1
|
Chong YS, Ang SR, Sajikumar S. Beyond boundaries: extended temporal flexibility in synaptic tagging and capture. Commun Biol 2025; 8:553. [PMID: 40181131 PMCID: PMC11968991 DOI: 10.1038/s42003-025-07998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Synaptic tagging and capture (STC) is a mechanism that enables the formation of associative synaptic plasticity by marking activated synapses with "tags" to capture plasticity-related products (PRPs) essential for plasticity stabilization. Experimental evidence using long-term potentiation (LTP), a widely studied cellular correlate of memory, shows that the duration of synaptic tags varies, lasting up to 90 minutes in ex vivo hippocampal slices but shorter in in vivo conditions, likely due to higher metabolic activity. In this study, we investigate the time window for tag-PRP interactions in STC using a strong-before-weak paradigm, where protein synthesis-dependent late-LTP precedes protein synthesis-independent early-LTP at various intervals. Surprisingly, successful STC is observed even with a 9-hour interval in the strong-before-weak paradigm, suggesting a broader temporal flexibility for tag-PRP interactions than previously understood. This unexpected finding offers alternative explanations for associative memory formation by cataloguing memory events, allowing weaker memories to be strengthened when preceded by stronger ones.
Collapse
Affiliation(s)
- Yee Song Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Sheila Ruixia Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Saccenti D, Lauro LJR, Crespi SA, Moro AS, Vergallito A, Grgič RG, Pretti N, Lamanna J, Ferro M. Boosting Psychotherapy With Noninvasive Brain Stimulation: The Whys and Wherefores of Modulating Neural Plasticity to Promote Therapeutic Change. Neural Plast 2024; 2024:7853199. [PMID: 39723244 PMCID: PMC11669434 DOI: 10.1155/np/7853199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The phenomenon of neural plasticity pertains to the intrinsic capacity of neurons to undergo structural and functional reconfiguration through learning and experiential interaction with the environment. These changes could manifest themselves not only as a consequence of various life experiences but also following therapeutic interventions, including the application of noninvasive brain stimulation (NIBS) and psychotherapy. As standalone therapies, both NIBS and psychotherapy have demonstrated their efficacy in the amelioration of psychiatric disorders' symptoms, with a certain variability in terms of effect sizes and duration. Consequently, scholars suggested the convenience of integrating the two interventions into a multimodal treatment to boost and prolong the therapeutic outcomes. Such an approach is still in its infancy, and the physiological underpinnings substantiating the effectiveness and utility of combined interventions are still to be clarified. Therefore, this opinion paper aims to provide a theoretical framework consisting of compelling arguments as to why adding NIBS to psychotherapy can promote therapeutic change. Namely, we will discuss the physiological effects of the two interventions, thus providing a rationale to explain the potential advantages of a combined approach.
Collapse
Affiliation(s)
- Daniele Saccenti
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Leonor J. Romero Lauro
- Department of Psychology and NeuroMi, University of Milano-Bicocca, Milan, Italy
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
| | - Sofia A. Crespi
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea S. Moro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Novella Pretti
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Clinical Psychology Center, Division of Neurology, Galliera Hospital, Genoa, Italy
| | - Jacopo Lamanna
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
4
|
Koek LA, Sanderson TM, Georgiou J, Collingridge GL. The role of calcium stores in long-term potentiation and synaptic tagging and capture in mouse hippocampus. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230241. [PMID: 38853556 PMCID: PMC11343308 DOI: 10.1098/rstb.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
The roles of Ca2+-induced calcium release in synaptic plasticity and metaplasticity are poorly understood. The present study has addressed the role of intracellular Ca2+ stores in long-term potentiation (LTP) and a form of heterosynaptic metaplasticity known as synaptic tagging and capture (STC) at CA1 synapses in mouse hippocampal slices. The effects of two compounds, ryanodine and cyclopiazonic acid (CPA), were examined on LTP induced by three distinct induction protocols: weak (w), compressed (c) and spaced (s) theta-burst stimulation (TBS). These compounds did not significantly affect LTP induced by the wTBS (one episode of TBS; 25 stimuli) or cTBS (three such episodes with a 10 s inter-episode interval (IEI); 75 stimuli) but substantially inhibited LTP induced by a sTBS (10 min IEI; 75 stimuli). Ryanodine and CPA also prevented a small heterosynaptic potentiation that was observed with the sTBS protocol. Interestingly, these compounds also prevented STC when present during either the sTBS or the subsequent wTBS, applied to an independent input. All of these effects of ryanodine and CPA were similar to that of a calcium-permeable AMPA receptor blocker. In conclusion, Ca2+ stores provide one way in which signals are propagated between synaptic inputs and, by virtue of their role in STC, may be involved in associative long-term memories. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Laura A. Koek
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Thomas M. Sanderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
5
|
Bin Ibrahim MZ, Wang Z, Sajikumar S. Synapses tagged, memories kept: synaptic tagging and capture hypothesis in brain health and disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230237. [PMID: 38853570 PMCID: PMC11343274 DOI: 10.1098/rstb.2023.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024] Open
Abstract
The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Zijun Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
| |
Collapse
|
6
|
Hidalgo C, Paula-Lima A. RyR-mediated calcium release in hippocampal health and disease. Trends Mol Med 2024; 30:25-36. [PMID: 37957056 DOI: 10.1016/j.molmed.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Hippocampal synaptic plasticity is widely considered the cellular basis of learning and spatial memory processes. This article highlights the central role of Ca2+ release from the endoplasmic reticulum (ER) in hippocampal synaptic plasticity and hippocampus-dependent memory in health and disease. The key participation of ryanodine receptor (RyR) channels, which are the principal Ca2+ release channels expressed in the hippocampus, in these processes is emphasized. It is proposed that the increased neuronal oxidative tone displayed by hippocampal neurons during aging or Alzheimer's disease (AD) leads to excessive activation of RyR-mediated Ca2+ release, a process that is highly redox-sensitive, and that this abnormal response contributes to and aggravates these deleterious conditions.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Biomedical Neuroscience Institute and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism, and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile.
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile.
| |
Collapse
|
7
|
Valdés-Undurraga I, Lobos P, Sánchez-Robledo V, Arias-Cavieres A, SanMartín CD, Barrientos G, More J, Muñoz P, Paula-Lima AC, Hidalgo C, Adasme T. Long-term potentiation and spatial memory training stimulate the hippocampal expression of RyR2 calcium release channels. Front Cell Neurosci 2023; 17:1132121. [PMID: 37025696 PMCID: PMC10071512 DOI: 10.3389/fncel.2023.1132121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: Neuronal Ca2+ signals generated through the activation of Ca2+-induced Ca2+ release in response to activity-generated Ca2+ influx play a significant role in hippocampal synaptic plasticity, spatial learning, and memory. We and others have previously reported that diverse stimulation protocols, or different memory-inducing procedures, enhance the expression of endoplasmic reticulum-resident Ca2+ release channels in rat primary hippocampal neuronal cells or hippocampal tissue. Methods and Results: Here, we report that induction of long-term potentiation (LTP) by Theta burst stimulation protocols of the CA3-CA1 hippocampal synapse increased the mRNA and protein levels of type-2 Ryanodine Receptor (RyR2) Ca2+ release channels in rat hippocampal slices. Suppression of RyR channel activity (1 h preincubation with 20 μM ryanodine) abolished both LTP induction and the enhanced expression of these channels; it also promoted an increase in the surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1 and GluR2 and caused a moderate but significant reduction of dendritic spine density. In addition, training rats in the Morris water maze induced memory consolidation, which lasted for several days after the end of the training period, accompanied by an increase in the mRNA levels and the protein content of the RyR2 channel isoform. Discussion: We confirm in this work that LTP induction by TBS protocols requires functional RyR channels. We propose that the increments in the protein content of RyR2 Ca2+ release channels, induced by LTP or spatial memory training, play a significant role in hippocampal synaptic plasticity and spatial memory consolidation.
Collapse
Affiliation(s)
- Ismael Valdés-Undurraga
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- IVIRMA, Santiago, Chile
| | - Pedro Lobos
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Advanced Clinical Investigation (CICA), Clinical Hospital, Universidad de Chile, Santiago, Chile
| | | | - Alejandra Arias-Cavieres
- Section of Emergency Medicine, Department of Medicine, Institute for Integrative Physiology, Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| | - Carol D. SanMartín
- Center for Advanced Clinical Investigation (CICA), Clinical Hospital, Universidad de Chile, Santiago, Chile
| | - Genaro Barrientos
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jamileth More
- Center for Advanced Clinical Investigation (CICA), Clinical Hospital, Universidad de Chile, Santiago, Chile
- Laboratory of Translational Psychiatry, Department of Neuroscience and Department de Psychiatry North, Universidad de Chile, Santiago, Chile
| | - Pablo Muñoz
- Translational Neurology Center and Biomedical Research Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrea Cristina Paula-Lima
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Section of Emergency Medicine, Department of Medicine, Institute for Integrative Physiology, Neuroscience Institute, The University of Chicago, Chicago, IL, United States
- Laboratory of Translational Psychiatry, Department of Neuroscience and Department de Psychiatry North, Universidad de Chile, Santiago, Chile
- *Correspondence: Tatiana Adasme
| |
Collapse
|
8
|
Correa J, Tintorelli R, Budriesi P, Viola H. Persistence of spatial memory induced by spaced training involves a behavioral-tagging process. Neuroscience 2022; 497:215-227. [PMID: 35276307 DOI: 10.1016/j.neuroscience.2022.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Spaced training, which involves long inter-trial intervals, has positive effects on memories. One of the main attributes of long-term memories (LTM) is persistence. Here, to identify the process that promotes LTM persistence by spaced learning, we used the spatial object recognition (SOR) task. The protocol consisted of a first strong training session that induced LTM formation (tested 1 day after training), but not LTM persistence (tested 7 or 14 days after training); and a second weak training session that promoted memory persistence when applied 1 day, but not 7 days, after the first training. We propose that the promotion of memory persistence is based on the Behavioral Tagging (BT) mechanism operating when the memory trace is retrieved. BT involves the setting of a tag induced by learning which gives rise to input selectivity, and the use of plasticity-related proteins (PRPs) to establish the mnemonic trace. We postulate that retraining will mainly retag the sites initially activated by the original learning, where the PRPs needed for memory expression and/or induced by retrieval would be used to maintain a persistent mnemonic trace. Our results suggest that the mechanism of memory expression, but not those of memory reinforcement or reconsolidation, is necessary to promote memory persistence after retraining. The molecular mechanisms involve ERKs1/2 activity to set the SOR learning tag, and the availability of GluA2-containing AMPA receptor. In conclusion, both the synthesis of PRPs and the setting of a learning tag are key processes triggered by retraining that allow SOR memory persistence.
Collapse
Affiliation(s)
- J Correa
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - R Tintorelli
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - P Budriesi
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - H Viola
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Looti Bashiyan M, Nasehi M, Vaseghi S, Khalifeh S. Investigating the effect of crocin on memory deficits induced by total sleep deprivation (TSD) with respect to the BDNF, TrkB and ERK levels in the hippocampus of male Wistar rats. J Psychopharmacol 2021; 35:744-754. [PMID: 33899577 DOI: 10.1177/02698811211000762] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sleep deprivation (SD) induces cognitive impairments such as memory deficit. Brain-derived neurotrophic factor (BDNF) is considered as the most critical neurotrophin in the central nervous system that is involved in sleep and memory. The main receptor of BDNF, tropomyosin receptor kinase B (TrkB), is dramatically expressed in the hippocampus. Also, extracellular signal-regulated kinase (ERK) has a significant role in memory function. Crocin is a carotenoid chemical compound and the active component of the flower Crocus sativus L. (saffron) that improves memory function and increases the level of BDNF, TrkB and ERK. AIMS In this research, we aimed to investigate the effect of total SD (TSD, 24 h) and crocin on memory performance, and BDNF, TrkB and ERK hippocampal levels. METHODS Passive avoidance memory was assessed using step-through, and working memory was measured using Y-maze tasks. The level of proteins in both hemispheres of the hippocampus was evaluated using Western blotting. Crocin was injected intraperitoneally at doses of 1, 5 and 15 mg/kg. RESULTS Twenty-four-hour TSD impaired both types of memories and decreased the level of all proteins in both hemispheres of the hippocampus. Crocin at all doses restored TSD-induced memory deficits. Crocin (15 mg/kg) reversed the effect of TSD on levels of all proteins. CONCLUSIONS The adverse effect of TSD on the level of proteins in the hippocampus may disrupt synaptic plasticity and transmission, which induces memory impairment. Additionally, the restoration effect of crocin on the decrease in protein levels may be involved in its improvement effect on memory performance.
Collapse
Affiliation(s)
- Malihe Looti Bashiyan
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Suzuki Y, Yoda Y, Ishikawa Y. Neuropsin-dependent and -independent behavioral tagging. Neuropsychopharmacol Rep 2021; 41:215-222. [PMID: 33773089 PMCID: PMC8340819 DOI: 10.1002/npr2.12177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 11/11/2022] Open
Abstract
Aim The consolidation of short‐term memories into long‐term memories is promoted by associations with novel environmental stimuli. This phenomenon is known as behavioral tagging. Neuropsin, a plasticity‐related serine protease in the hippocampus and amygdala, is involved in memory formation. This study investigated how neuropsin affects associative long‐term memory. Methods Short‐term and long‐term memory were assessed in control and neuropsin‐deficient mice by investigating their performance in inhibitory avoidance and spatial object recognition tasks. The effect of exposure to novelty on the conversion of short‐term memory to associative long‐term memory was also examined. Results The consolidation of task‐related short‐term memories into long‐term memories was facilitated by exposing the animals to a novel environment 1 hour before training. However, this long‐term memory conversion was impaired in neuropsin‐deficient mice performing the inhibitory avoidance task but not the spatial object recognition task. Conclusion Behavioral tagging occurs via neuropsin‐dependent and neuropsin‐independent processes for different behavioral tasks. The consolidation of task‐related short‐term memories into long‐term memories was facilitated by exposing the animals to a novel environment 1 hour before training. However, this long‐term memory conversion was impaired in neuropsin‐deficient mice performing the inhibitory avoidance task but not the spatial object recognition task. Behavioral tagging occurs via neuropsin‐dependent and neuropsin‐independent processes for different behavioral tasks.![]()
Collapse
Affiliation(s)
- Yuka Suzuki
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Yuya Yoda
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| |
Collapse
|
11
|
Wong LW, Chong YS, Wong WLE, Sajikumar S. Inhibition of Histone Deacetylase Reinstates Hippocampus-Dependent Long-Term Synaptic Plasticity and Associative Memory in Sleep-Deprived Mice. Cereb Cortex 2020; 30:4169-4182. [PMID: 32188968 DOI: 10.1093/cercor/bhaa041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep plays an important role in the establishment of long-term memory; as such, lack of sleep severely impacts domains of our health including cognitive function. Epigenetic mechanisms regulate gene transcription and protein synthesis, playing a critical role in the modulation of long-term synaptic plasticity and memory. Recent evidences indicate that transcriptional dysregulation as a result of sleep deprivation (SD) may contribute to deficits in plasticity and memory function. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, a clinically approved drug for human use, has been shown to ameliorate cognitive deficits in several neurological disease models. To further explore the therapeutic effect of SAHA, we have examined its potential role in improving the SD-mediated impairments in long-term plasticity, associative plasticity, and associative memory. Here we show that SAHA preserves long-term plasticity, associative plasticity, and associative memory in SD hippocampus. Furthermore, we find that SAHA prevents SD-mediated epigenetic changes by upregulating histone acetylation, hence preserving the ERK-cAMP-responsive element-binding protein (CREB)/CREB-binding protein-brain-derived neurotrophic factor pathway in the hippocampus. These data demonstrate that modifying epigenetic mechanisms via SAHA can prevent or reverse impairments in long-term plasticity and memory that result from sleep loss. Thus, SAHA could be a potential therapeutic agent in improving SD-related memory deficits.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Yee Song Chong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Win Lee Edwin Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
12
|
Haubrich J, Bernabo M, Baker AG, Nader K. Impairments to Consolidation, Reconsolidation, and Long-Term Memory Maintenance Lead to Memory Erasure. Annu Rev Neurosci 2020; 43:297-314. [PMID: 32097575 DOI: 10.1146/annurev-neuro-091319-024636] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An enduring problem in neuroscience is determining whether cases of amnesia result from eradication of the memory trace (storage impairment) or if the trace is present but inaccessible (retrieval impairment). The most direct approach to resolving this question is to quantify changes in the brain mechanisms of long-term memory (BM-LTM). This approach argues that if the amnesia is due to a retrieval failure, BM-LTM should remain at levels comparable to trained, unimpaired animals. Conversely, if memories are erased, BM-LTM should be reduced to resemble untrained levels. Here we review the use of BM-LTM in a number of studies that induced amnesia by targeting memory maintenance or reconsolidation. The literature strongly suggests that such amnesia is due to storage rather than retrieval impairments. We also describe the shortcomings of the purely behavioral protocol that purports to show recovery from amnesia as a method of understanding the nature of amnesia.
Collapse
Affiliation(s)
- Josué Haubrich
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| | - Matteo Bernabo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Andrew G Baker
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| |
Collapse
|
13
|
Zhou F, Du G, Xie J, Gu J, Jia Q, Fan Y, Yu H, Zha Z, Wang K, Ouyang L, Shao L, Feng C, Fan G. RyRs mediate lead-induced neurodegenerative disorders through calcium signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134901. [PMID: 31710906 DOI: 10.1016/j.scitotenv.2019.134901] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/21/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal lead (Pb) is widely distributed in the environment and can induce neurodegeneration. Accumulating evidence has shown that ryanodine receptors (RyRs) play vital roles in neurodegenerative brain. However, whether aberrant RyRs levels contribute to Pb-induced neurodegeneration has largely remained unknown. In the present study, we report the important role of elevated levels of RyRs in Pb-induced neurodegeneration. Pb was found to upregulate the levels of RyRs in the rat hippocampal tissues and rat pheochromocytoma (PC12) cells. Furthermore, exposure to Pb induced neurodegenerative cognitive impairment in rats, depressed the long-term potentiation (LTP) in the rat brain slices, increased the neuronal intracellular free calcium concentration ([Ca2+]i), inhibited the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclic adenosine 3',5'-monophosphate (cAMP) response element binding protein (CREB) as well as the expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl2), and activated the phosphorylation of extracellular regulated protein kinases (Erk) protein both in vitro and in vivo. In addition, the knockdown of RyR3 in PC12 cells significantly decreased the [Ca2+]i levels, increased the CaMKIIα and CREB phosphorylation, decrease the phosphorylation of Erk, and elongated the cognitive function-related neurite outgrowth after exposure to Pb. Moreover, treatment with a RyRs agonist showed the involvement of RyRs in Pb-induced depression in LTP in the rat brain slices. In summary, we determined that Pb-mediated upregulation of RyRs led to neurodegeneration via high levels of free calcium, depression of the calcium-dependent CaMKIIα/CREB mnemonic signaling pathway, and activation of the calcium-dependent Erk/Bcl2 apoptotic signaling pathway. These findings on the impact of Pb on the levels of RyRs could further improve our understanding of Pb-induced neurotoxicity and provide a promising molecular target to antagonize Pb-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Junwang Gu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Qiyue Jia
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Ying Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Han Yu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Zhipeng Zha
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Kai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
14
|
Wong LW, Tann JY, Ibanez CF, Sajikumar S. The p75 Neurotrophin Receptor Is an Essential Mediator of Impairments in Hippocampal-Dependent Associative Plasticity and Memory Induced by Sleep Deprivation. J Neurosci 2019; 39:5452-5465. [PMID: 31085607 PMCID: PMC6616296 DOI: 10.1523/jneurosci.2876-18.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Sleep deprivation (SD) interferes with hippocampal structural and functional plasticity, formation of long-term memory and cognitive function. The molecular mechanisms underlying these effects are incompletely understood. Here, we show that SD impaired synaptic tagging and capture and behavioral tagging, two major mechanisms of associative learning and memory. Strikingly, mutant male mice lacking the p75 neurotrophin receptor (p75NTR) were resistant to the detrimental effects of SD on hippocampal plasticity at both cellular and behavioral levels. Mechanistically, SD increased p75NTR expression and its interaction with phosphodiesterase. p75NTR deletion preserved hippocampal structural and functional plasticity by preventing SD-mediated effects on hippocampal cAMP-CREB-BDNF, cAMP-PKA-LIMK1-cofilin, and RhoA-ROCK2 pathways. Our study identifies p75NTR as an important mediator of hippocampal structural and functional changes associated with SD, and suggests that targeting p75NTR could be a promising strategy to limit the memory and cognitive deficits that accompany sleep loss.SIGNIFICANCE STATEMENT The lack of sufficient sleep is a major health concern in today's world. Sleep deprivation (SD) affects cognitive functions such as memory. We have investigated how associative memory mechanisms, synaptic tagging and capture (STC), was impaired in SD mice at cellular and behavioral level. Interestingly, mutant male mice that lacked the p75 neurotrophin receptor (p75NTR) were seen to be resistant to the SD-induced impairments in hippocampal synaptic plasticity and STC. Additionally, we elucidated the molecular pathways responsible for this rescue of plasticity in the mutant mice. Our study has thus identified p75NTR as a promising target to limit the cognitive deficits associated with SD.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
| | - Jason Y Tann
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
| | - Carlos F Ibanez
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm S-17177, Sweden
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore,
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
| |
Collapse
|
15
|
Park P, Kang H, Sanderson TM, Bortolotto ZA, Georgiou J, Zhuo M, Kaang BK, Collingridge GL. On the Role of Calcium-Permeable AMPARs in Long-Term Potentiation and Synaptic Tagging in the Rodent Hippocampus. Front Synaptic Neurosci 2019; 11:4. [PMID: 30923499 PMCID: PMC6426746 DOI: 10.3389/fnsyn.2019.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Classically, long-term potentiation (LTP) at hippocampal CA1 synapses is triggered by the synaptic activation of NMDA receptors (NMDARs). More recently, it has been shown that calcium-permeable (CP)-AMPARs can also trigger synaptic plasticity at these synapses. Specifically, their activation is required for the PKA and protein synthesis dependent component of LTP that is typically induced by delivery of spaced trains of high frequency stimulation. Here we present new data that build upon these ideas, including the requirement for low frequency synaptic activation and NMDAR dependence. We also show that a spaced theta burst stimulation (sTBS) protocol induces a heterosynaptic potentiation of baseline responses via activation of CP-AMPARs. Finally, we present data that implicate CP-AMPARs in synaptic tagging and capture, a fundamental process that is associated with the protein synthesis-dependent component of LTP. We have studied how a sTBS can augment the level of LTP generated by a weak TBS (wTBS), delivered 30 min later to an independent input. We show that inhibition of CP-AMPARs during the sTBS eliminates, and that inhibition of CP-AMPARs during the wTBS reduces, this facilitation of LTP. These data suggest that CP-AMPARs are crucial for the protein synthesis-dependent component of LTP and its heterosynaptic nature.
Collapse
Affiliation(s)
- Pojeong Park
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Heather Kang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Thomas M Sanderson
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Min Zhuo
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Graham L Collingridge
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Chirillo MA, Waters MS, Lindsey LF, Bourne JN, Harris KM. Local resources of polyribosomes and SER promote synapse enlargement and spine clustering after long-term potentiation in adult rat hippocampus. Sci Rep 2019; 9:3861. [PMID: 30846859 PMCID: PMC6405867 DOI: 10.1038/s41598-019-40520-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
Synapse clustering facilitates circuit integration, learning, and memory. Long-term potentiation (LTP) of mature neurons produces synapse enlargement balanced by fewer spines, raising the question of how clusters form despite this homeostatic regulation of total synaptic weight. Three-dimensional reconstruction from serial section electron microscopy (3DEM) revealed the shapes and distributions of smooth endoplasmic reticulum (SER) and polyribosomes, subcellular resources important for synapse enlargement and spine outgrowth. Compared to control stimulation, synapses were enlarged two hours after LTP on resource-rich spines containing polyribosomes (4% larger than control) or SER (15% larger). SER in spines shifted from a single tubule to complex spine apparatus after LTP. Negligible synapse enlargement (0.6%) occurred on resource-poor spines lacking SER and polyribosomes. Dendrites were divided into discrete synaptic clusters surrounded by asynaptic segments. Spine density was lowest in clusters having only resource-poor spines, especially following LTP. In contrast, resource-rich spines preserved neighboring resource-poor spines and formed larger clusters with elevated total synaptic weight following LTP. These clusters also had more shaft SER branches, which could sequester cargo locally to support synapse growth and spinogenesis. Thus, resources appear to be redistributed to synaptic clusters with LTP-related synapse enlargement while homeostatic regulation suppressed spine outgrowth in resource-poor synaptic clusters.
Collapse
Affiliation(s)
- Michael A Chirillo
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,Fulbright U.S. Scholar Program, University of Belgrade, Studentski trg 1, Belgrade, 11000, Serbia
| | - Mikayla S Waters
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,McGovern Medical School in Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Laurence F Lindsey
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,Google Seattle, Seattle, Washington, 98103, USA
| | - Jennifer N Bourne
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Kristen M Harris
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
17
|
Seibt J, Frank MG. Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Front Syst Neurosci 2019; 13:2. [PMID: 30774586 PMCID: PMC6367653 DOI: 10.3389/fnsys.2019.00002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
It is commonly accepted that brain plasticity occurs in wakefulness and sleep. However, how these different brain states work in concert to create long-lasting changes in brain circuitry is unclear. Considering that wakefulness and sleep are profoundly different brain states on multiple levels (e.g., cellular, molecular and network activation), it is unlikely that they operate exactly the same way. Rather it is probable that they engage different, but coordinated, mechanisms. In this article we discuss how plasticity may be divided across the sleep-wake cycle, and how synaptic changes in each brain state are linked. Our working model proposes that waking experience triggers short-lived synaptic events that are necessary for transient plastic changes and mark (i.e., 'prime') circuits and synapses for further processing in sleep. During sleep, synaptic protein synthesis at primed synapses leads to structural changes necessary for long-term information storage.
Collapse
Affiliation(s)
- Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Marcos G. Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, United States
| |
Collapse
|
18
|
Chakroborty S, Hill ES, Christian DT, Helfrich R, Riley S, Schneider C, Kapecki N, Mustaly-Kalimi S, Seiler FA, Peterson DA, West AR, Vertel BM, Frost WN, Stutzmann GE. Reduced presynaptic vesicle stores mediate cellular and network plasticity defects in an early-stage mouse model of Alzheimer's disease. Mol Neurodegener 2019; 14:7. [PMID: 30670054 PMCID: PMC6343260 DOI: 10.1186/s13024-019-0307-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/13/2019] [Indexed: 01/27/2023] Open
Abstract
Background Identifying effective strategies to prevent memory loss in AD has eluded researchers to date, and likely reflects insufficient understanding of early pathogenic mechanisms directly affecting memory encoding. As synaptic loss best correlates with memory loss in AD, refocusing efforts to identify factors driving synaptic impairments may provide the critical insight needed to advance the field. In this study, we reveal a previously undescribed cascade of events underlying pre and postsynaptic hippocampal signaling deficits linked to cognitive decline in AD. These profound alterations in synaptic plasticity, intracellular Ca2+ signaling, and network propagation are observed in 3–4 month old 3xTg-AD mice, an age which does not yet show overt histopathology or major behavioral deficits. Methods In this study, we examined hippocampal synaptic structure and function from the ultrastructural level to the network level using a range of techniques including electron microscopy (EM), patch clamp and field potential electrophysiology, synaptic immunolabeling, spine morphology analyses, 2-photon Ca2+ imaging, and voltage-sensitive dye-based imaging of hippocampal network function in 3–4 month old 3xTg-AD and age/background strain control mice. Results In 3xTg-AD mice, short-term plasticity at the CA1-CA3 Schaffer collateral synapse is profoundly impaired; this has broader implications for setting long-term plasticity thresholds. Alterations in spontaneous vesicle release and paired-pulse facilitation implicated presynaptic signaling abnormalities, and EM analysis revealed a reduction in the ready-releasable and reserve pools of presynaptic vesicles in CA3 terminals; this is an entirely new finding in the field. Concurrently, increased synaptically-evoked Ca2+ in CA1 spines triggered by LTP-inducing tetani is further enhanced during PTP and E-LTP epochs, and is accompanied by impaired synaptic structure and spine morphology. Notably, vesicle stores, synaptic structure and short-term plasticity are restored by normalizing intracellular Ca2+ signaling in the AD mice. Conclusions These findings suggest the Ca2+ dyshomeostasis within synaptic compartments has an early and fundamental role in driving synaptic pathophysiology in early stages of AD, and may thus reflect a foundational disease feature driving later cognitive impairment. The overall significance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic vesicle stores, synaptic plasticity, and network propagation, which directly impact memory encoding. Electronic supplementary material The online version of this article (10.1186/s13024-019-0307-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Evan S Hill
- Department of Cell Biology and Anatomy, The Chicago Medical School; Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Daniel T Christian
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Rosalind Helfrich
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Shannon Riley
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Corinne Schneider
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Nicolas Kapecki
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Sarah Mustaly-Kalimi
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Figen A Seiler
- Electron Microscopy Center, RFUMS, North Chicago, IL, 60064, USA
| | - Daniel A Peterson
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Anthony R West
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Barbara M Vertel
- Department of Cell Biology and Anatomy, The Chicago Medical School; Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.,Electron Microscopy Center, RFUMS, North Chicago, IL, 60064, USA
| | - William N Frost
- Department of Cell Biology and Anatomy, The Chicago Medical School; Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| |
Collapse
|
19
|
Abraham WC, Jones OD, Glanzman DL. Is plasticity of synapses the mechanism of long-term memory storage? NPJ SCIENCE OF LEARNING 2019; 4:9. [PMID: 31285847 PMCID: PMC6606636 DOI: 10.1038/s41539-019-0048-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/29/2019] [Indexed: 05/05/2023]
Abstract
It has been 70 years since Donald Hebb published his formalized theory of synaptic adaptation during learning. Hebb's seminal work foreshadowed some of the great neuroscientific discoveries of the following decades, including the discovery of long-term potentiation and other lasting forms of synaptic plasticity, and more recently the residence of memories in synaptically connected neuronal assemblies. Our understanding of the processes underlying learning and memory has been dominated by the view that synapses are the principal site of information storage in the brain. This view has received substantial support from research in several model systems, with the vast majority of studies on the topic corroborating a role for synapses in memory storage. Yet, despite the neuroscience community's best efforts, we are still without conclusive proof that memories reside at synapses. Furthermore, an increasing number of non-synaptic mechanisms have emerged that are also capable of acting as memory substrates. In this review, we address the key findings from the synaptic plasticity literature that make these phenomena such attractive memory mechanisms. We then turn our attention to evidence that questions the reliance of memory exclusively on changes at the synapse and attempt to integrate these opposing views.
Collapse
Affiliation(s)
- Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9010 New Zealand
| | - Owen D. Jones
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9010 New Zealand
| | - David L. Glanzman
- Departments of Integrative Biology and Physiology, and Neurobiology, and the Brain Research Institute, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
20
|
Maggio N, Vlachos A. Tumor necrosis factor (TNF) modulates synaptic plasticity in a concentration-dependent manner through intracellular calcium stores. J Mol Med (Berl) 2018; 96:1039-1047. [PMID: 30073573 DOI: 10.1007/s00109-018-1674-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
The role of inflammatory signaling pathways in synaptic plasticity has long been identified. Yet, it remains unclear how inflammatory cytokines assert their pleiotropic effects on neural plasticity. Moreover, the neuronal targets through which inflammatory cytokines assert their effects on plasticity remain not well-understood. In an attempt to learn more about the plasticity-modulating effects of the pro-inflammatory cytokine tumor necrosis factor (TNF), we used two-pathway long-term potentiation (LTP) experiments at Schaffer collateral-CA1 synapses to test for concentration-dependent effects of TNF on synaptic plasticity. We report that high concentrations of TNF (1 μg/mL) impair the ability of mouse CA1 pyramidal neurons to express synaptic plasticity without affecting baseline synaptic transmission and/or previously established LTP. Interestingly, 100 ng/mL of TNF has no apparent effect on LTP, while low concentrations (1 ng/mL) promote the ability of neurons to express LTP. These dose-dependent metaplastic effects of TNF are modulated by intracellular calcium stores: Pharmacological activation of intracellular calcium stores with ryanodine (10 μM) reverses the negative effects of TNF[high], and the plasticity-promoting effects of TNF[low] are blocked when intracellular calcium stores are depleted with thapsigargin (1 μM). Consistent with this result, TNF does not promote plasticity in synaptopodin-deficient preparations, which show deficits in neuronal calcium store-mediated synaptic plasticity. Thus, we propose that TNF mediates its pleiotropic effects on synaptic plasticity in a concentration-dependent manner through signaling pathways that are modulated by intracellular calcium stores and require the presence of synaptopodin. These results demonstrate that TNF can act as mediator of metaplasticity, which is of considerable relevance in the context of brain diseases associated with increased TNF levels and alterations in synaptic plasticity. KEY MESSAGES • TNF modulates the ability of neurons to express synaptic plasticity. • High concentrations of TNF impair synaptic plasticity. • Low concentrations of TNF improve synaptic plasticity. • TNF does not affect previously established long-term potentiation. • Plasticity effects of TNF are modulated by intracellular calcium stores.
Collapse
Affiliation(s)
- Nicola Maggio
- Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, 52621, Ramat Gan, Israel. .,Department of Neurology, The Chaim Sheba Medical Center, 52621, Tel HaShomer, Israel. .,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, 52621, Tel HaShomer, Israel. .,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 52621, Tel Aviv, Israel.
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
21
|
Sharma M, Razali NB, Sajikumar S. Inhibition of G9a/GLP Complex Promotes Long-Term Potentiation and Synaptic Tagging/Capture in Hippocampal CA1 Pyramidal Neurons. Cereb Cortex 2018; 27:3161-3171. [PMID: 27252354 DOI: 10.1093/cercor/bhw170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic regulations play an important role in regulating the learning and memory processes. G9a/G9a-like protein (GLP) lysine dimethyltransferase complex controls a prominent histone H3 lysine9 dimethylation (H3K9me2) that results in transcriptional silencing of the chromatin. Here, we report that the inhibition of G9a/GLP complex by either of the substrate competitive inhibitors UNC 0638 or BIX 01294 reinforces protein synthesis-independent long-term potentiation (early-LTP) to protein synthesis-dependent long-term potentiation (late-LTP). The reinforcement effect was observed if the inhibitors were present during the induction of early-LTP and in addition when G9a/GLP complex inhibition was carried out by priming of synapses within an interval of 30 min before or after the induction of early-LTP. Surprisingly, the reinforced LTP by G9a/GLP complex inhibition was able to associate with a weak plasticity event from nearby independent synaptic populations, resulting in synaptic tagging/capture (STC). We have identified brain-derived neurotrophic factor (BDNF) as a critical plasticity protein that maintains G9a/GLP complex inhibition-mediated LTP facilitation and its STC. Our study reveals an epigenetic mechanism for promoting plasticity and associativity by G9a/GLP complex inhibition, and it may engender a promising epigenetic target for enhancing memory in neural networks.
Collapse
Affiliation(s)
- Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| | - Nuralyah Bte Razali
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
22
|
Park AJ, Havekes R, Fu X, Hansen R, Tudor JC, Peixoto L, Li Z, Wu YC, Poplawski SG, Baraban JM, Abel T. Learning induces the translin/trax RNase complex to express activin receptors for persistent memory. eLife 2017; 6. [PMID: 28927503 PMCID: PMC5606845 DOI: 10.7554/elife.27872] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Xiuping Fu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Rolf Hansen
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Lucia Peixoto
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Zhi Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Yen-Ching Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Shane G Poplawski
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jay M Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, United States.,Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
23
|
Briggs CA, Chakroborty S, Stutzmann GE. Emerging pathways driving early synaptic pathology in Alzheimer's disease. Biochem Biophys Res Commun 2016; 483:988-997. [PMID: 27659710 DOI: 10.1016/j.bbrc.2016.09.088] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/25/2022]
Abstract
The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aβ and APP processing, in concert with poor association between brain Aβ levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis. In this review, we integrate new insights into one of the earliest described signaling abnormalities in AD pathogenesis, namely intracellular Ca2+ signaling disruptions, and focus on its role in driving synaptic deficits - which is the feature that does correlate with AD-associated memory loss. Excess Ca2+release from intracellular stores such as the endoplasmic reticulum (ER) has been well-described in cellular and animal models of AD, as well as human patients, and here we expand upon recent developments in ER-localized release channels such as the IP3R and RyR, and the recent emphasis on RyR2. Consistent with ER Ca2+ mishandling in AD are recent findings implicating aspects of SOCE, such as STIM2 function, and TRPC3 and TRPC6 levels. Other Ca2+-regulated organelles important in signaling and protein handling are brought into the discussion, with new perspectives on lysosomal regulation. These early signaling abnormalities are discussed in the context of synaptic pathophysiology and disruptions in synaptic plasticity with a particular emphasis on short-term plasticity deficits. Overall, we aim to update and expand the list of early neuronal signaling abnormalities implicated in AD pathogenesis, identify specific channels and organelles involved, and link these to proximal synaptic impairments driving the memory loss in AD. This is all within the broader goal of identifying novel therapeutic targets to preserve cognitive function in AD.
Collapse
Affiliation(s)
- Clark A Briggs
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
24
|
Segal M, Korkotian E. Roles of Calcium Stores and Store-Operated Channels in Plasticity of Dendritic Spines. Neuroscientist 2015; 22:477-85. [PMID: 26511041 DOI: 10.1177/1073858415613277] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium stores in the endoplasmic reticulum play important roles in a variety of mammalian cellular functions. However, the multitude of calcium-handling machineries in neurons, including voltage- and ligand-gated channels, calcium-binding proteins, pumps, and transporters, as well as the rapid mobility of calcium ions among different cellular compartments hampered the singling out of calcium stores as a pivotal player in synaptic plasticity. Despite these methodological obstacles, novel molecular and imaging tools afforded a rapid progress in deciphering the role of specific calcium stores in neuronal functions. In the present review, we will address several key issues related to the involvement of ryanodine receptors and the calcium entry channel Orai1 in dendritic spine development and plasticity as well as their derailing in neurodegenerative diseases.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | - Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| |
Collapse
|
25
|
Maity S, Rah S, Sonenberg N, Gkogkas CG, Nguyen PV. Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs. ACTA ACUST UNITED AC 2015; 22:499-508. [PMID: 26373828 PMCID: PMC4579357 DOI: 10.1101/lm.039222.115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Norepinephrine (NE) is a key modulator of synaptic plasticity in the hippocampus, a brain structure crucially involved in memory formation. NE boosts synaptic plasticity mostly through initiation of signaling cascades downstream from beta (β)-adrenergic receptors (β-ARs). Previous studies demonstrated that a β-adrenergic receptor agonist, isoproterenol, can modify the threshold for long-term potentiation (LTP), a putative cellular mechanism for learning and memory, in a process known as “metaplasticity.” Metaplasticity is the ability of synaptic plasticity to be modified by prior experience. We asked whether NE itself could engage metaplastic mechanisms in area CA1 of mouse hippocampal slices. Using extracellular field potential recording and stimulation, we show that application of NE (10 µM), which did not alter basal synaptic strength, enhances the future maintenance of LTP elicited by subthreshold, high-frequency stimulation (HFS: 1 × 100 Hz, 1 sec). HFS applied 30 min after NE washout induced long-lasting (>4 h) LTP, which was significantly extended in duration relative to HFS alone. This NE-induced metaplasticity required β1-AR activation, as coapplication of the β1-receptor antagonist CGP-20712A (1 µM) attenuated maintenance of LTP. We also found that NE-mediated metaplasticity was translation- and transcription-dependent. Polysomal profiles of CA1 revealed increased translation rates for specific mRNAs during NE-induced metaplasticity. Thus, activation of β-ARs by NE primes synapses for future long-lasting plasticity on time scales extending beyond fast synaptic transmission; this may facilitate neural information processing and the subsequent formation of lasting memories.
Collapse
Affiliation(s)
- Sabyasachi Maity
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - Sean Rah
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Christos G Gkogkas
- Patrick Wild Centre and Centre for Integrative Biology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Peter V Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada Department of Psychiatry, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada Neuroscience and Mental Health Institute, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
26
|
Abstract
Synaptic plasticity, a key process for memory formation, manifests itself across different time scales ranging from a few seconds for plasticity induction up to hours or even years for consolidation and memory retention. We developed a three-layered model of synaptic consolidation that accounts for data across a large range of experimental conditions. Consolidation occurs in the model through the interaction of the synaptic efficacy with a scaffolding variable by a read-write process mediated by a tagging-related variable. Plasticity-inducing stimuli modify the efficacy, but the state of tag and scaffold can only change if a write protection mechanism is overcome. Our model makes a link from depotentiation protocols in vitro to behavioral results regarding the influence of novelty on inhibitory avoidance memory in rats.
Collapse
|
27
|
Maggio N, Vlachos A. Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 2014; 281:135-46. [PMID: 25264032 DOI: 10.1016/j.neuroscience.2014.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology.
Collapse
Affiliation(s)
- N Maggio
- Talpiot Medical Leadership Program, Department of Neurology, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - A Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
28
|
Paula-Lima AC, Adasme T, Hidalgo C. Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 2014; 21:892-914. [PMID: 24410659 DOI: 10.1089/ars.2013.5796] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience. RECENT ADVANCES This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus. CRITICAL ISSUES Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD). FUTURE DIRECTIONS Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.
Collapse
Affiliation(s)
- Andrea C Paula-Lima
- 1 Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile , Santiago, Chile
| | | | | |
Collapse
|
29
|
Competition between recently potentiated synaptic inputs reveals a winner-take-all phase of synaptic tagging and capture. Proc Natl Acad Sci U S A 2014; 111:12217-21. [PMID: 25092326 DOI: 10.1073/pnas.1403643111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Canonical models suggest that mechanisms of long-term memory consist of a synapse-specific, protein synthesis-independent induction phase (changes in synaptic weights/temporary tagging of such synapses) and, within adjacent dendritic compartments, a protein synthesis-dependent distribution phase that may accompany or immediately precede induction and whose protein products enable consolidation through synaptic capture. We now report that this distribution phase is competitive in a "winner-take-all" fashion when synapses potentiated at induction compete with each other for plasticity-related proteins. This finding highlights the importance of synaptic competition in creating stable long-lasting memory in neural networks without disruption.
Collapse
|
30
|
Segal M, Korkotian E. Endoplasmic reticulum calcium stores in dendritic spines. Front Neuroanat 2014; 8:64. [PMID: 25071469 PMCID: PMC4089118 DOI: 10.3389/fnana.2014.00064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022] Open
Abstract
Despite decades of research, the role of calcium stores in dendritic spines structure, function and plasticity is still debated. The reasons for this may have to do with the multitude of overlapping calcium handling machineries in the neuron, including stores, voltage and ligand gated channels, pumps and transporters. Also, different cells in the brain are endowed with calcium stores that are activated by different receptor types, and their differential compartmentalization in dendrites, spines and presynaptic terminals complicates their analysis. In the present review we address several key issues, including the role of calcium stores in synaptic plasticity, their role during development, in stress and in neurodegenerative diseases. Apparently, there is increasing evidence for a crucial role of calcium stores, especially of the ryanodine species, in synaptic plasticity and neuronal survival.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizman Institute Rehovot, Israel
| | - Eduard Korkotian
- Department of Neurobiology, The Weizman Institute Rehovot, Israel
| |
Collapse
|
31
|
Abstract
Recent work showed that unsupervised learning of a complex environment activates synaptic proteins essential for the stabilization of long-term potentiation (LTP). The present study used automated methods to construct maps of excitatory synapses associated with high concentrations of one of these LTP-related proteins [CaMKII phosphorylated at T286/287, (pCaMKII)]. Labeling patterns across 42 sampling zones covering entire cross sections through rostral hippocampus were assessed for two groups of rats that explored a novel two-room arena for 30 min, with or without a response contingency involving mildly aversive cues. The number of pCaMKII-immunopositive (+) synapses was highly correlated between the two groups for the 21 sampling zones covering the dentate gyrus, CA3c/hilus, and apical dendrites of field CA1, but not for the remainder of the cross section. The distribution of pCaMKII+ synapses in the large uncorrelated segment differed markedly between the groups. Subtracting home-cage values removed high scores (i.e., sampling zones with a high percentage of pCaMKII+ contacts) in the negative contingency group, but not in the free-exploration animals. Three sites in the latter had values that were markedly elevated above other fields. These mapping results suggest that encoding of a form of memory that is dependent upon rostral hippocampus reliably occurs at high levels in discrete anatomical zones, and that this regionally differentiated response is blocked when animals are inhibited from freely exploring the environment by the introduction of a mildly aversive stimulus.
Collapse
|
32
|
de Carvalho Myskiw J, Furini CRG, Benetti F, Izquierdo I. Hippocampal molecular mechanisms involved in the enhancement of fear extinction caused by exposure to novelty. Proc Natl Acad Sci U S A 2014; 111:4572-7. [PMID: 24591622 PMCID: PMC3970530 DOI: 10.1073/pnas.1400423111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Exposure to a novel environment enhances the extinction of contextual fear. This has been explained by tagging of the hippocampal synapses used in extinction, followed by capture of proteins from the synapses that process novelty. The effect is blocked by the inhibition of hippocampal protein synthesis following the novelty or the extinction. Here, we show that it can also be blocked by the postextinction or postnovelty intrahippocampal infusion of the NMDA receptor antagonist 2-amino-5-phosphono pentanoic acid; the inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII), autocamtide-2-related inhibitory peptide; or the blocker of L-voltage-dependent calcium channels (L-VDCCs), nifedipine. Inhibition of proteasomal protein degradation by β-lactacystin has no effect of its own on extinction or on the influence of novelty thereon but blocks the inhibitory effects of all the other substances except that of rapamycin on extinction, suggesting that their action depends on concomitant synaptic protein turnover. Thus, the tagging-and-capture mechanism through which novelty enhances fear extinction involves more molecular processes than hitherto thought: NMDA receptors, L-VDCCs, CaMKII, and synaptic protein turnover.
Collapse
Affiliation(s)
- Jociane de Carvalho Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Cristiane Regina Guerino Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Fernando Benetti
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
33
|
Abstract
Metaplasticity refers to the modification of plasticity induction (direction, magnitude, duration) by previous activity of the same postsynaptic neuron or neuronal network. In recent years evidence from animal studies has been accumulated that metaplasticity significantly contributes to network function and behavior. Here, we review the evidence for metaplasticity at the system level of the human cortex as investigated by non-invasive brain stimulation. These studies support the notion that metaplasticity is also operative in the human brain and is mostly homeostatic in nature, that is, keeping network activity within a physiological range. However, non-homeostatic metaplasticity has also been described, which can increase non-invasive brain stimulation-induced aftereffects on cortical excitability, or learning. Current evidence further suggests that aberrant metaplasticity may underlie some neurological and psychiatric diseases. Finally, first proof-of-principle studies show that the concept of metaplasticity can be harnessed for treatment of patients suffering from brain diseases.
Collapse
Affiliation(s)
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Navakkode S, Korte M. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis. Neuropharmacology 2014; 79:525-33. [PMID: 24412673 DOI: 10.1016/j.neuropharm.2013.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 12/30/2022]
Abstract
Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany
| | - Martin Korte
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany.
| |
Collapse
|
35
|
Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2013; 76 Pt C:610-27. [PMID: 23791959 DOI: 10.1016/j.neuropharm.2013.05.043] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
|
36
|
Abstract
In isolated hippocampal slices, decaying long-term potentiation (LTP) can be stabilized, and converted to late-LTP lasting many hours, by prior or subsequent strong high-frequency tetanization of an independent input to a common population of neurons—a phenomenon known as ‘synaptic tagging and capture’. Here we show that the same phenomenon occurs in the intact rat. Late-LTP can be induced in CA1 during the inhibition of protein synthesis if an independent input is strongly tetanized beforehand. Conversely, declining early-LTP induced by weak tetanization can be converted into lasting late-LTP by subsequent strong tetanization of a separate input. These findings indicate that synaptic tagging and capture is not limited to in vitro preparations; the past and future activity of neurons plays a critical role in determining the persistence of synaptic changes in the living animal, thus providing a bridge between cellular studies of protein-synthesis-dependent synaptic potentiation and behavioural studies of memory persistence.
Collapse
|
37
|
Hulme SR, Jones OD, Abraham WC. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 2013; 36:353-62. [PMID: 23602195 DOI: 10.1016/j.tins.2013.03.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/01/2022]
Abstract
Since its initial conceptualisation, metaplasticity has come to encompass a wide variety of phenomena and mechanisms, creating the important challenge of understanding how they contribute to network function and behaviour. Here, we present a framework for considering potential roles of metaplasticity across three domains of function. First, metaplasticity appears ideally placed to prepare for subsequent learning by either enhancing learning ability generally or by preparing neuronal networks to encode specific content. Second, metaplasticity can homeostatically regulate synaptic plasticity, and this likely has important behavioural consequences by stabilising synaptic weights while ensuring the ongoing availability of synaptic plasticity. Finally, we discuss emerging evidence that metaplasticity mechanisms may play a role in disease causally and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Sarah R Hulme
- Department of Psychology and Brain Health Research Centre, Box 56, University of Otago, Dunedin, 9054, New Zealand
| | | | | |
Collapse
|
38
|
Direct association of the reticulon protein RTN1A with the ryanodine receptor 2 in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1421-33. [PMID: 23454728 PMCID: PMC3636420 DOI: 10.1016/j.bbamcr.2013.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
RTN1A is a reticulon protein with predominant localization in the endoplasmic reticulum (ER). It was previously shown that RTN1A is expressed in neurons of the mammalian central nervous system but functional information remains sparse. To elucidate the neuronal function of RTN1A, we chose to focus our investigation on identifying possible novel binding partners specifically interacting with the unique N-terminus of RTN1A. Using a nonbiased approach involving GST pull-downs and MS analysis, we identified the intracellular calcium release channel ryanodine receptor 2 (RyR2) as a direct binding partner of RTN1A. The RyR2 binding site was localized to a highly conserved 150-amino acid residue region. RTN1A displays high preference for RyR2 binding in vitro and in vivo and both proteins colocalize in hippocampal neurons and Purkinje cells. Moreover, we demonstrate the precise subcellular localization of RTN1A in Purkinje cells and show that RTN1A inhibits RyR channels in [(3)H]ryanodine binding studies on brain synaptosomes. In a functional assay, RTN1A significantly reduced RyR2-mediated Ca(2+) oscillations. Thus, RTN1A and RyR2 might act as functional partners in the regulation of cytosolic Ca(2+) dynamics the in neurons.
Collapse
|
39
|
Thomas RC. Calcium content of the endoplasmic reticulum of snail neurones releasable by caffeine. Cell Calcium 2013. [DOI: 10.1016/j.ceca.2012.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S. Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. ACTA ACUST UNITED AC 2012; 24:353-63. [PMID: 23048020 DOI: 10.1093/cercor/bhs315] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One conceptual mechanism for the induction of associative long-term memory is that a synaptic tag, set by a weak event, can capture plasticity-related proteins from a nearby strong input, thus enabling associativity between the 2 (synaptic tagging and capture, STC). So far, STC has been observed for only a limited time of 60 min. Nevertheless, association of weak memory forms can occur beyond this period and its mechanism is not well understood. Here we report that metaplasticity induced by ryanodine receptor activation or synaptic activation of metabotropic glutamate receptors prolongs the durability of the synaptic tag, thus extending the time window for associative interactions mediating storage of long-term memory. We provide evidence that such metaplasticity alters the mechanisms of STC from a CaMKII-mediated (in non-primed STC) to a protein kinase Mzeta (PKMζ)-mediated process (in primed STC). Thus the association of weak synapses with strong synapses in the "late" stage of associative memory formation occurs only through metaplasticity. The results also reveal that the short-lived, CaMKII-mediated tag may contribute to a mechanism for a fragile form of memory while metaplasticity enables a PKMζ-mediated synaptic tag capable of prolonged interactions that induce a more stable form of memory that is resistant to reversal.
Collapse
Affiliation(s)
- Qin Li
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Sacktor TC. Memory maintenance by PKMζ--an evolutionary perspective. Mol Brain 2012; 5:31. [PMID: 22986281 PMCID: PMC3517905 DOI: 10.1186/1756-6606-5-31] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022] Open
Abstract
Long-term memory is believed to be maintained by persistent modifications of synaptic transmission within the neural circuits that mediate behavior. Thus, long-term potentiation (LTP) is widely studied as a potential physiological basis for the persistent enhancement of synaptic strength that might sustain memory. Whereas the molecular mechanisms that initially induce LTP have been extensively characterized, the mechanisms that persistently maintain the potentiation have not. Recently, however, a candidate molecular mechanism linking the maintenance of LTP and the storage of long-term memory has been identified. The persistent activity of the autonomously active, atypical protein kinase C (aPKC) isoform, PKMζ, is both necessary and sufficient for maintaining LTP. Furthermore, blocking PKMζ activity by pharmacological or dominant negative inhibitors disrupts previously stored long-term memories in a variety of neural circuits, including spatial and trace memories in the hippocampus, aversive memories in the basolateral amygdala, appetitive memories in the nucleus accumbens, habit memory in the dorsal lateral striatum, and elementary associations, extinction, and skilled sensorimotor memories in the neocortex. During LTP and memory formation, PKMζ is synthesized de novo as a constitutively active kinase. This molecular mechanism for memory storage is evolutionarily conserved. PKMζ formation through new protein synthesis likely originated in early vertebrates ~500 million years ago during the Cambrian period. Other mechanisms for forming persistently active PKM from aPKC are found in invertebrates, and inhibiting this atypical PKM disrupts long-term memory in the invertebrate model systems Drosophila melanogaster and Aplysia californica. Conversely, overexpressing PKMζ enhances memory in flies and rodents. PKMζ persistently enhances synaptic strength by maintaining increased numbers of AMPA receptors at postsynaptic sites, a mechanism that might have evolved from the general function of aPKC in trafficking membrane proteins to the apical compartment of polarized cells. This mechanism of memory may have had adaptive advantages because it is both stable and reversible, as demonstrated by the downregulation of experience-dependent, long-term increases in PKMζ after extinction and reconsolidation blockade that attenuate learned behavior. Thus, PKMζ, the “working end” of LTP, is a component of an evolutionarily conserved molecular mechanism for the persistent, yet flexible storage of long-term memory.
Collapse
Affiliation(s)
- Todd Charlton Sacktor
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 10705, USA.
| |
Collapse
|
42
|
Navakkode S, Sajikumar S, Korte M, Soong TW. Dopamine induces LTP differentially in apical and basal dendrites through BDNF and voltage-dependent calcium channels. Learn Mem 2012; 19:294-9. [DOI: 10.1101/lm.026203.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
44
|
Aberg KC, Herzog MH. About similar characteristics of visual perceptual learning and LTP. Vision Res 2012; 61:100-6. [PMID: 22289647 DOI: 10.1016/j.visres.2011.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022]
Abstract
Perceptual learning is an implicit form of learning which induces long-lasting perceptual enhancements. Perceptual learning shows intriguing characteristics. For example, a minimal number of trials per session is needed for learning and the interleaved presentation of more than one stimulus type can hinder learning. Here, we show that these and other characteristics of perceptual learning are very similar to characteristics of long-term potentiation (LTP), the basic mechanism of memory formation. We outline these characteristics and discuss results of electrophysiological experiments which indirectly link LTP and perceptual learning.
Collapse
Affiliation(s)
- Kristoffer C Aberg
- Laboratory of Psychophysics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| | | |
Collapse
|
45
|
Grigoryan G, Korkotian E, Segal M. Selective facilitation of LTP in the ventral hippocampus by calcium stores. Hippocampus 2012; 22:1635-44. [PMID: 22271636 DOI: 10.1002/hipo.22000] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2011] [Indexed: 12/30/2022]
Abstract
The effects of low concentrations of caffeine and ryanodine on field excitatory postsynaptic potentials (EPSPs) and long-term potentiation (LTP) were studied in CA1 region of slices of dorsal and ventral hippocampus (DH and VH, respectively). There was a striking difference between the two regions in the magnitude of effect of both drugs, as well as the ability to interact with a tetanic stimulation to produce LTP. Low concentration of caffeine (1 mM) produced a postsynaptic increase in the slope of population EPSPs in VH, and facilitated LTP in this region. Low concentration of ryanodine (0.2 μM) was able to convert short-term potentiation (STP) to LTP in VH only. These effects are postsynaptic and they reflect a higher concentration of ryanodine receptors (RyRs) in the VH compared to the DH.
Collapse
Affiliation(s)
- Gayane Grigoryan
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | | | | |
Collapse
|
46
|
Ryanodine Receptor Physiology and Its Role in Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:217-34. [DOI: 10.1007/978-94-007-2888-2_9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Sajikumar S, Korte M. Different compartments of apical CA1 dendrites have different plasticity thresholds for expressing synaptic tagging and capture. Learn Mem 2011; 18:327-31. [PMID: 21511882 DOI: 10.1101/lm.2095811] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The consolidation process from short- to long-term memory depends on the type of stimulation received from a specific neuronal network and on the cooperativity and associativity between different synaptic inputs converging onto a specific neuron. We show here that the plasticity thresholds for inducing LTP are different in proximal and distal compartments of apical dendrites. In addition, we show interactions between the proximal and distal compartments of the apical dendrites by providing evidence that even a subthreshold stimulus can activate plasticity-related proteins, such as PKMζ, enabling associativity between two distinct dendritic compartments in apical dendrites to occur.
Collapse
Affiliation(s)
- Sreedharan Sajikumar
- Division of Cellular Neurobiology, Zoological Institute, TU, Braunschweig D-38106, Germany
| | | |
Collapse
|
48
|
Riquelme D, Alvarez A, Leal N, Adasme T, Espinoza I, Valdés JA, Troncoso N, Hartel S, Hidalgo J, Hidalgo C, Carrasco MA. High-frequency field stimulation of primary neurons enhances ryanodine receptor-mediated Ca2+ release and generates hydrogen peroxide, which jointly stimulate NF-κB activity. Antioxid Redox Signal 2011; 14:1245-59. [PMID: 20836702 DOI: 10.1089/ars.2010.3238] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuronal electrical activity increases intracellular Ca(2+) concentration and generates reactive oxygen species. Here, we show that high frequency field stimulation of primary hippocampal neurons generated Ca(2+) signals with an early and a late component, and promoted hydrogen peroxide generation via a neuronal NADPH oxidase. Hydrogen peroxide generation required both Ca(2+) entry through N-methyl-D-aspartate receptors and Ca(2+) release mediated by ryanodine receptors (RyR). Field stimulation also enhanced nuclear translocation of the NF-κB p65 protein and NF-κB -dependent transcription, and increased c-fos mRNA and type-2 RyR protein content. Preincubation with inhibitory ryanodine or with the antioxidant N-acetyl L-cysteine abolished the increase in hydrogen peroxide generation and the late Ca(2+) signal component induced by electrical stimulation. Primary cortical cells behaved similarly as primary hippocampal cells. Exogenous hydrogen peroxide also activated NF-κB-dependent transcription in hippocampal neurons; inhibitory ryanodine prevented this effect. Selective inhibition of the NADPH oxidase or N-acetyl L-cysteine also prevented the enhanced translocation of p65 in hippocampal cells, while N-acetyl L-cysteine abolished the increase in RyR2 protein content induced by high frequency stimulation. In conclusion, the present results show that electrical stimulation induced reciprocal activation of ryanodine receptor-mediated Ca(2+) signals and hydrogen peroxide generation, which stimulated jointly NF-κB activity.
Collapse
Affiliation(s)
- Denise Riquelme
- Center of Molecular Studies of the Cell, Institute of Biomedical Sciences Programs, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Navakkode S, Korte M. Cooperation between cholinergic and glutamatergic receptors are essential to induce BDNF-dependent long-lasting memory storage. Hippocampus 2011; 22:335-46. [PMID: 21254300 DOI: 10.1002/hipo.20902] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2010] [Indexed: 11/06/2022]
Abstract
The induction of long-lasting memory storage depends on the behavioral state of humans and animals. This behavioral state is mediated by neuromodulatory systems, like the cholinergic-septum-hippocampal circuit. Cholinergic neurotransmission is known to affect short-term activity-dependent plasticity in various brain areas, including the hippocampus. We could show here that a chemical late-long-term potentiation (LTP) could be induced in the basal dendrites by the coapplication of the cholinergic receptor agonist, carbachol, and the phosphodiesterase type 4 (PDE4)-inhibitor, rolipram at a concentration that by itself has no effect on basal synaptic transmission. This chemical late-LTP was similar to electrical late-LTP in that it is dependent on protein synthesis, cAMP, and NMDA-receptor activation. Occlusion experiments demonstrated that saturation of three tetanus (TET) late-LTP occluded carbachol-rolipram-LTP, indicating that they share similar properties. This cholinergic modulation of LTP in the basal dendrites was mediated by both muscarinic and nicotinic receptors. Carbachol also reinforced an early form of LTP into a long-lasting LTP. Most interestingly, these two forms of LTP could participate in the functional plasticity processes like synaptic tagging and capture (STC). In addition, we studied whether a cooperation between cholinergic and glutamatergic receptors is essential to induce functional synaptic-plasticity. Indeed, we could show that coactivation of acetylcholine/PDE4 inhibition must coincide with the release of glutamate to induce a long-lasting plasticity, showing a functional convergence of the two neuromodulatory systems. Moreover, we could also show that both chemical late-LTP and carbachol-reinforced early-LTP-induced STC processes are mediated by the neurotrophin BDNF.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Division of Cellular Neurobiology, Zoology Institute, TU, Braunschweig, D-38106 Germany
| | | |
Collapse
|
50
|
Metaplasticity governs compartmentalization of synaptic tagging and capture through brain-derived neurotrophic factor (BDNF) and protein kinase Mzeta (PKMzeta). Proc Natl Acad Sci U S A 2011; 108:2551-6. [PMID: 21248226 DOI: 10.1073/pnas.1016849108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activity-dependent synaptic plasticity is widely accepted to be the cellular correlate of learning and memory. It is believed that associativity between different synaptic inputs can transform short-lasting forms of synaptic plasticity (<3 h) to long-lasting ones. Synaptic tagging and capture (STC) might be able to explain this heterosynaptic support, because it distinguishes between local mechanisms of synaptic tags and cell-wide mechanisms responsible for the synthesis of plasticity-related proteins (PRPs). STC initiate storage processes only when the strength of the synaptic tag and the local concentration of essential proteins are above a certain plasticity threshold. We present evidence that priming stimulation through the activation of metabotropic glutamate receptors substantially increases the "range of threshold" for functional plasticity by producing protein kinase Mζ (PKMζ) as a PRP through local protein synthesis. In addition, our results implicate BDNF as a PRP which is mandatory for establishing cross-capture between synaptic strengthening and weakening, whereas the newly generated PKMζ specifically establishes synaptic tagging of long-term potentiation. Most intriguingly, we show here that STC are confined to specific dendritic compartments and that these compartments contain "synaptic clusters" with different plasticity thresholds. Our results suggest that within a dendritic compartment itself a homeostatic process exists to adjust plasticity thresholds. The range in which these clusters operate can be altered by processes of metaplasticity, which will operate on the cluster independently of other clusters at the same dendrite. These clusters will then prepare the synaptic network to form long-term memories.
Collapse
|