aversion paradigm, where animals learn to associate novel taste with malaise (i.e., assign it negative valence). We show that activation of neurons in the anterior insular cortex (aIC) that project into the basolateral amygdala (BLA) in response to conditioned taste aversion is necessary to form a memory for a taste of negative valence. Moreover, artificial activation of this pathway (without any feeling of pain) after the sampling of a taste can also lead to such associative memory. Thus, activation of aIC-to-BLA projecting neurons is necessary and sufficient to form and retrieve aversive taste memory.
Collapse
|
16
|
Olvera MJ, Miranda MI. Specific inter-stimulus interval effect of NMDA receptor activation in the insular cortex during conditioned taste aversion. Neurobiol Learn Mem 2019; 164:107043. [DOI: 10.1016/j.nlm.2019.107043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022]
|
17
|
Huang TN, Hsu TT, Lin MH, Chuang HC, Hu HT, Sun CP, Tao MH, Lin JY, Hsueh YP. Interhemispheric Connectivity Potentiates the Basolateral Amygdalae and Regulates Social Interaction and Memory. Cell Rep 2019; 29:34-48.e4. [PMID: 31577954 DOI: 10.1016/j.celrep.2019.08.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Impaired interhemispheric connectivity is commonly found in various psychiatric disorders, although how interhemispheric connectivity regulates brain function remains elusive. Here, we use the mouse amygdala, a brain region that is critical for social interaction and fear memory, as a model to demonstrate that contralateral connectivity intensifies the synaptic response of basolateral amygdalae (BLA) and regulates amygdala-dependent behaviors. Retrograde tracing and c-FOS expression indicate that contralateral afferents widely innervate BLA non-randomly and that some BLA neurons innervate both contralateral BLA and the ipsilateral central amygdala (CeA). Our optogenetic and electrophysiological studies further suggest that contralateral BLA input results in the synaptic facilitation of BLA neurons, thereby intensifying the responses to cortical and thalamic stimulations. Finally, pharmacological inhibition and chemogenetic disconnection demonstrate that BLA contralateral facilitation is required for social interaction and memory. Our study suggests that interhemispheric connectivity potentiates the synaptic dynamics of BLA neurons and is critical for the full activation and functionality of amygdalae.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Tsan-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Ming-Hui Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Hsiu-Chun Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - John Y Lin
- School of Medicine, University of Tasmania, TAS 7000, Australia
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC.
| |
Collapse
|
18
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Rodriguez-Ortiz CJ, Bermúdez-Rattoni F. Determinants to trigger memory reconsolidation: The role of retrieval and updating information. Neurobiol Learn Mem 2016; 142:4-12. [PMID: 28011191 DOI: 10.1016/j.nlm.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/07/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022]
Abstract
Long-term memories can undergo destabilization/restabilization processes, collectively called reconsolidation. However, the parameters that trigger memory reconsolidation are poorly understood and are a matter of intense investigation. Particularly, memory retrieval is widely held as requisite to initiate reconsolidation. This assumption makes sense since only relevant cues will induce reconsolidation of a specific memory. However, recent studies show that pharmacological inhibition of retrieval does not avoid memory from undergoing reconsolidation, indicating that memory reconsolidation occurs through a process that can be dissociated from retrieval. We propose that retrieval is not a unitary process but has two dissociable components; one leading to the expression of memory and the other to reconsolidation, referred herein as executer and integrator respectively. The executer would lead to the behavioral expression of the memory. This component would be the one disrupted on the studies that show reconsolidation independence from retrieval. The integrator would deal with reconsolidation. This component of retrieval would lead to long-term memory destabilization when specific conditions are met. We think that an important number of reports are consistent with the hypothesis that reconsolidation is only initiated when updating information is acquired. We suggest that the integrator would initiate reconsolidation to integrate updating information into long-term memory.
Collapse
Affiliation(s)
- Carlos J Rodriguez-Ortiz
- Department of Medicine, University of California, Irvine, 2216 Gillespie Neuroscience Research Facility, 837 Health Sciences Rd., Irvine, CA 92697-4545, USA.
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México City, Mexico.
| |
Collapse
|