1
|
Chen J, Fang Z, Zhang X, Zheng Y, Chen Z. How Fear Memory is Updated: From Reconsolidation to Extinction? Neurosci Bull 2025:10.1007/s12264-025-01367-7. [PMID: 40205305 DOI: 10.1007/s12264-025-01367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/21/2024] [Indexed: 04/11/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by traumatic past experiences, rooted in the neurocircuits of fear memory formation. Memory processes include encoding, storing, and recalling to forgetting, suggesting the potential to erase fear memories through timely interventions. Conventional strategies such as medications or electroconvulsive therapy often fail to provide permanent relief and come with significant side-effects. This review explores how fear memory may be erased, particularly focusing on the mnemonic phases of reconsolidation and extinction. Reconsolidation strengthens memory, while extinction weakens it. Interfering with memory reconsolidation could diminish the fear response. Alternatively, the extinction of acquired memory could reduce the fear memory response. This review summarizes experimental animal models of PTSD, examines the nature and epidemiology of reconsolidation to extinction, and discusses current behavioral therapy aimed at transforming fear memories to treat PTSD. In sum, understanding how fear memory updates holds significant promise for PTSD treatment.
Collapse
Affiliation(s)
- Jiahui Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuowen Fang
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaolan Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
3
|
Mello e Souza T. Unraveling molecular and system processes for fear memory. Neuroscience 2022; 497:14-29. [DOI: 10.1016/j.neuroscience.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
|
4
|
Ojea Ramos S, Andina M, Romano A, Feld M. Two spaced training trials induce associative ERK-dependent long term memory in Neohelice granulata. Behav Brain Res 2021; 403:113132. [PMID: 33485873 DOI: 10.1016/j.bbr.2021.113132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
Memory formation depends upon several parametric training conditions. Among them, trial number and inter-trial interval (ITI) are key factors to induce long-term retention. However, it is still unclear how individual training trials contribute to mechanisms underlying memory formation and stabilization. Contextual conditioning in Neohelice granulata has traditionally elicited associative long-term memory (LTM) after 15 spaced (ITI = 3 min) trials. Here, we show that LTM in crabs can be induced after only two training trials by increasing the ITI to 45 min (2t-LTM) and maintaining the same training duration as in traditional protocols. This newly observed LTM was preserved for at least 96 h, exhibiting protein synthesis dependence during consolidation and reconsolidation as well as context-specificity. Moreover, we demonstrate that 2t-LTM depends on inter-trial and post-training ERK activation showing a faster phosphorylation after the second trial compared to the first one. In summary, we present a new training protocol in crabs through a reduced number of trials showing associative features similar to traditional spaced training. This novel protocol allows for intra-training manipulation and the assessment of individual trial contribution to LTM formation.
Collapse
Affiliation(s)
- Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina, and Departamento de Fisiología, Biología Molecular y Celular "Dr Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Andina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina, and Departamento de Fisiología, Biología Molecular y Celular "Dr Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Arturo Romano
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina, and Departamento de Fisiología, Biología Molecular y Celular "Dr Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Feld
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina, and Departamento de Fisiología, Biología Molecular y Celular "Dr Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Chalkia A, Schroyens N, Leng L, Vanhasbroeck N, Zenses AK, Van Oudenhove L, Beckers T. No persistent attenuation of fear memories in humans: A registered replication of the reactivation-extinction effect. Cortex 2020; 129:496-509. [PMID: 32580869 DOI: 10.1016/j.cortex.2020.04.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/24/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
It has been proposed that memory retrieval can destabilize consolidated memories, after which they need to be reconsolidated in order to be retained. The presentation of relevant information during memory reconsolidation could then result in the modification of a destabilized memory trace, by allowing the memory trace to be updated before being reconsolidated. In line with this idea, Schiller et al. (2010) have demonstrated that memory retrieval shortly before extinction training can prevent the later recovery of conditioned fear responding that is observed after regular extinction training. Those findings have been the subject of considerable controversy, due in part to theoretical reasons but also due to a number of failures to obtain similar results in conceptual replication attempts. Here, we report the results of a highly powered, direct, independent replication of the critical conditions of Schiller et al. (2010, Experiment 1). Due to misrepresentation of the exclusion criteria in the original Schiller et al. (2010) report, data collection was considerably delayed. When we eventually managed to attain our pre-registered sample size, we found that we could not observe any benefit of reactivation-extinction over regular extinction training in preventing recovery of conditioned fear. The results of the present study, along with the mixed findings in the literature and the misreporting in Schiller et al. (2010), give cause to question whether there is robust evidence that reactivation-extinction prevents the return of fear in humans.
Collapse
Affiliation(s)
- Anastasia Chalkia
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology & Educational Sciences, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium
| | - Natalie Schroyens
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology & Educational Sciences, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium
| | - Lu Leng
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology & Educational Sciences, KU Leuven, Belgium
| | - Niels Vanhasbroeck
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology & Educational Sciences, KU Leuven, Belgium
| | - Ann-Kathrin Zenses
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology & Educational Sciences, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium
| | - Lukas Van Oudenhove
- Leuven Brain Institute, KU Leuven, Belgium; Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Centre for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Belgium
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology & Educational Sciences, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium.
| |
Collapse
|
6
|
Positive emotional induction interferes with the reconsolidation of negative autobiographical memories, in women only. Neurobiol Learn Mem 2018; 155:508-518. [PMID: 30081154 DOI: 10.1016/j.nlm.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/16/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
After reactivation, a previously consolidated memory can enter into a labile state followed by a re-stabilization process defined as reconsolidation. The aim of this study was to explore whether an existing negative autobiographical memory can be modified by using a non-invasive interference (audiovisual positive preparation) after reactivation and to determine if this effect could be dependent on the reconsolidation process. We found that the presentation of a positive inductor after a negative autobiographical memory reactivation may lead to a change in the emotional information of the original trace and that such effect can be mediated by the reconsolidation process. The modification of the memory has been shown in women only. These results suggest that a positive audiovisual induction may play a potential role in psychotherapeutic techniques for the modification of dysfunctional autobiographical memories.
Collapse
|
7
|
Merlo E, Milton AL, Everitt BJ. A Novel Retrieval-Dependent Memory Process Revealed by the Arrest of ERK1/2 Activation in the Basolateral Amygdala. J Neurosci 2018; 38:3199-3207. [PMID: 29476015 PMCID: PMC6596053 DOI: 10.1523/jneurosci.3273-17.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 02/02/2023] Open
Abstract
Fully consolidated fear memories can be maintained or inhibited by retrieval-dependent mechanisms depending on the degree of re-exposure to fear cues. Short exposures promote memory maintenance through reconsolidation, and long exposures promote inhibition through extinction. Little is known about the neural mechanisms by which increasing cue exposure overrides reconsolidation and instead triggers extinction. Using auditory fear conditioning in male rats, we analyzed the role of a molecular mechanism common to reconsolidation and extinction of fear, ERK1/2 activation within the basolateral amygdala (BLA), after intermediate conditioned stimulus (CS) exposure events. We show that an intermediate re-exposure (four CS presentations) failed to activate ERK1/2 in the BLA, suggesting the absence of reconsolidation or extinction mechanisms. Supporting this hypothesis, pharmacologically inhibiting the BLA ERK1/2-dependent signaling pathway in conjunction with four CS presentations had no effect on fear expression, and the NMDA receptor partial agonist d-cycloserine, which enhanced extinction and ERK1/2 activation in partial extinction protocols (seven CSs), had no behavioral or molecular effect when given in association with four CS presentations. These molecular and behavioral data reveal a novel retrieval-dependent memory phase occurring along the transition between conditioned fear maintenance and inhibition. CS-dependent molecular events in the BLA may arrest reconsolidation intracellular signaling mechanism in an extinction-independent manner. These findings are critical for understanding the molecular underpinnings of fear memory persistence after retrieval both in health and disease.SIGNIFICANCE STATEMENT Consolidated fear memories can be altered by retrieval-dependent mechanisms. Whereas a brief conditioned stimulus (CS) exposure promotes fear memory maintenance through reconsolidation, a prolonged exposure engages extinction and fear inhibition. The nature of this transition and whether an intermediate degree of CS exposure engages reconsolidation or extinction is unknown. We show that an intermediate cue exposure session (four CSs) produces the arrest of ERK1/2 activation in the basolateral amygdala, a common mechanism for reconsolidation and extinction. Amnestic or hypermnestic treatments given in association with four CSs had no behavioral or molecular effects, respectively. This evidence reveals a novel retrieval-dependent memory phase. Intermediate degrees of CS exposure fail to trigger reconsolidation or extinction, leaving the original memory in an insensitive state.
Collapse
Affiliation(s)
- Emiliano Merlo
- Behavioural and Clinical Neuroscience Institute and
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
8
|
Emotional memory expression is misleading: delineating transitions between memory processes. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Abstract
Scientific advances in the last decades uncovered that memory is not a stable, fixed entity. Apparently stable memories may become transiently labile and susceptible to modifications when retrieved due to the process of reconsolidation. Here, we review the initial evidence and the logic on which reconsolidation theory is based, the wide range of conditions in which it has been reported and recent findings further revealing the fascinating nature of this process. Special focus is given to conceptual issues of when and why reconsolidation happen and its possible outcomes. Last, we discuss the potential clinical implications of memory modifications by reconsolidation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill University, Montreal, Canada
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Canada.
| |
Collapse
|
10
|
Gray R, Budden-Potts D, Bourke F. Reconsolidation of Traumatic Memories for PTSD: A randomized controlled trial of 74 male veterans. Psychother Res 2017; 29:621-639. [PMID: 29241423 DOI: 10.1080/10503307.2017.1408973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Design: A randomized waitlist-controlled design (n = 74) examined the efficacy of Reconsolidation of Traumatic Memories (RTM) among male veterans with current-month flashbacks and nightmares. Volunteers were randomly assigned to immediate treatment (three 120-minute sessions of RTM), or to a 3-week waiting condition before receiving the RTM treatment. Blinded psychometricians evaluated the symptoms at intake, 2 weeks, and 6 weeks post. Wait-listed participants were re-evaluated and then treated. Sixty-five volunteers completed the treatment. Results: Of those treated, 46 (71%) lost DSM diagnosis for post-traumatic stress disorder (PTSD) by one of the following definitions: 42 persons (65%) were in complete remission (PTSD Symptom Scale Interview (PSS-I) ≤ 20 and DSM criteria not met). Four others (6%) lost the DSM diagnosis or were otherwise sub-clinical by dichotomous criteria (PSS-I < 20 and absence of flashbacks and nightmares) but non-ambiguous on the PTSD Checklist Military Version measures. Within-group RTM effect sizes (Hedges' g) for PSS-I score changes ranged from 1.45 to 2.3. The between-group comparison between the treatment group and the untreated controls was significant (p < .001) with an effect size equivalent to two standard deviations (g = 2.13; 95% CI [1.56, 2.70]). Patient satisfaction with the intervention was high. Conclusions: RTM shows promise as a brief, cost-effective intervention for PTSD characterized primarily by intrusive symptoms. Clinical or methodological significance of this article: The article provides evidence to support a fast (5 hours or fewer) robust intervention for PTSD characterized by intrusive symptoms including current-month flashbacks, nightmares, and accompanied by sympathetic arousal in response to trauma narratives. The intervention is well tolerated and has demonstrated efficacy up to one year.
Collapse
Affiliation(s)
- Richard Gray
- a The Research and Recognition Project , Corning , NY , USA
| | | | - Frank Bourke
- a The Research and Recognition Project , Corning , NY , USA
| |
Collapse
|
11
|
Schroyens N, Beckers T, Kindt M. In Search for Boundary Conditions of Reconsolidation: A Failure of Fear Memory Interference. Front Behav Neurosci 2017; 11:65. [PMID: 28469565 PMCID: PMC5395559 DOI: 10.3389/fnbeh.2017.00065] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/29/2017] [Indexed: 11/24/2022] Open
Abstract
The presentation of a fear memory cue can result in mere memory retrieval, destabilization of the reactivated memory trace, or the formation of an extinction memory. The interaction between the degree of novelty during reactivation and previous learning conditions is thought to determine the outcome of a reactivation session. This study aimed to evaluate whether contextual novelty can prevent cue-induced destabilization and disruption of a fear memory acquired by non-asymptotic learning. To this end, fear memory was reactivated in a novel context or in the original context of learning, and fear memory reactivation was followed by the administration of propranolol, an amnestic drug. Remarkably, fear memory was not impaired by post-reactivation propranolol administration or extinction training under the usual conditions used in our lab, irrespective of the reactivation context. These unexpected findings are discussed in the light of our current experimental parameters and alleged boundary conditions on memory destabilization.
Collapse
Affiliation(s)
- Natalie Schroyens
- Department of Psychology, KU LeuvenLeuven, Belgium.,Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
| | - Tom Beckers
- Department of Psychology, KU LeuvenLeuven, Belgium.,Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
| | - Merel Kindt
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
12
|
Tylee DS, Gray R, Glatt SJ, Bourke F. Evaluation of the reconsolidation of traumatic memories protocol for the treatment of PTSD: a randomized, wait-list-controlled trial. JOURNAL OF MILITARY VETERAN AND FAMILY HEALTH 2017. [DOI: 10.3138/jmvfh.4120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Richard Gray
- Research and Recognition Project, Corning, New York, USA
| | | | - Frank Bourke
- Research and Recognition Project, Corning, New York, USA
| |
Collapse
|
13
|
Elsey JWB, Kindt M. Tackling maladaptive memories through reconsolidation: From neural to clinical science. Neurobiol Learn Mem 2017; 142:108-117. [PMID: 28302564 DOI: 10.1016/j.nlm.2017.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/20/2022]
Abstract
Behavioral neuroscience has greatly informed how we understand the formation, persistence, and plasticity of memory. Research has demonstrated that memory reactivation can induce a labile period, during which previously consolidated memories are sensitive to change, and in need of restabilization. This process is known as reconsolidation. Such findings have advanced not only our basic understanding of memory processes, but also hint at the prospect of harnessing these insights for the development of a new generation of treatments for disorders of emotional memory. However, even in simple experimental models, the conditions for inducing memory reconsolidation are complex: memory labilization appears to result from the interplay of learning history, reactivation, and also individual differences, posing difficulties for the translation of basic experimental research into effective clinical interventions. In this paper, we review a selection of influential animal and human research on memory reconsolidation to illustrate key insights these studies afford. We then consider how these findings can inform the development of new treatment approaches, with a particular focus on the transition of memory from reactivation, to reconsolidation, to new memory formation, as well as highlighting possible limitations of experimental models. If the challenges of translational research can be overcome, and if reconsolidation-based procedures become a viable treatment option, then they would be one of the first mental health treatments to be directly derived from basic neuroscience research. This would surely be a triumph for the scientific study of mind and brain.
Collapse
Affiliation(s)
- James W B Elsey
- Experimental and Clinical Psychology at the University of Amsterdam, 129B Nieuwe Achtergracht, 1018WS Amsterdam, Netherlands
| | - Merel Kindt
- Experimental and Clinical Psychology at the University of Amsterdam, 129B Nieuwe Achtergracht, 1018WS Amsterdam, Netherlands.
| |
Collapse
|
14
|
Chesworth R, Corbit LH. Recent developments in the behavioural and pharmacological enhancement of extinction of drug seeking. Addict Biol 2017; 22:3-43. [PMID: 26687226 DOI: 10.1111/adb.12337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/13/2015] [Accepted: 10/28/2015] [Indexed: 01/17/2023]
Abstract
One of the principal barriers to overcoming addiction is the propensity to relapse, even after months or years of abstinence. Relapse can be precipitated by cues and contexts associated with drug use; thus, decreasing the conditioned properties of these cues and contexts may assist in preventing relapse. The predictive power of drug cues and contexts can be reduced by repeatedly presenting them in the absence of the drug reinforcer, a process known as extinction. The potential of extinction to limit relapse has generated considerable interest and research over the past few decades. While pre-clinical animal models suggest extinction learning assists relapse prevention, treatment efficacy is often lacking when extinction learning principles are translated into clinical trials. Conklin and Tiffany (Addiction, 2002) suggest the lack of efficacy in clinical practice may be due to limited translation of procedures demonstrated through animal research and propose several methodological improvements to enhance extinction learning for drug addiction. This review will examine recent advances in the behavioural and pharmacological manipulation of extinction learning, based on research from pre-clinical models. In addition, the translation of pre-clinical findings-both those suggested by Conklin and Tiffany () and novel demonstrations from the past 13 years-into clinical trials and the efficacy of these methods in reducing craving and relapse, where available, will be discussed. Finally, we highlight areas where promising pre-clinical models have not yet been integrated into current clinical practice but, if applied, could improve upon existing behavioural and pharmacological methods.
Collapse
|
15
|
Kroes MCW, Schiller D, LeDoux JE, Phelps EA. Translational Approaches Targeting Reconsolidation. Curr Top Behav Neurosci 2016; 28:197-230. [PMID: 27240676 PMCID: PMC5646834 DOI: 10.1007/7854_2015_5008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maladaptive learned responses and memories contribute to psychiatric disorders that constitute a significant socio-economic burden. Primary treatment methods teach patients to inhibit maladaptive responses, but do not get rid of the memory itself, which explains why many patients experience a return of symptoms even after initially successful treatment. This highlights the need to discover more persistent and robust techniques to diminish maladaptive learned behaviours. One potentially promising approach is to alter the original memory, as opposed to inhibiting it, by targeting memory reconsolidation. Recent research shows that reactivating an old memory results in a period of memory flexibility and requires restorage, or reconsolidation, for the memory to persist. This reconsolidation period allows a window for modification of a specific old memory. Renewal of memory flexibility following reactivation holds great clinical potential as it enables targeting reconsolidation and changing of specific learned responses and memories that contribute to maladaptive mental states and behaviours. Here, we will review translational research on non-human animals, healthy human subjects, and clinical populations aimed at altering memories by targeting reconsolidation using biological treatments (electrical stimulation, noradrenergic antagonists) or behavioural interference (reactivation-extinction paradigm). Both approaches have been used successfully to modify aversive and appetitive memories, yet effectiveness in treating clinical populations has been limited. We will discuss that memory flexibility depends on the type of memory tested and the brain regions that underlie specific types of memory. Further, when and how we can most effectively reactivate a memory and induce flexibility is largely unclear. Finally, the development of drugs that can target reconsolidation and are safe for use in humans would optimize cross-species translations. Increasing the understanding of the mechanism and limitations of memory flexibility upon reactivation should help optimize efficacy of treatments for psychiatric patients.
Collapse
Affiliation(s)
- Marijn C W Kroes
- Department of Psychology, Centre for Neural Science, New York University, New York, NY, 10003, USA
| | - Daniela Schiller
- Department of Psychiatry and Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
| | - Joseph E LeDoux
- Department of Psychology, Centre for Neural Science, New York University, New York, NY, 10003, USA
- Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Elizabeth A Phelps
- Department of Psychology, Centre for Neural Science, New York University, New York, NY, 10003, USA
- Nathan Kline Institute, Orangeburg, NY, 10962, USA
| |
Collapse
|
16
|
Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers. Proc Natl Acad Sci U S A 2016; 113:E7957-E7965. [PMID: 27856766 DOI: 10.1073/pnas.1612418113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothesis of a common origin for the high-order memory centers in bilateral animals is based on the evidence that several key features, including gene expression and neuronal network patterns, are shared across several phyla. Central to this hypothesis is the assumption that the arthropods' higher order neuropils of the forebrain [the mushroom bodies (MBs) of insects and the hemiellipsoid bodies (HBs) of crustaceans] are homologous structures. However, even though involvement in memory processes has been repeatedly demonstrated for the MBs, direct proof of such a role in HBs is lacking. Here, through neuroanatomical and immunohistochemical analysis, we identified, in the crab Neohelice granulata, HBs that resemble the calyxless MBs found in several insects. Using in vivo calcium imaging, we revealed training-dependent changes in neuronal responses of vertical and medial lobes of the HBs. These changes were stimulus-specific, and, like in the hippocampus and MBs, the changes reflected the context attribute of the memory trace, which has been envisioned as an essential feature for the HBs. The present study constitutes functional evidence in favor of a role for the HBs in memory processes, and provides key physiological evidence supporting a common origin of the arthropods' high-order memory centers.
Collapse
|
17
|
Different dimensions of the prediction error as a decisive factor for the triggering of the reconsolidation process. Neurobiol Learn Mem 2016; 136:210-219. [PMID: 27815213 DOI: 10.1016/j.nlm.2016.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022]
Abstract
The reconsolidation process is the mechanism by which strength and/or content of consolidated memories are updated. Prediction error (PE) is the difference between the prediction made and current events. It is proposed as a necessary condition to trigger the reconsolidation process. Here we analyzed deeply the role of the PE in the associative memory reconsolidation in the crab Neohelice granulata. An incongruence between the learned temporal relationship between conditioned and unconditioned stimuli (CS-US) was enough to trigger the reconsolidation process. Moreover, after a partial reinforced training, a PE of 50% opened the possibility to labilize the consolidated memory with a reminder which included or not the US. Further, during an extinction training a small PE in the first interval between CSs was enough to trigger reconsolidation. Overall, we highlighted the relation between training history and different reactivation possibilities to recruit the process responsible of memory updating.
Collapse
|
18
|
Scholz B, Doidge AN, Barnes P, Hall J, Wilkinson LS, Thomas KL. The Regulation of Cytokine Networks in Hippocampal CA1 Differentiates Extinction from Those Required for the Maintenance of Contextual Fear Memory after Recall. PLoS One 2016; 11:e0153102. [PMID: 27224427 PMCID: PMC4880201 DOI: 10.1371/journal.pone.0153102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/23/2016] [Indexed: 12/17/2022] Open
Abstract
We investigated the distinctiveness of gene regulatory networks in CA1 associated with the extinction of contextual fear memory (CFM) after recall using Affymetrix GeneChip Rat Genome 230 2.0 Arrays. These data were compared to previously published retrieval and reconsolidation-attributed, and consolidation datasets. A stringent dual normalization and pareto-scaled orthogonal partial least-square discriminant multivariate analysis together with a jack-knifing-based cross-validation approach was used on all datasets to reduce false positives. Consolidation, retrieval and extinction were correlated with distinct patterns of gene expression 2 hours later. Extinction-related gene expression was most distinct from the profile accompanying consolidation. A highly specific feature was the discrete regulation of neuroimmunological gene expression associated with retrieval and extinction. Immunity-associated genes of the tyrosine kinase receptor TGFβ and PDGF, and TNF families' characterized extinction. Cytokines and proinflammatory interleukins of the IL-1 and IL-6 families were enriched with the no-extinction retrieval condition. We used comparative genomics to predict transcription factor binding sites in proximal promoter regions of the retrieval-regulated genes. Retrieval that does not lead to extinction was associated with NF-κB-mediated gene expression. We confirmed differential NF-κBp65 expression, and activity in all of a representative sample of our candidate genes in the no-extinction condition. The differential regulation of cytokine networks after the acquisition and retrieval of CFM identifies the important contribution that neuroimmune signalling plays in normal hippocampal function. Further, targeting cytokine signalling upon retrieval offers a therapeutic strategy to promote extinction mechanisms in human disorders characterised by dysregulation of associative memory.
Collapse
Affiliation(s)
- Birger Scholz
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Amie N. Doidge
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Philip Barnes
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- Schools of Psychology and Medicine, Behavioral Genetics Group, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
19
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Maza FJ, Locatelli FF, Delorenzi A. Neural correlates of expression-independent memories in the crab Neohelice. Neurobiol Learn Mem 2016; 131:61-75. [PMID: 26988613 DOI: 10.1016/j.nlm.2016.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
Abstract
The neural correlates of memory have been usually examined considering that memory retrieval and memory expression are interchangeable concepts. However, our studies in the crab Neohelice (Chasmagnathus) granulata and in other memory models have shown that memory expression is not necessary for memory to be re-activated and become labile. In order to examine putative neural correlates of memory in the crab Neohelice, we contrast changes induced by training in both animal's behavior and neuronal responses in the medulla terminalis using in vivo Ca(2+) imaging. Disruption of long-term memory by the amnesic agents MK-801 or scopolamine (5μg/g) blocks the learning-induced changes in the Ca(2+) responses in the medulla terminalis. Conversely, treatments that lead to an unexpressed but persistent memory (weak training protocol or scopolamine 0.1μg/g) do not block these learning-induced neural changes. The present results reveal a set of changes in the neural activity induced by training that correlates with memory persistence but not with the probability of this memory to be expressed in the long-term. In addition, the study constitutes the first in vivo evidence in favor of a role of the medulla terminalis in learning and memory in crustaceans, and provides a physiological evidence indicating that memory persistence and the probability of memory to be expressed might involve separate components of memory traces.
Collapse
Affiliation(s)
- F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| |
Collapse
|
21
|
Bentz D, Schiller D. Threat processing: models and mechanisms. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2015; 6:427-39. [DOI: 10.1002/wcs.1353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 02/07/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Dorothée Bentz
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
- Division of Cognitive Neuroscience, Department of PsychologyUniversity of BaselBaselSwitzerland
| | - Daniela Schiller
- Departments of Psychiatry and Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
22
|
de Carvalho Myskiw J, Furini CRG, Schmidt B, Ferreira F, Izquierdo I. Extinction learning, which consists of the inhibition of retrieval, can be learned without retrieval. Proc Natl Acad Sci U S A 2015; 112:E230-3. [PMID: 25550507 PMCID: PMC4299186 DOI: 10.1073/pnas.1423465112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the present study we test the hypothesis that extinction is not a consequence of retrieval in unreinforced conditioned stimulus (CS) presentation but the mere perception of the CS in the absence of a conditioned response. Animals with cannulae implanted in the CA1 region of hippocampus were subjected to extinction of contextual fear conditioning. Muscimol infused intra-CA1 before an extinction training session of contextual fear conditioning (CFC) blocks retrieval but not consolidation of extinction measured 24 h later. Additionally, this inhibition of retrieval does not affect early persistence of extinction when tested 7 d later or its spontaneous recovery after 2 wk. Furthermore, both anisomycin, an inhibitor of ribosomal protein synthesis, and rapamycin, an inhibitor of extraribosomal protein synthesis, given into the CA1, impair extinction of CFC regardless of whether its retrieval was blocked by muscimol. Therefore, retrieval performance in the first unreinforced session is not necessary for the installation, maintenance, or spontaneous recovery of extinction of CFC.
Collapse
Affiliation(s)
- Jociane de Carvalho Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Cristiane Regina Guerino Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Bianca Schmidt
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Flávia Ferreira
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Das RK, Hindocha C, Freeman TP, Lazzarino AI, Curran HV, Kamboj SK. Assessing the translational feasibility of pharmacological drug memory reconsolidation blockade with memantine in quitting smokers. Psychopharmacology (Berl) 2015; 232:3363-74. [PMID: 26093656 PMCID: PMC4537501 DOI: 10.1007/s00213-015-3990-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/01/2015] [Indexed: 11/28/2022]
Abstract
RATIONALE Preclinical reconsolidation research offers the first realistic opportunity to pharmacologically weaken the maladaptive memory structures that support relapse in drug addicts. N-methyl D-aspartate receptor (NMDAR) antagonism is a highly effective means of blocking drug memory reconsolidation. However, no research using this approach exists in human addicts. OBJECTIVES The objective of this study was to assess the potential and clinical outcomes of blocking the reconsolidation of cue-smoking memories with memantine in quitting smokers. METHODS Fifty-nine dependent and motivated to quit smokers were randomised to one of three groups receiving the following: (1) memantine with or (2) without reactivation of associative cue-smoking memories or (3) reactivation with placebo on their target quit day in a double-blind manner. Participants aimed to abstain from smoking for as long as possible. Levels of smoking and FTND score were assessed prior to intervention and up to a year later. Primary outcome was latency to relapse. Subjective craving measures and attentional bias to smoking cues were assessed in-lab. RESULTS All study groups successfully reduced their smoking up to 3 months. Memantine in combination with smoking memory reactivation did not affect any measure of smoking outcome, reactivity or attention capture to smoking cues. CONCLUSIONS Brief exposure to smoking cues with memantine did not appear to weaken these memory traces. These findings could be due to insufficient reconsolidation blockade by memantine or failure of exposure to smoking stimuli to destabilise smoking memories. Research assessing the treatment potential of reconsolidation blockade in human addicts should focus on identification of tolerable drugs that reliably block reward memory reconsolidation and retrieval procedures that reliably destabilise strongly trained memories.
Collapse
Affiliation(s)
- Ravi K Das
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, London, WC1E 6BT, UK,
| | | | | | | | | | | |
Collapse
|
24
|
Almeida-Corrêa S, Amaral OB. Memory labilization in reconsolidation and extinction--evidence for a common plasticity system? ACTA ACUST UNITED AC 2014; 108:292-306. [PMID: 25173958 DOI: 10.1016/j.jphysparis.2014.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/27/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022]
Abstract
Reconsolidation and extinction are two processes occurring upon memory retrieval that have received great attention in memory research over the last decade, partly due to their purported potential in the treatment of anxiety disorders. Due to their opposite behavioral effects, the two phenomena have usually been considered as separate entities, with few attempts to build a unified view of how both could be produced by similar mechanisms. Based on computational modeling, we have previously proposed that reconsolidation and extinction are behavioral outcomes of the same set of plasticity systems, albeit working at different synapses. One of these systems seems to be pharmacologically similar to the one involved in initial memory consolidation, and likely involves traditional Hebbian plasticity, while the second seems to be more involved with the labilization of existing memories and/or synaptic changes. In this article, we review the evidence for the existence of a plasticity system specifically involved in memory labilization, as well as its possible molecular requirements, anatomical substrates, synaptic mechanisms and physiological roles. Based on these data, we propose that the field of memory updating might ultimately benefit from a paradigm shift in which reconsolidation and extinction are viewed not as separate processes but as different instantiations of plasticity systems responsible for reinforcement and labilization of synaptic changes.
Collapse
Affiliation(s)
- Suellen Almeida-Corrêa
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil
| | - Olavo B Amaral
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Sol Fustiñana M, de la Fuente V, Federman N, Freudenthal R, Romano A. Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory. ACTA ACUST UNITED AC 2014; 21:478-87. [PMID: 25135196 PMCID: PMC4138359 DOI: 10.1101/lm.035998.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ubiquitin–proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- María Sol Fustiñana
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | | | - Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| |
Collapse
|
26
|
Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J. Memory beyond expression. ACTA ACUST UNITED AC 2014; 108:307-22. [PMID: 25102126 DOI: 10.1016/j.jphysparis.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.
Collapse
Affiliation(s)
- A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - L D Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - K Barreiro
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - V A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET (X5000HUA), Argentina.
| | - J Stehberg
- Laboratorio de Neurobiología, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Chile.
| |
Collapse
|
27
|
Post-retrieval extinction attenuates cocaine memories. Neuropsychopharmacology 2014; 39:1059-65. [PMID: 24257156 PMCID: PMC3957116 DOI: 10.1038/npp.2013.323] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/08/2022]
Abstract
Recent studies have shown that post-retrieval extinction training attenuates fear and reward-related memories in both humans and rodents. This noninvasive, behavioral approach has the potential to be used in clinical settings to treat maladaptive memories that underlie several psychiatric disorders, including drug addiction. However, few studies to date have used a post-retrieval extinction approach to attenuate addiction-related memories. In the current study, we attempted to disrupt cocaine-related memories by using the post-retrieval extinction paradigm in male Sprague Dawley rats. Results revealed that starting extinction training 1 h after cocaine contextual memory was retrieved significantly attenuated cocaine-primed reinstatement of conditioned place preference (CPP) and relapse of cocaine CPP (drug-free and cocaine-primed) following 30 days of abstinence. However, animals that did not retrieve the contextual cocaine memory before extinction training, or animals that began extinction training 24 h after retrieval (outside of the reconsolidation window), demonstrated normal cocaine CPP. Conversely, animals that received additional CPP conditioning, rather than extinction training, 1 h after reactivation of cocaine memory showed enhanced cocaine CPP compared with animals that did not reactivate the cocaine memory before conditioning. These results reveal that a behavioral manipulation that takes advantage of reconsolidation and extinction of drug memories may be useful in decreasing preference for, and abuse of, cocaine.
Collapse
|
28
|
Piñeyro ME, Ferrer Monti RI, Alfei JM, Bueno AM, Urcelay GP. Memory destabilization is critical for the success of the reactivation-extinction procedure. Learn Mem 2013; 21:46-54. [PMID: 24353292 PMCID: PMC3867713 DOI: 10.1101/lm.032714.113] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/06/2013] [Indexed: 01/20/2023]
Abstract
It has been suggested that, unlike pure extinction which typically results in the return of the fear response under a variety of circumstances, memory reactivation followed by extinction can attenuate the reemergence of conditioned fear. The reactivation-extinction procedure has attracted the attention of basic and clinical researchers due to its potential clinical value for the treatment of psychiatric conditions, such as anxiety and drug abuse disorders. However, mixed results have been achieved so far in replicating and understanding this paradigm. It has been proposed that memory destabilization could be critical in this sense. Using contextual fear conditioning in rats and midazolam as an amnesic agent, we first determined what reactivation conditions are necessary to destabilize the mnemonic trace. After establishing the conditions for memory destabilization, a series of experiments was conducted to determine if destabilization is critical for the success of the reactivation-extinction procedure. Data confirmed the importance of memory destabilization prior to extinction inside the reconsolidation window to attenuate spontaneous recovery and retard reacquisition of conditioned fear. The present report offers a candidate explanation of the discrepancy in results obtained with the reactivation-extinction procedure by different laboratories.
Collapse
Affiliation(s)
- Marcelo E. Piñeyro
- Laboratorio de Psicología Experimental, Facultad de Psicología, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Roque I. Ferrer Monti
- Laboratorio de Psicología Experimental, Facultad de Psicología, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Joaquín M. Alfei
- Laboratorio de Psicología Experimental, Facultad de Psicología, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Adrián M. Bueno
- Laboratorio de Psicología Experimental, Facultad de Psicología, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Gonzalo P. Urcelay
- Department of Psychology & Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
29
|
Debiec J, Diaz-Mataix L, Bush DEA, Doyère V, LeDoux JE. The selectivity of aversive memory reconsolidation and extinction processes depends on the initial encoding of the Pavlovian association. Learn Mem 2013; 20:695-9. [PMID: 24255099 PMCID: PMC3834621 DOI: 10.1101/lm.031609.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In reconsolidation studies, memories are typically retrieved by an exposure to a single conditioned stimulus (CS). We have previously demonstrated that reconsolidation processes are CS-selective, suggesting that memories retrieved by the CS exposure are discrete and reconsolidate separately. Here, using a compound stimulus in which two distinct CSs are concomitantly paired with the same aversive unconditioned stimulus (US), we show in rats that reexposure to one of the components of the compound CS triggers extinction or reconsolidation of the other component. This suggests that the original training conditions play a critical role in memory retrieval and reconsolidation.
Collapse
Affiliation(s)
- Jacek Debiec
- W.M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University, New York 10003, USA
| | | | | | | | | |
Collapse
|
30
|
Barreiro KA, Suárez LD, Lynch VM, Molina VA, Delorenzi A. Memory expression is independent of memory labilization/reconsolidation. Neurobiol Learn Mem 2013; 106:283-91. [DOI: 10.1016/j.nlm.2013.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/10/2023]
|
31
|
Abstract
Research has identified distinct neuronal circuits within the basolateral amygdala (BLA) that differentially mediate fear expression versus inhibition; however, molecular markers of these populations remain unknown. Here we examine whether optogenetic activation of a cellular subpopulation, which may correlate with the physiologically identified extinction neurons in the BLA, would differentially support fear conditioning versus fear inhibition/extinction. We first molecularly characterized Thy1-channelrhodopsin-2 (Thy1-ChR2-EYFP)-expressing neurons as a subpopulation of glutamatergic pyramidal neurons within the BLA. Optogenetic stimulation of these neurons inhibited a subpopulation of medial central amygdala neurons and shunted excitation from the lateral amygdala. Brief activation of these neurons during fear training disrupted later fear memory in male mice. Optogenetic activation during unreinforced stimulus exposure enhanced extinction retention, but had no effect on fear expression, locomotion, or open-field behavior. Together, these data suggest that the Thy1-expressing subpopulation of BLA pyramidal neurons provide an important molecular and pharmacological target for inhibiting fear and enhancing extinction and for furthering our understanding of the molecular mechanisms of fear processing.
Collapse
|
32
|
Tano MC, Molina VA, Pedreira ME. The involvement of the GABAergic system in the formation and expression of the extinction memory in the crab Neohelice granulata. Eur J Neurosci 2013; 38:3302-13. [PMID: 23914974 DOI: 10.1111/ejn.12328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 11/28/2022]
Abstract
There is growing interest in the neurobiological mechanisms involved in the extinction of aversive memory. This cognitive process usually occurs after repeated or prolonged presentation of a conditioned stimulus that was previously associated with an unconditioned stimulus. If extinction is considered to be a new memory, the role of the γ-aminobutyric acid system (GABAergic system) during extinction memory consolidation should be similar to that described for the original trace. It is also accepted that negative modulation of the GABAergic system before testing can impair extinction memory expression. However, it seems possible to speculate that inhibitory mechanisms may be required in order to acquire a memory that is inhibitory in nature. Using a combination of behavioral protocols, such as weak and robust extinction training procedures, and pharmacological treatments, such as the systemic administration of GABAA agonist (muscimol) and antagonist (bicuculline), we investigated the role of the GABAergic system in the different phases of the extinction memory in the crab Neohelice granulata. We show that the stimulation of the GABAergic system impairs and its inactivation facilitates the extinction memory consolidation. Moreover, fine variations in the GABAergic tone affect its expression at testing. Finally, an active GABAergic system is necessary for the acquisition of the extinction memory. This detailed description may contribute to the understanding of the role of the GABAergic system in diverse aspects of the extinction memory.
Collapse
Affiliation(s)
- Martin Carbó Tano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
| | | | | |
Collapse
|
33
|
Hepp Y, Tano MC, Pedreira ME, Freudenthal RA. NMDA-like receptors in the nervous system of the crabNeohelice granulata: A neuroanatomical description. J Comp Neurol 2013; 521:2279-97. [DOI: 10.1002/cne.23285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
|
34
|
Auber A, Tedesco V, Jones CE, Monfils MH, Chiamulera C. Post-retrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology (Berl) 2013; 226:631-47. [PMID: 23404065 PMCID: PMC3682675 DOI: 10.1007/s00213-013-3004-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/20/2013] [Indexed: 12/30/2022]
Abstract
Memories that are emotionally arousing generally promote the survival of species; however, the systems that modulate emotional learning can go awry, resulting in pathological conditions such as post-traumatic stress disorders, phobias, and addiction. Understanding the conditions under which emotional memories can be targeted is a major research focus as the potential to translate these methods into clinical populations carries important implications. It has been demonstrated that both fear and drug-related memories can be destabilised at their retrieval and require reconsolidation to be maintained. Therefore, memory reconsolidation offers a potential target period during which the aberrant memories underlying psychiatric disorders can be disrupted. Monfils et al. (Science 324:951-955, 2009) have shown for the first time that safe information provided through an extinction session after retrieval (during the reconsolidation window) may update the original memory trace and prevent the return of fear in rats. In recent years, several authors have then tested the effect of post-retrieval extinction on reconsolidation of either fear or drug-related memories in both laboratory animals and humans. In this article, we review the literature on post-reactivation extinction, discuss the differences across studies on the methodological ground, and review the potential boundary conditions that may explain existing discrepancies and limit the potential application of post-reactivation extinction approaches.
Collapse
Affiliation(s)
- Alessia Auber
- Neuropsychopharmacology Lab., Sect. Pharmacology, Department Public Health and Community Medicine, Univ. of Verona, Verona, Italy.
| | - Vincenzo Tedesco
- Neuropsychopharmacology Lab., Sect. Pharmacology, Dept. Public Health and Community Medicine, Univ. of Verona, Verona, Italy
| | | | | | - Christian Chiamulera
- Neuropsychopharmacology Lab., Sect. Pharmacology, Dept. Public Health and Community Medicine, Univ. of Verona, Verona, Italy
| |
Collapse
|
35
|
A Multidisciplinary Approach to Learning and Memory in the Crab Neohelice (Chasmagnathus) granulata. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Fustiñana MS, Carbó Tano M, Romano A, Pedreira ME. Contextual Pavlovian conditioning in the crab Chasmagnathus. Anim Cogn 2012; 16:255-72. [DOI: 10.1007/s10071-012-0570-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 09/11/2012] [Accepted: 10/08/2012] [Indexed: 12/27/2022]
|
37
|
Dissociation between memory reactivation and its behavioral expression: Scopolamine interferes with memory expression without disrupting long-term storage. Neurobiol Learn Mem 2012; 98:235-45. [DOI: 10.1016/j.nlm.2012.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 08/01/2012] [Accepted: 08/12/2012] [Indexed: 11/18/2022]
|
38
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
39
|
Federman N, Fustiñana MS, Romano A. Reconsolidation involves histone acetylation depending on the strength of the memory. Neuroscience 2012; 219:145-56. [PMID: 22659565 DOI: 10.1016/j.neuroscience.2012.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/18/2022]
Abstract
Gene expression is a necessary step for memory re-stabilization after retrieval, a process known as reconsolidation. Histone acetylation is a fundamental mechanism involved in epigenetic regulation of gene expression and has been implicated in memory consolidation. However, few studies are available in reconsolidation, all of them in vertebrate models. Additionally, the recruitment of histone acetylation as a function of different memory strengths has not been systematically analyzed before. Here we studied the role of histone acetylation in reconsolidation using a well-characterized memory model in invertebrate, the context-signal memory in the crab Chasmagnathus. Firstly, we found an increase in histone H3 acetylation 1h after memory reactivation returning to basal levels at 3 h. Strikingly, this increment was only detected during reconsolidation of a long-term memory induced by a strong training of 30 trials, but not for a short-term memory formed by a weak training of five trials or for a long-term memory induced by a standard training of 15 trials. Furthermore, we showed that a weak memory which was enhanced during consolidation by histone deacetylases inhibition, also recruited histone H3 acetylation in reconsolidation as the strong training does. Accordingly, we found the first evidence that the administration of a histone acetyl transferase inhibitor during memory reconsolidation impairs long-term memory re-stabilization. Finally, we found that strong training memory, at variance with the standard training memory, was resistant to extinction, indicating that such strong training induced in fact a stronger memory. In conclusion, the results presented here support that the participation of histone acetylation during reconsolidation is an evolutionary conserved feature and constitutes a specific molecular characteristic of strong memories.
Collapse
Affiliation(s)
- N Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso (1428EHA), Buenos Aires, Argentina
| | | | | |
Collapse
|
40
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
41
|
Abstract
Memory consolidation is the hypothetical process in which an item in memory is transformed into a long-term form. It is commonly addressed at two complementary levels of description and analysis: the cellular/synaptic level (synaptic consolidation) and the brain systems level (systems consolidation). This article focuses on selected recent advances in consolidation research, including the reconsolidation of long-term memory items, the brain mechanisms of transformation of the content and of cue-dependency of memory items over time, as well as the role of rest and sleep in consolidating and shaping memories. Taken together, the picture that emerges is of dynamic engrams that are formed, modified, and remodified over time at the systems level by using synaptic consolidation mechanisms as subroutines. This implies that, contrary to interpretations that have dominated neuroscience for a while, but similar to long-standing cognitive concepts, consolidation of at least some items in long-term memory may never really come to an end.
Collapse
Affiliation(s)
- Yadin Dudai
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
42
|
Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience 2011; 201:239-51. [PMID: 22100787 DOI: 10.1016/j.neuroscience.2011.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023]
Abstract
Although some of the neuronal substrates that support memory process have been shown in optic ganglia, the brain areas activated by memory process are still unknown in crustaceans. Heat shock proteins (HSPs) are synthesized in the CNS not only in response to traumas but also after changes in metabolic activity triggered by the processing of different types of sensory information. Indeed, the expression of citosolic/nuclear forms of HSP70 (HSC/HSP70) has been repeatedly used as a marker for increases in neural metabolic activity in several processes, including psychophysiological stress, fear conditioning, and spatial learning in vertebrates. Previously, we have shown that, in the crab Chasmagnathus, two different environmental challenges, water deprivation and heat shock, trigger a rise in the number of glomeruli of the olfactory lobes (OLs) expressing HSC/HSP70. In this study, we initially performed a morphometric analysis and identified a total of 154 glomeruli in each OL of Chasmagnathus. Here, we found that crabs exposed to food odor stimuli also showed a significant rise in the number of olfactory glomeruli expressing HSC/HSP70. In the crab Chasmagnathus, a powerful memory paradigm based on a change in its defensive strategy against a visual danger stimulus (VDS) has been extensively studied. Remarkably, the iterative presentation of a VDS caused an increase as well. This increase was triggered in animals visually stimulated using protocols that either build up a long-term memory or generate only short-term habituation. Besides, memory reactivation was sufficient to trigger the increase in HSC/HSP70 expression in the OL. Present and previous results strongly suggest that, directly or indirectly, an increase in arousal is a sufficient condition to bring about an increase in HSC/HSP70 expression in the OL of Chasmagnathus.
Collapse
|
43
|
Yang CH, Huang CC, Hsu KS. Generalization of fear inhibition by disrupting hippocampal protein synthesis-dependent reconsolidation process. Neuropsychopharmacology 2011; 36:1992-2008. [PMID: 21593730 PMCID: PMC3158317 DOI: 10.1038/npp.2011.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/25/2011] [Accepted: 04/20/2011] [Indexed: 11/08/2022]
Abstract
Repetitive replay of fear memories may precipitate the occurrence of post-traumatic stress disorder and other anxiety disorders. Hence, the suppression of fear memory retrieval may help prevent and treat these disorders. The formation of fear memories is often linked to multiple environmental cues and these interconnected cues may act as reminders for the recall of traumatic experiences. However, as a convenience, a simple paradigm of one cue pairing with the aversive stimulus is usually used in studies of fear conditioning in animals. Here, we built a more complex fear conditioning model by presenting several environmental stimuli during fear conditioning and characterize the effectiveness of extinction training and the disruption of reconsolidation process on the expression of learned fear responses. We demonstrate that extinction training with a single-paired cue resulted in cue-specific attenuation of fear responses but responses to other cures were unchanged. The cue-specific nature of the extinction persisted despite training sessions combined with D-cycloserine treatment reveals a significant weakness in extinction-based treatment. In contrast, the inhibition of the dorsal hippocampus (DH) but not the basolateral amygdala (BLA)-dependent memory reconsolidation process using either protein synthesis inhibitors or genetic disruption of cAMP-response-element-binding protein-mediated transcription comprehensively disrupted the learned connections between fear responses and all paired environmental cues. These findings emphasize the distinct role of the DH and the BLA in the reconsolidation process of fear memories and further indicate that the disruption of memory reconsolidation process in the DH may result in generalization of fear inhibition.
Collapse
Affiliation(s)
- Chih-Hao Yang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
44
|
Coccoz V, Maldonado H, Delorenzi A. The enhancement of reconsolidation with a naturalistic mild stressor improves the expression of a declarative memory in humans. Neuroscience 2011; 185:61-72. [DOI: 10.1016/j.neuroscience.2011.04.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 03/29/2011] [Accepted: 04/11/2011] [Indexed: 01/06/2023]
|
45
|
Fathala MDV, Maldonado H. Shelter use during exploratory and escape behaviour of the crab Chasmagnathus granulatus: a field study. J ETHOL 2010. [DOI: 10.1007/s10164-010-0253-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Abstract
We have previously reported that the reconsolidation and extinction of hippocampal-dependent contextual fear memory can be initiated by a single context conditioned stimulus (CS) presentation of either short or long duration, and that both processes require protein synthesis in this brain region. Furthermore, reconsolidation depends on Zif268 activity in this region. Here we show that by infusing a recombinant brain-derived neurotrophic factor (rBDNF) directly into the brain of rats, that high levels of mature BDNF in the hippocampus at retrieval constrain the extinction of the fear memory after prolonged memory recall. We also show after a short CS exposure that reconsolidation was impaired using antisense oligonucleotides targeting Zif268, and that, similarly, reductions in conditioned behavior were observed after prolonged CS presentation when extinction is constrained by high levels of BDNF. This is direct evidence that in the mammalian brain extinction proceeds exclusively after prolonged CS exposure. In addition, that BDNF activity in the hippocampus contributes to a molecular switch for the extinction of hippocampal-dependent memory.
Collapse
Affiliation(s)
- Anne Kirtley
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | | |
Collapse
|
47
|
Barnes P, Kirtley A, Thomas KL. Quantitatively and qualitatively different cellular processes are engaged in CA1 during the consolidation and reconsolidation of contextual fear memory. Hippocampus 2010; 22:149-71. [PMID: 21080409 DOI: 10.1002/hipo.20879] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2010] [Indexed: 01/12/2023]
Abstract
Whether the consolidation and reconsolidation long-term memory relies on qualitatively different molecular and cellular processes is controversial. Using a novel experimental strategy of combining intrahippocampal antisense oligodeoxynucleotides targeting BDNF or zif268 to the block consolidation or reconsolidation of contextual fear memory respectively, and Affymetrix microarray technology, we identified a comprehensive list of nonoverlapping candidate genes regulated in CA1 during the initial stages consolidation and reconsolidation. Using RT-qPCR in subsequent validation experiments, we estimated that over 80% of the candidates reflect gene transcripts truly regulated following the acquisition or retrieval of contextual fear memory. Statistical and over-representation bioinformatics analyses revealed that cellular processes and signaling mechanisms were differentially regulated during consolidation and reconsolidation, particularly those associated with pro-inflammatory cytokine signaling. This predicts that the two mnemonic processes are qualitatively as well as quantitatively distinct. This experimental strategy was further validated because the cytokine interleukin 1 (IL-1) was reciprocally regulated in CA1 after contextual fear conditioning and fear memory retrieval, and we showed for the first time that that IL-1 receptor mediated signaling in the hippocampus was necessary for reconsolidation.
Collapse
Affiliation(s)
- Philip Barnes
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| | | | | |
Collapse
|
48
|
Angiotensin modulates long-term memory expression but not long-term memory storage in the crab Chasmagnathus. Neurobiol Learn Mem 2010; 94:509-20. [DOI: 10.1016/j.nlm.2010.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
|
49
|
Garcia-delaTorre P, Rodríguez-Ortiz CJ, Balderas I, Bermúdez-Rattoni F. Differential participation of temporal structures in the consolidation and reconsolidation of taste aversion extinction. Eur J Neurosci 2010; 32:1018-23. [DOI: 10.1111/j.1460-9568.2010.07365.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Hepp Y, Pérez-Cuesta LM, Maldonado H, Pedreira ME. Extinction memory in the crab Chasmagnathus: recovery protocols and effects of multi-trial extinction training. Anim Cogn 2009; 13:391-403. [PMID: 19813034 DOI: 10.1007/s10071-009-0288-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
A decline in the frequency or intensity of a conditioned behavior following the withdrawal of the reinforcement is called experimental extinction. However, the experimental manipulation necessary to trigger memory reconsolidation or extinction is to expose the animal to the conditioned stimulus in the absence of reinforcement. Recovery protocols were used to reveal which of these two processes was developed. By using the crab contextual memory model (a visual danger stimulus associated with the training context), we investigated the dynamics of extinction memory in Chasmagnathus. Here, we reveal the presence of three recovery protocols that restore the original memory: the old memory comes back 4 days after the extinction training, or when a weak training is administered later, or once the VDS is presented in a novel context 24 h after the extinction session. Another objective was to evaluate whether the administration of multi-trial extinction training could trigger an extinction memory in Chasmagnathus. The results evince that the extinction memory appears only when the total re-exposure time is around 90 min independently of the number of trials employed to accumulate it. Thus, it is feasible that the mechanisms described for the case of the extinction memory acquired through a single training trial are valid for multi-trial extinction protocols. Finally, these results are in agreement with those reports obtained with models phylogenetically far apart from the crab. Behind this attempt is the idea that in the domain of studies on memory, some principles of behavior organization and basic mechanisms have universal validity.
Collapse
Affiliation(s)
- Yanil Hepp
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, IFIByNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | | | | | | |
Collapse
|