1
|
Méndez JC, Perry BAL, Premereur E, Pelekanos V, Ramadan T, Mitchell AS. Variable cardiac responses in rhesus macaque monkeys after discrete mediodorsal thalamus manipulations. Sci Rep 2023; 13:16913. [PMID: 37805650 PMCID: PMC10560229 DOI: 10.1038/s41598-023-42752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion.
Collapse
Affiliation(s)
- Juan Carlos Méndez
- Department of Clinical and Biomedical Sciences, University of Exeter, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Brook A L Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | | | - Tamara Ramadan
- Department of Biological Sciences, University of Oxford, Oxford, UK
| | - Anna S Mitchell
- Department of Psychology, Speech and Hearing, University of Canterbury, Christchurch, 8041, New Zealand.
| |
Collapse
|
2
|
Santos TB, Kramer-Soares JC, de Oliveira Coelho CA, Oliveira MGM. Functional network of contextual and temporal memory has increased amygdala centrality and connectivity with the retrosplenial cortex, thalamus, and hippocampus. Sci Rep 2023; 13:13087. [PMID: 37567967 PMCID: PMC10421896 DOI: 10.1038/s41598-023-39946-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In fear conditioning with time intervals between the conditioned (CS) and unconditioned (US) stimuli, a neural representation of the CS must be maintained over time to be associated with the later US. Usually, temporal associations are studied by investigating individual brain regions. It remains unknown, however, the effect of the interval at the network level, uncovering functional connections cooperating for the CS transient memory and its fear association. We investigated the functional network supporting temporal associations using a task in which a 5-s interval separates the contextual CS from the US (CFC-5s). We quantified c-Fos expression in forty-nine brain regions of male rats following the CFC-5s training, used c-Fos correlations to generate functional networks, and analyzed them by graph theory. Control groups were trained in contextual fear conditioning, in which CS and US overlap. The CFC-5s training additionally activated subdivisions of the basolateral, lateral, and medial amygdala; prelimbic, infralimbic, perirhinal, postrhinal, and intermediate entorhinal cortices; ventral CA1 and subiculum. The CFC-5s network had increased amygdala centrality and higher amygdala internal and external connectivity with the retrosplenial cortex, thalamus, and hippocampus. Amygdala and thalamic nuclei were network hubs. Functional connectivity among these brain regions could support CS transient memories and their association.
Collapse
Affiliation(s)
- Thays Brenner Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
| | - Juliana Carlota Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
- Universidade Cruzeiro do Sul - UNICSUL, São Paulo, 08060-070, Brazil
| | | | | |
Collapse
|
3
|
Venkataraman A, Dias BG. Expanding the canon: An inclusive neurobiology of thalamic and subthalamic fear circuits. Neuropharmacology 2023; 226:109380. [PMID: 36572176 PMCID: PMC9984284 DOI: 10.1016/j.neuropharm.2022.109380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Appropriate expression of fear in the face of threats in the environment is essential for survival. The sustained expression of fear in the absence of threat signals is a central pathological feature of trauma- and anxiety-related disorders. Our understanding of the neural circuitry that controls fear inhibition coalesces around the amygdala, hippocampus, and prefrontal cortex. By discussing thalamic and sub-thalamic influences on fear-related learning and expression in this review, we suggest a more inclusive neurobiological framework that expands our canonical view of fear. First, we visit how fear-related learning and expression is influenced by the aforementioned canonical brain regions. Next, we review emerging data that shed light on new roles for thalamic and subthalamic nuclei in fear-related learning and expression. Then, we highlight how these neuroanatomical hubs can modulate fear via integration of sensory and salient stimuli, gating information flow and calibrating behavioral responses, as well as maintaining and updating memory representations. Finally, we propose that the presence of this thalamic and sub-thalamic neuroanatomy in parallel with the tripartite prefrontal cortex-amygdala-hippocampus circuit allows for dynamic modulation of information based on interoceptive and exteroceptive signals. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Archana Venkataraman
- Department of Cellular & Molecular Pharmacology, University of San Francisco, San Francisco, CA, United States
| | - Brian George Dias
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States; Division of Endocrinology, Children's Hospital Los Angeles, Los Angeles, CA, United States; Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States.
| |
Collapse
|
4
|
Xiao N, Wu G, Zhou Z, Yao J, Wu B, Sui J, Tin C. Positive feedback of efferent copy via pontine nucleus facilitates cerebellum-mediated associative learning. Cell Rep 2023; 42:112072. [PMID: 36735531 DOI: 10.1016/j.celrep.2023.112072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The cerebellum is critical for motor coordination and learning. However, the role of feedback circuitry in this brain region has not been fully explored. Here, we characterize a nucleo-ponto-cortical feedback pathway in classical delayed eyeblink conditioning (dEBC) of rats. We find that the efference copy is conveyed from the interposed cerebellar nucleus (Int) to cerebellar cortex through pontine nucleus (PN). Inhibiting or exciting the projection from the Int to the PN can decelerate or speed up acquisition of dEBC, respectively. Importantly, we identify two subpopulations of PN neurons (PN1 and PN2) that convey and integrate the feedback signals with feedforward sensory signals. We also show that the feedforward and feedback pathways via different types of PN neurons contribute to the plastic changes and cooperate synergistically to the learning of dEBC. Our results suggest that this excitatory nucleo-ponto-cortical feedback plays a significant role in modulating associative motor learning in cerebellum.
Collapse
Affiliation(s)
- Na Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Advanced Biomedical Instrumentation Centre, Shatin, N.T., Hong Kong; Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Guangyan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhanhong Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jianfeng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
5
|
Yu X, Jembere F, Takehara-Nishiuchi K. Prefrontal projections to the nucleus reuniens signal behavioral relevance of stimuli during associative learning. Sci Rep 2022; 12:11995. [PMID: 35835794 PMCID: PMC9283438 DOI: 10.1038/s41598-022-15886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The nucleus reuniens (RE) is necessary for memories dependent on the interaction between the medial prefrontal cortex (mPFC) and hippocampus (HPC). One example is trace eyeblink conditioning, in which the mPFC exhibits differential activity to neutral conditioned stimuli (CS) depending on their contingency with an aversive unconditioned stimulus (US). To test if this relevancy signal is routed to the RE, we photometrically recorded mPFC axon terminals within the RE and tracked their changes with learning. As a comparison, we measured prefrontal terminal activity in the mediodorsal thalamus (MD), which lacks connectivity with the HPC. In naïve male rats, prefrontal terminals within the RE were not strongly activated by tone or light. As the rats associated one of the stimuli (CS+) with the US, terminals gradually increased their response to the CS+ but not the other stimulus (CS-). In contrast, stimulus-evoked responses of prefrontal terminals within the MD were strong even before conditioning. They also became augmented only to the CS+ in the first conditioning session; however, the degree of activity differentiation did not improve with learning. These findings suggest that associative learning selectively increased mPFC output to the RE, signaling the behavioral relevance of sensory stimuli.
Collapse
Affiliation(s)
- Xiaotian Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada
| | - Fasika Jembere
- Human Biology Program, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Wolff M, Morceau S, Folkard R, Martin-Cortecero J, Groh A. A thalamic bridge from sensory perception to cognition. Neurosci Biobehav Rev 2021; 120:222-235. [PMID: 33246018 DOI: 10.1016/j.neubiorev.2020.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The ability to adapt to dynamic environments requires tracking multiple signals with variable sensory salience and fluctuating behavioral relevance. This complex process requires integrative crosstalk between sensory and cognitive brain circuits. Functional interactions between cortical and thalamic regions are now considered essential for both sensory perception and cognition but a clear account of the functional link between sensory and cognitive circuits is currently lacking. This review aims to document how thalamic nuclei may effectively act as a bridge allowing to fuse perceptual and cognitive events into meaningful experiences. After highlighting key aspects of thalamocortical circuits such as the classic first-order/higher-order dichotomy, we consider the role of the thalamic reticular nucleus from directed attention to cognition. We next summarize research relying on Pavlovian learning paradigms, showing that both first-order and higher-order thalamic nuclei contribute to associative learning. Finally, we propose that modulator inputs reaching all thalamic nuclei may be critical for integrative purposes when environmental signals are computed. Altogether, the thalamus appears as the bridge linking perception, cognition and possibly affect.
Collapse
Affiliation(s)
- M Wolff
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| | - S Morceau
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - R Folkard
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - J Martin-Cortecero
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - A Groh
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Twining RC, Lepak K, Kirry AJ, Gilmartin MR. Ventral Hippocampal Input to the Prelimbic Cortex Dissociates the Context from the Cue Association in Trace Fear Memory. J Neurosci 2020; 40:3217-3230. [PMID: 32188770 PMCID: PMC7159889 DOI: 10.1523/jneurosci.1453-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
The PFC, through its high degree of interconnectivity with cortical and subcortical brain areas, mediates cognitive and emotional processes in support of adaptive behaviors. This includes the formation of fear memories when the anticipation of threat demands learning about temporal or contextual cues, as in trace fear conditioning. In this variant of fear learning, the association of a cue and shock across an empty trace interval of several seconds requires sustained cue-elicited firing in the prelimbic cortex (PL). However, it is unknown how and when distinct PL afferents contribute to different associative components of memory. Among the prominent inputs to PL, the hippocampus shares with PL a role in both working memory and contextual processing. Here we tested the necessity of direct hippocampal input to the PL for the acquisition of trace-cued fear memory and the simultaneously acquired contextual fear association. Optogenetic silencing of ventral hippocampal (VH) terminals in the PL of adult male Long-Evans rats selectively during paired trials revealed that direct communication between the VH and PL during training is necessary for contextual fear memory, but not for trace-cued fear acquisition. The pattern of the contextual memory deficit and the disruption of local PL firing during optogenetic silencing of VH-PL suggest that the VH continuously updates the PL with the current contextual state of the animal, which, when disrupted during memory acquisition, is detrimental to the subsequent rapid retrieval of aversive contextual associations.SIGNIFICANCE STATEMENT Learning to anticipate threat from available contextual and discrete cues is crucial for survival. The prelimbic cortex is required for forming fear memories when temporal or contextual complexity is involved, as in trace fear conditioning. However, the respective contribution of distinct prelimbic afferents to the temporal and contextual components of memory is not known. We report that direct input from the ventral hippocampus enables the formation of the contextual, but not trace-cued, fear memory necessary for the subsequent rapid expression of a fear response. This finding dissociates the contextual and working-memory contributions of prelimbic cortex to the formation of a fear memory and demonstrates the crucial role for hippocampal input in contextual fear learning.
Collapse
Affiliation(s)
- Robert C Twining
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Katie Lepak
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Adam J Kirry
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| |
Collapse
|
8
|
Pilkiw M, Takehara-Nishiuchi K. Neural representations of time-linked memory. Neurobiol Learn Mem 2018; 153:57-70. [PMID: 29614377 DOI: 10.1016/j.nlm.2018.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Many cognitive processes, such as episodic memory and decision making, rely on the ability to form associations between two events that occur separately in time. The formation of such temporal associations depends on neural representations of three types of information: what has been presented (trace holding), what will follow (temporal expectation), and when the following event will occur (explicit timing). The present review seeks to link these representations with firing patterns of single neurons recorded while rodents and non-human primates associate stimuli, outcomes, and motor responses over time intervals. Across these studies, two distinct firing patterns were observed in the hippocampus, neocortex, and striatum: some neurons change firing rates during or shortly after the stimulus presentation and sustain the firing rate stably or sidlingly during the subsequent intervals (tonic firings). Other neurons transiently change firing rates during a specific moment within the time intervals (phasic firings), and as a group, they form a sequential firing pattern that covers the entire interval. Clever task designs used in some of these studies collectively provide evidence that both tonic and phasic firing responses represent trace holding, temporal expectation, and explicit timing. Subsequently, we applied machine-learning based classification approaches to the two firing patterns within the same dataset collected from rat medial prefrontal cortex during trace eyeblink conditioning. This quantitative analysis revealed that phasic-firing patterns showed greater selectivity for stimulus identity and temporal position than tonic-firing patterns. Our summary illuminates distributed neural representations of temporal association in the forebrain and generates several ideas for future investigations.
Collapse
Affiliation(s)
- Maryna Pilkiw
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G3, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G3, Canada; Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Neuroscience Program, University of Toronto, Toronto M5S 3G3, Canada.
| |
Collapse
|
9
|
Control of in vivo ictogenesis via endogenous synaptic pathways. Sci Rep 2017; 7:1311. [PMID: 28465556 PMCID: PMC5431002 DOI: 10.1038/s41598-017-01450-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/29/2017] [Indexed: 01/13/2023] Open
Abstract
The random nature of seizures poses difficult challenges for epilepsy research. There is great need for a reliable method to control the pathway to seizure onset, which would allow investigation of the mechanisms of ictogenesis and optimization of treatments. Our hypothesis is that increased random afferent synaptic activity (i.e. synaptic noise) within the epileptic focus is one endogenous method of ictogenesis. Building upon previous theoretical and in vitro work showing that synaptic noise can induce seizures, we developed a novel in vivo model of ictogenesis. By increasing the excitability of afferent connections to the hippocampus, we control the risk of temporal lobe seizures during a specific time period. The afferent synaptic activity in the hippocampus was modulated by focal microinjections of potassium chloride into the nucleus reuniens, during which the risk of seizure occurrence increased substantially. The induced seizures were qualitatively and quantitatively indistinguishable from spontaneous ones. This model thus allows direct control of the temporal lobe seizure threshold via endogenous pathways, providing a novel tool in which to investigate the mechanisms and biomarkers of ictogenesis, test for seizure threshold, and rapidly tune antiseizure treatments.
Collapse
|
10
|
Franklin DJ, Grossberg S. A neural model of normal and abnormal learning and memory consolidation: adaptively timed conditioning, hippocampus, amnesia, neurotrophins, and consciousness. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:24-76. [PMID: 27905080 PMCID: PMC5272895 DOI: 10.3758/s13415-016-0463-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
How do the hippocampus and amygdala interact with thalamocortical systems to regulate cognitive and cognitive-emotional learning? Why do lesions of thalamus, amygdala, hippocampus, and cortex have differential effects depending on the phase of learning when they occur? In particular, why is the hippocampus typically needed for trace conditioning, but not delay conditioning, and what do the exceptions reveal? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later do not? Why do thalamic or sensory cortical lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions during trace conditioning experiments degrade recent but not temporally remote learning? Why do orbitofrontal cortical lesions degrade temporally remote but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of prefrontal cortex after memory consolidation? How are attention and consciousness linked during conditioning? How do neurotrophins, notably brain-derived neurotrophic factor (BDNF), influence memory formation and consolidation? Is there a common output path for learned performance? A neural model proposes a unified answer to these questions that overcome problems of alternative memory models.
Collapse
Affiliation(s)
- Daniel J Franklin
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA
| | - Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Abstract
This chapter reviews the past research toward identifying the brain circuit and its computation underlying the associative memory in eyeblink classical conditioning. In the standard delay eyeblink conditioning paradigm, the conditioned stimulus (CS) and eyeblink-eliciting unconditioned stimulus (US) converge in the cerebellar cortex and interpositus nucleus (IPN) through the pontine nuclei and inferior olivary nucleus. Repeated pairings of CS and US modify synaptic weights in the cerebellar cortex and IPN, enabling IPN neurons to activate the red nucleus and generate the conditioned response (CR). In a variant of the standard paradigm, trace eyeblink conditioning, the CS and US are separated by a brief stimulus-free trace interval. Acquisition in trace eyeblink conditioning depends on several forebrain regions, including the hippocampus and medial prefrontal cortex as well as the cerebellar-brainstem circuit. Details of computations taking place in these regions remain unclear; however, recent evidence supports a view that the forebrain encodes a temporal sequence of the CS, trace interval, and US in a specific environmental context and signals the cerebellar-brainstem circuit to execute the CR when the US is likely to occur. Together, delay eyeblink conditioning represents one of the most successful cases of understanding the neural substrates of long-term memory in mammals, while trace eyeblink conditioning demonstrates its utility for uncovering detailed computations in the whole brain network underlying long-term memory.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, Cell and Systems Biology, Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
12
|
Classical eyeblink conditioning using electrical stimulation of caudal mPFC as conditioned stimulus is dependent on cerebellar interpositus nucleus in guinea pigs. Acta Pharmacol Sin 2012; 33:717-27. [PMID: 22562015 DOI: 10.1038/aps.2012.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To determine whether electrical stimulation of caudal medial prefrontal cortex (mPFC) as conditioned stimulus (CS) paired with airpuff unconditioned stimulus (US) was sufficient for establishing eyeblink conditioning in guinea pigs, and whether it was dependent on cerebellar interpositus nucleus. METHODS Thirty adult guinea pigs were divided into 3 conditioned groups, and trained on the delay eyeblink conditioning, short-trace eyeblink conditioning, and long-trace eyeblink conditioning paradigms, respectively, in which electrical stimulation of the right caudal mPFC was used as CS and paired with corneal airpuff US. A pseudo conditioned group of another 10 adult guinea pigs was given unpaired caudal mPFC electrical stimulation and the US. Muscimol (1 μg in 1 μL saline) and saline (1 μL) were infused into the cerebellar interpositus nucleus of the animals through the infusion cannula on d 11 and 12, respectively. RESULTS The 3 eyeblink conditioning paradigms have been successfully established in guinea pigs. The animals acquired the delay and short-trace conditioned responses more rapidly than long-trace conditioned responses. Muscimol infusion into the cerebellar interpositus nucleus markedly impaired the expression of the 3 eyeblink conditioned responses. CONCLUSION Electrical stimulation of caudal mPFC is effective CS for establishing eyeblink conditioning in guinea pigs, and it is dependent on the cerebellar interpositus nucleus.
Collapse
|
13
|
Weiss C, Disterhoft JF. Exploring prefrontal cortical memory mechanisms with eyeblink conditioning. Behav Neurosci 2011; 125:318-26. [PMID: 21517143 DOI: 10.1037/a0023520] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several studies in nonhuman primates have shown that neurons in the dorsolateral prefrontal cortex have activity that persists throughout the delay period in delayed matching to sample tasks, and age-related changes in the microcolumnar organization of the prefrontal cortex are significantly correlated with age-related declines in cognition. Activity that persists beyond the presentation of a stimulus could mediate working memory processes, and disruption of those processes could account for memory deficits that often accompany the aging process. These potential memory and aging mechanisms are being systematically examined with eyeblink conditioning paradigms in nonprimate mammalian animal models including the rabbit. The trace version of the conditioning paradigm is a particularly good system to explore declarative memory since humans do not acquire trace conditioning if they are unable to become cognitively aware of the association between a conditioning tone and an airpuff to the eye. This conditioning paradigm has been used to show that the hippocampus and cerebellum interact functionally since both conditioned responses and conditioned hippocampal pyramidal neuron activity are abolished following lesions of the cerebellar nuclei and since hippocampal lesions prevent or abolish trace conditioned blinks. However, because there are no direct connections between the hippocampal formation and the cerebellum, and because the hippocampus is not necessary for trace conditioning after a period of consolidation has elapsed, we and others have been examining the prefrontal cortex for its role in forebrain-dependent trace eyeblink conditioning. This review examines some of the literature which suggests that the prefrontal cortex serves to orchestrate a neuronal network that interacts with the cerebellum to mediate adaptively timed conditioned responses.
Collapse
Affiliation(s)
- Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
14
|
Kalmbach BE, Mauk MD. Multiple sites of extinction for a single learned response. J Neurophysiol 2011; 107:226-38. [PMID: 21940608 DOI: 10.1152/jn.00381.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most learned responses can be diminished by extinction, a process that can be engaged when a conditioned stimulus (CS) is presented but not reinforced. We present evidence that plasticity in at least two brain regions can mediate extinction of responses produced by trace eyelid conditioning, where the CS and the reinforcing stimulus are separated by a stimulus-free interval. We observed individual differences in the effects of blocking extinction mechanisms in the cerebellum, the structure that, along with several forebrain structures, mediates acquisition of trace eyelid responses; in some rabbits extinction was prevented, whereas in others it was largely unaffected. We also show that cerebellar mechanisms can mediate extinction when noncerebellar mechanisms are bypassed. Together, these observations indicate that trace eyelid responses can be extinguished via processes operating at more than one site, one in the cerebellum and one upstream in forebrain. The relative contributions of these sites may vary from animal to animal and situation to situation.
Collapse
Affiliation(s)
- Brian E Kalmbach
- Center for Learning and Memory, Section of Neurobiology, Univ. of Texas, 1 Univ. Station, C7000, Austin, TX 78712, USA.
| | | |
Collapse
|
15
|
Wu GY, Fan ZL, Li X, Wu B, Fan R, Sui JF. WITHDRAWN: Anterior cingulate cortex substitutes for the impaired retrieval role of prelimbic cortex in trace eyeblink conditioning. Behav Brain Res 2011:S0166-4328(11)00353-6. [PMID: 21570427 DOI: 10.1016/j.bbr.2011.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University,Chongqing 400038,PR China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University,Chongqing 400038, PR China; The Second Team of Cadet Brigade, Third Military Medical University,Chongqing 400038, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Sloan DM, Zhang D, Bertram EH. Excitatory amplification through divergent-convergent circuits: the role of the midline thalamus in limbic seizures. Neurobiol Dis 2011; 43:435-45. [PMID: 21554957 DOI: 10.1016/j.nbd.2011.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 04/10/2011] [Accepted: 04/22/2011] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The midline thalamic nuclei are an important component of limbic seizures. Although the anatomic connections and excitatory influences of the midline thalamus are well known, its physiological role in limbic seizures is unclear. We examined the role of the midline thalamus on two circuits that are involved in limbic seizures: (a) the subiculum-prefrontal cortex (SB-PFC), and (b) the piriform cortex-entorhinal cortex (PC-EC). METHODS Evoked field potentials for both circuits were obtained in anesthetized rats, and the likely direct monosynaptic and polysynaptic contributions to the responses were identified. Seizures were generated in both circuits by 20 Hz stimulus trains. Once stable seizures and evoked potentials were established, the midline thalamus was inactivated through an injection of the sodium channel blocker tetrodotoxin (TTX), and the effects on the evoked responses and seizures were analyzed. RESULTS Inactivation of the midline thalamus suppressed seizures in both circuits. Seizure suppression was associated with a significant reduction in the late thalamic component but no significant change in the early direct monosynaptic component. Injections that did not suppress the seizures did not alter the evoked potentials. CONCLUSIONS Suppression of the late thalamic component of the evoked potential at the time of seizure suppression suggests that the thalamus facilitates seizure induction by extending the duration of excitatory drive through a divergent-convergent excitatory amplification system. This work may have broader implications for understanding signaling in the limbic system.
Collapse
Affiliation(s)
- David M Sloan
- University of Virginia, Neuroscience Graduate Program, Charlottesville 22901, USA
| | | | | |
Collapse
|
17
|
Chai SC, Kung JC, Shyu BC. Roles of the anterior cingulate cortex and medial thalamus in short-term and long-term aversive information processing. Mol Pain 2010; 6:42. [PMID: 20653941 PMCID: PMC2917407 DOI: 10.1186/1744-8069-6-42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/23/2010] [Indexed: 11/17/2022] Open
Abstract
Background The anterior cingulate cortex (ACC) and medial thalamus (MT) are two of the main components of the medial pain pathway that subserve the affective aspect of pain. The hypothesis of the present study was that the ACC is involved in short-term aversive information processing and that the MT is critical for encoding unconditioned nociceptive information. The roles of these two components in short-term and long-term aversive information processing was investigated using a step-through inhibitory avoidance task. Results Behavioral training began 1 week after surgery, in which radiofrequency lesions of the ACC or MT were performed. The retention tests were conducted 30 s (short-term) or 24 h (long-term) after training. Pretraining radiofrequency lesions of the ACC impaired performance in the 30 s, but not 24 h, retention test. Microinfusions of lidocaine into the ACC immediately after training impaired performance in the retention test conducted 10 min later. Pretraining radiofrequency lesions of the MT impaired performance in both the 30 s and 24 h retention tests. However, posttraining, but not pretest, microinfusions of lidocaine into the MT impaired performance in the 24 h retention test. Conclusions These results suggest that the ACC may play an important role in short-term, but not long-term, nociceptive information processing. In contrast, the MT may be important for the consolidation of nociceptive information storage.
Collapse
Affiliation(s)
- Sin-Chee Chai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | |
Collapse
|
18
|
Kalmbach BE, Ohyama T, Kreider JC, Riusech F, Mauk MD. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn Mem 2009; 16:86-95. [PMID: 19144967 DOI: 10.1101/lm.1178309] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eyelid conditioning has proven useful for analysis of learning and computation in the cerebellum. Two variants, delay and trace conditioning, differ only by the relative timing of the training stimuli. Despite the subtlety of this difference, trace eyelid conditioning is prevented by lesions of the cerebellum, hippocampus, or medial prefrontal cortex (mPFC), whereas delay eyelid conditioning is prevented by cerebellar lesions and is largely unaffected by forebrain lesions. Here we test whether these lesion results can be explained by two assertions: (1) Cerebellar learning requires temporal overlap between the mossy fiber inputs activated by the tone conditioned stimulus (CS) and the climbing fiber inputs activated by the reinforcing unconditioned stimulus (US), and therefore (2) trace conditioning requires activity that outlasts the presentation of the CS in a subset of mossy fibers separate from those activated directly by the CS. By use of electrical stimulation of mossy fibers as a CS, we show that cerebellar learning during trace eyelid conditioning requires an input that persists during the stimulus-free trace interval. By use of reversible inactivation experiments, we provide evidence that this input arises from the mPFC and arrives at the cerebellum via a previously unidentified site in the pontine nuclei. In light of previous PFC recordings in various species, we suggest that trace eyelid conditioning involves an interaction between the persistent activity of delay cells in mPFC-a putative mechanism of working memory-and motor learning in the cerebellum.
Collapse
Affiliation(s)
- Brian E Kalmbach
- Center for Learning and Memory, The University of Texas at Austin, 78712, USA.
| | | | | | | | | |
Collapse
|
19
|
Oswald BB, Knuckley B, Maddox SA, Powell DA. Ibotenic acid lesions to ventrolateral thalamic nuclei disrupts trace and delay eyeblink conditioning in rabbits. Behav Brain Res 2007; 179:111-7. [PMID: 17335917 DOI: 10.1016/j.bbr.2007.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 01/02/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Intact cerebellar structures (i.e., deep nuclei and perhaps cortex) are essential for acquisition of both simple delay and trace eyeblink (EB) conditioning. However, successful trace conditioning also requires intact cortico-limbic structures (i.e., hippocampus, medial thalamus, and medial prefrontal cortex, mPFC). A direct connection between the cerebellum and ventrolateral thalamic nuclei (VLTN) has been demonstrated in several species. Since VLTN projects to both premotor and prefrontal cortex, it may be an essential link in a cerebellar-thalamic-prefrontal circuit that provides the CNS substrate for acquisition of the trace EB CR. The current studies thus assessed the role of the VLTN on trace EB conditioning in New Zealand albino rabbits. We first verified afferent connections to the mPFC (Brodmann's area 32) from the VLTN, by injecting the retrograde tracer Flourogold(c) into area 32. Strong labeling in VLTN from terminal projections to mPFC were found. We next assessed the role of VLTN in trace eyeblink conditioning in animals that received either sham or ibotenic acid VLTN lesions. EB conditioning began with 10 consecutive daily sessions of trace conditioning, followed immediately by 4 days of extinction, and then 4 days of delay conditioning. VLTN lesions significantly impaired acquisition of both trace and delay conditioning, and impaired extinction. These findings, thus confirm the importance of the VLTN in a postulated cerebellar-thalamic-prefrontal circuit that underlies successful trace, as well as delay EB conditioning.
Collapse
Affiliation(s)
- B B Oswald
- Shirley L. Buchanan Neuroscience Laboratory, Dorn VA Medical Center, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
20
|
Weible AP, Weiss C, Disterhoft JF. Connections of the caudal anterior cingulate cortex in rabbit: neural circuitry participating in the acquisition of trace eyeblink conditioning. Neuroscience 2007; 145:288-302. [PMID: 17224240 DOI: 10.1016/j.neuroscience.2006.11.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/17/2006] [Accepted: 11/21/2006] [Indexed: 11/16/2022]
Abstract
The caudal anterior cingulate cortex (cAC) is an essential component of the circuitry involved in acquisition of forebrain-dependent trace eyeblink conditioning. Lesions of the cAC prevent trace eyeblink conditioning [Weible AP, McEchron MD, Disterhoft JF (2000) Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behav Neurosci 114(6):1058-1067]. The patterns of activation of cAC neurons recorded in vivo suggest an attentional role for this structure early in training [Weible AP, Weiss C, Disterhoft JF (2003) Activity profiles of single neurons in caudal anterior cingulate cortex during trace eyeblink conditioning in the rabbit. J Neurophysiol 90(2):599-612]. The goal of the present study was to identify connections of the portion of the rabbit cAC previously demonstrated to be involved in trace eyeblink conditioning, using the neuronal tract tracer wheat germ agglutinin conjugated to horseradish peroxidase, to better understand how the cAC contributes to the process of associative learning. Reciprocal connections with the claustrum provide a route for the transfer of sensory information between the cAC and neocortical and allocortical regions also involved in learning. Connections with components of the basal forebrain cholinergic system are described, with relevance to the proposed attentional role of the cAC. Reciprocal and unidirectional connections were in evidence in multiple thalamic regions, including the medial dorsal nucleus, which have been implicated in a variety of conditioning paradigms. Anterograde connections with the caudate and lateral pontine nuclei provide access to forebrain motor and brainstem sensory circuitry, respectively. The relevance of these connections to acquisition of the trace conditioned reflex is discussed.
Collapse
Affiliation(s)
- A P Weible
- Department of Physiology, Northwestern University Institute for Neuroscience, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
21
|
Galvez R, Weible AP, Disterhoft JF. Cortical barrel lesions impair whisker-CS trace eyeblink conditioning. Learn Mem 2007; 14:94-100. [PMID: 17272654 PMCID: PMC1838550 DOI: 10.1101/lm.418407] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Whisker deflection is an effective conditioned stimulus (CS) for trace eyeblink conditioning that has been shown to induce a learning-specific expansion of whisker-related cortical barrels, suggesting that memory storage for an aspect of the trace association resides in barrel cortex. To examine the role of the barrel cortex in acquisition and retrieval of trace eyeblink associations, the barrel cortex was lesioned either prior to (acquisition group) or following (retention group) trace conditioning. The acquisition lesion group was unable to acquire the trace conditioned response, suggesting that the whisker barrel cortex is vital for learning trace eyeblink conditioning with whisker deflection as the CS. The retention lesion group exhibited a significant reduction in expression of the previously acquired conditioned response, suggesting that an aspect of the trace association may reside in barrel cortex. These results demonstrate that the barrel cortex is important for both acquisition and retention of whisker trace eyeblink conditioning. Furthermore, these results, along with prior anatomical whisker barrel analyses suggest that the barrel cortex is a site for long-term storage of whisker trace eyeblink associations.
Collapse
Affiliation(s)
- Roberto Galvez
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Corresponding author.E-mail ; fax (312) 503-5101
| | - Aldis P. Weible
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - John F. Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
22
|
Weiss C, Weible AP, Galvez R, Disterhoft JF. Forebrain-Cerebellar Interactions During Learning. CELLSCIENCE 2006; 3:200-230. [PMID: 26617664 PMCID: PMC4662573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cerebral cortex and cerebellum are high level neural centers that must interact cooperatively to generate coordinated and efficient goal directed movements, including those necessary for a well-timed conditioned response. In this review we describe the progress made in utilizing the forebrain-dependent trace eyeblink conditioning paradigm to understand the neural substrates mediating cerebro-cerebellar interactions during learning and consolidation of conditioned responses. This review expands upon our previous hypothesis that the interaction occurs at sites that project to the pontine nuclei (Weiss & Disterhoft, 1996), by offering more details on the function of the hippocampus and prefrontal cortex during acquisition and the circuitry involved in facilitating pontine input to the cerebellum as a necessary requisite for trace eyeblink conditioning. Our discussion describes the role of the hippocampus, caudal anterior cingulate gyrus, basal ganglia, thalamus, and sensory cortex, including the benefit of utilizing the whisker barrel cortical system. We propose that permanent changes in the sensory cortex, along with input from the caudate and claustrum, and a homologue of the primate dorsolateral prefrontal cortex, serve to bridge the stimulus free trace interval and allow the cerebellum to generate a well-timed conditioned response.
Collapse
Affiliation(s)
- Craig Weiss
- Department of Physiology, Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, 303 East Chicago Ave., Chicago, IL 60611-3008
| | - Aldis P Weible
- Department of Physiology, Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, 303 East Chicago Ave., Chicago, IL 60611-3008
| | - Roberto Galvez
- Department of Physiology, Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, 303 East Chicago Ave., Chicago, IL 60611-3008
| | - John F Disterhoft
- Department of Physiology, Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, 303 East Chicago Ave., Chicago, IL 60611-3008
| |
Collapse
|
23
|
Schreurs BG, Crum JM, Wang D, Smith-Bell CA. Conditioning-specific reflex modification of rabbit (Oryctolagus cuniculus) heart rate. Behav Neurosci 2006; 119:1484-95. [PMID: 16420153 DOI: 10.1037/0735-7044.119.6.1484] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conditioning-specific reflex modification (CRM) describes changes in rabbit (Oryctolagus cuniculus) nictitating membrane responses (NMR) to an unconditioned stimulus (US) when the US is tested by itself after pairings of tone and electrodermal stimulation. Although CRM has been replicated, it is unclear whether it occurs in response systems other than that of the NMR. The authors report that CRM of rabbit heart rate (HR) can occur following HR conditioning. A US that elicits HR acceleration before conditioning can elicit HR deceleration after conditioning. The rabbits' electrocardiograms showed both HR conditioning and HR CRM were correlated with an increased PQ interval--an index of parasympathetic function mediated by the vagus. The data suggest conditioned HR deceleration can generalize from conditioned stimulus to US as a function of conditioning.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | |
Collapse
|
24
|
Takehara-Nishiuchi K, Kawahara S, Kirino Y. NMDA receptor-dependent processes in the medial prefrontal cortex are important for acquisition and the early stage of consolidation during trace, but not delay eyeblink conditioning. Learn Mem 2006; 12:606-14. [PMID: 16322362 PMCID: PMC1356179 DOI: 10.1101/lm.5905] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Permanent lesions in the medial prefrontal cortex (mPFC) affect acquisition of conditioned responses (CRs) during trace eyeblink conditioning and retention of remotely acquired CRs. To clarify further roles of the mPFC in this type of learning, we investigated the participation of the mPFC in mnemonic processes both during and after daily conditioning using local microinfusion of the GABA(A) receptor agonist muscimol or the NMDA receptor antagonist APV into the rat mPFC. Muscimol infusions into the mPFC before daily conditioning significantly retarded CR acquisition and reduced CR expression if applied after sufficient learning. APV infusion also impaired acquisition of CRs, but not expression of well-learned CRs. When infusions were made immediately after daily conditioning, acquisition of the CR was partially impaired in both the muscimol and APV infusion groups. In contrast, rats that received muscimol infusions 3 h after daily conditioning exhibited improvement in their CR performance comparable to that of the control group. Both the pre- and post-conditioning infusion of muscimol had no effect on acquisition in the delay paradigm. These results suggest that the mPFC participates in both acquisition of a CR and the early stage of consolidation of memory in trace, but not delay eyeblink conditioning by NMDA receptor-mediated operations.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
25
|
Powell DA, Churchwell J, Burriss L. Medial Prefrontal Lesions and Pavlovian Eyeblink and Heart Rate Conditioning: Effects of Partial Reinforcement on Delay and Trace Conditioning in Rabbits (Oryctolagus cuniculus). Behav Neurosci 2005; 119:180-9. [PMID: 15727523 DOI: 10.1037/0735-7044.119.1.180] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Effects of continuous (100%) versus partial (25%) reinforcement were studied on Pavlovian delay and trace eyeblink conditioning in rabbits (Oryctolagus cuniculus) with either lesions to the medial prefrontal cortex (mPFC) or sham lesions. Concomitant heart rate changes evoked by the conditioned stimulus were also assessed. Partial reinforcement retarded eyeblink conditioning in both the trace and delay paradigm, but this impairment was greater during trace conditioning and in rabbits with mPFC lesions. Accompanying conditioned stimulus-evoked heart rate slowing was attenuated under all conditions by the mPFC lesions, although this result was not always statistically significant.
Collapse
Affiliation(s)
- D A Powell
- Shirley L. Buchanan Neuroscience Laboratory, William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC 29209-1639, USA.
| | | | | |
Collapse
|
26
|
Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning. J Neurosci 2003. [PMID: 14586019 DOI: 10.1523/jneurosci.23-30-09897.2003] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many studies have confirmed the time-limited involvement of the hippocampus in mnemonic processes and suggested that there is reorganization of the responsible brain circuitry during memory consolidation. To clarify such reorganization, we chose trace classical eyeblink conditioning, in which hippocampal ablation produces temporally graded retrograde amnesia. Here, we extended the temporal characterization of retrograde amnesia to other regions that are involved in acquisition during this task: the medial prefrontal cortex (mPFC) and the cerebellum. At a various time interval after establishing the trace conditioned response (CR), rats received an aspiration of one of the three regions. After recovery, the animals were tested for their CR retention. When ablated 1 d after the learning, both the hippocampal lesion and the cerebellar lesion group of rats exhibited a severe impairment in retention of the CR, whereas the mPFC lesion group showed only a slight decline. With an increase in interval between the lesion and the learning, the effect of the hippocampal lesion diminished and that of the mPFC lesion increased. When ablated 4 weeks after the learning, the hippocampal lesion group exhibited as robust CRs as its corresponding control group. In contrast, the mPFC lesion and the cerebellar lesion groups failed to retain the CRs. These results indicate that the hippocampus and the cerebellum, but only marginally the mPFC, constitute a brain circuitry that mediates recently acquired memory. As time elapses, the circuitry is reorganized to use mainly the mPFC and the cerebellum, but not the hippocampus, for remotely acquired memory.
Collapse
|
27
|
Takehara K, Kawahara S, Kirino Y. Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning. J Neurosci 2003; 23:9897-905. [PMID: 14586019 PMCID: PMC6740886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Many studies have confirmed the time-limited involvement of the hippocampus in mnemonic processes and suggested that there is reorganization of the responsible brain circuitry during memory consolidation. To clarify such reorganization, we chose trace classical eyeblink conditioning, in which hippocampal ablation produces temporally graded retrograde amnesia. Here, we extended the temporal characterization of retrograde amnesia to other regions that are involved in acquisition during this task: the medial prefrontal cortex (mPFC) and the cerebellum. At a various time interval after establishing the trace conditioned response (CR), rats received an aspiration of one of the three regions. After recovery, the animals were tested for their CR retention. When ablated 1 d after the learning, both the hippocampal lesion and the cerebellar lesion group of rats exhibited a severe impairment in retention of the CR, whereas the mPFC lesion group showed only a slight decline. With an increase in interval between the lesion and the learning, the effect of the hippocampal lesion diminished and that of the mPFC lesion increased. When ablated 4 weeks after the learning, the hippocampal lesion group exhibited as robust CRs as its corresponding control group. In contrast, the mPFC lesion and the cerebellar lesion groups failed to retain the CRs. These results indicate that the hippocampus and the cerebellum, but only marginally the mPFC, constitute a brain circuitry that mediates recently acquired memory. As time elapses, the circuitry is reorganized to use mainly the mPFC and the cerebellum, but not the hippocampus, for remotely acquired memory.
Collapse
Affiliation(s)
- Kaori Takehara
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|