1
|
Halty-deLeon L, Pal Mahadevan V, Wiesel E, Hansson BS, Wicher D. Response Plasticity of Drosophila Olfactory Sensory Neurons. Int J Mol Sci 2024; 25:7125. [PMID: 39000230 PMCID: PMC11241008 DOI: 10.3390/ijms25137125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
In insect olfaction, sensitization refers to the amplification of a weak olfactory signal when the stimulus is repeated within a specific time window. In the vinegar fly, Drosophila melanogaster, this occurs already at the periphery, at the level of olfactory sensory neurons (OSNs) located in the antenna. In our study, we investigate whether sensitization is a widespread property in a set of seven types of OSNs, as well as the mechanisms involved. First, we characterize and compare the differences in spontaneous activity, response velocity and response dynamics, among the selected OSN types. These express different receptors with distinct tuning properties and behavioral relevance. Second, we show that sensitization is not a general property. Among our selected OSN types, it occurs in those responding to more general food odors, while OSNs involved in very specific detection of highly specific ecological cues like pheromones and warning signals show no sensitization. Moreover, we show that mitochondria play an active role in sensitization by contributing to the increase in intracellular Ca2+ upon weak receptor activation. Thus, by using a combination of single sensillum recordings (SSRs), calcium imaging and pharmacology, we widen the understanding of how the olfactory signal is processed at the periphery.
Collapse
Affiliation(s)
| | | | - Eric Wiesel
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
2
|
Nishimura KJ, Poulos A, Drew MR, Rajbhandari AK. Know thy SEFL: Fear sensitization and its relevance to stressor-related disorders. Neurosci Biobehav Rev 2022; 142:104884. [PMID: 36174795 DOI: 10.1016/j.neubiorev.2022.104884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
Extreme stress can cause long-lasting changes in affective behavior manifesting in conditions such as post-traumatic stress disorder (PTSD). Understanding the biological mechanisms that govern trauma-induced behavioral dysregulation requires reliable and rigorous pre-clinical models that recapitulate multiple facets of this complex disease. For decades, Pavlovian fear conditioning has been a dominant paradigm for studying the effects of trauma through an associative learning framework. However, severe stress also causes long-lasting nonassociative fear sensitization, which is often overlooked in Pavlovian fear conditioning studies. This paper synthesizes recent research on the stress-enhanced fear learning (SEFL) paradigm, a valuable rodent model that can dissociate associative and nonassociative effects of stress. We discuss evidence that the SEFL paradigm produces nonassociative fear sensitization that is distinguishable from Pavlovian fear conditioning. We also discuss key biological variables, such as age and sex, neural circuit mechanisms, and crucial gaps in knowledge. We argue that nonassociative fear sensitization deserves more attention within current PTSD models and that SEFL provides a valuable complement to Pavlovian conditioning research on trauma-related pathology.
Collapse
Affiliation(s)
- Kenji J Nishimura
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA, 78712
| | - Andrew Poulos
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, Albany, USA, 12222
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA, 78712
| | | |
Collapse
|
3
|
Wagner CM, Bals JD, Hanson ME, Scott AM. Attenuation and recovery of an avoidance response to a chemical antipredator cue in an invasive fish: implications for use as a repellent in conservation. CONSERVATION PHYSIOLOGY 2022; 10:coac019. [PMID: 35492423 PMCID: PMC9041352 DOI: 10.1093/conphys/coac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The detection of predation risk without direct engagement with a predator is an important driver of prey movement strategies. Consequently, the application of alarm cues may prove an effective tool in guiding the movements of fishes targeted for control or conservation. However, failure to contemplate the sensory, physiological and cognitive outcomes of repeated or persistent exposure to the cue will likely lead to poor performance of management practices. Using a series of behavioural tests and physiological recordings from the olfactory organ, we examined the timing of onset and recovery of the alarm response in sea lamprey (Petromyzon marinus L.) when exposed continuously or sporadically to its alarm cue. In the laboratory, sea lamprey exhibited short-term, reversible attenuation of the alarm response over 2-4 h with continuous exposure. The alarm response spontaneously recovered after 30-60 min of removal from the cue. In long-duration free-swimming tests, where the animals were allowed to move into and out of the odour plume volitionally, repeated but sporadic encounter with the alarm cue over 5 h did not alter the alarm response. Electro-olfactogram recordings from the main olfactory epithelium indicated that olfactory sensory neurons quickly adapt to alarm cue and recovered within 15 min. Our findings strongly implicate habituation as the mechanism that induces reduction in the alarm response and provide insight into the design of effective management practices that seek to use fish alarm cues as repellents.
Collapse
Affiliation(s)
- C Michael Wagner
- Corresponding author. Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| | | | | | - Anne M Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Carnaghi MM, Starobin JM. Reaction-diffusion memory unit: Modeling of sensitization, habituation and dishabituation in the brain. PLoS One 2019; 14:e0225169. [PMID: 31805067 PMCID: PMC6894767 DOI: 10.1371/journal.pone.0225169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/30/2019] [Indexed: 11/18/2022] Open
Abstract
We propose a novel approach to investigate the effects of sensitization, habituation and dishabituation in the brain using the analysis of the reaction-diffusion memory unit (RDMU). This unit consists of Morris-Lecar-type sensory, motor, interneuron and two input excitable cables, linked by four synapses with adjustable strength defined by Hebbian rules. Stimulation of the sensory neuron through the first input cable causes sensitization by activating two excitatory synapses, C1 and C2, connected to the interneuron and motor neuron, respectively. In turn, the stimulation of the interneuron causes habituation through the activation of inhibitory synapse C3. Likewise, dishabituation is caused through the activation of another inhibitory synapse C4. We have determined sensitization-habituation (BSH) and habituation-dishabituation (BHDH) boundaries as functions between synaptic strengths C2 and C3 at various strengths of C1 and C4. When BSH and BHDH curves shift towards larger values of C2, the RDMU can be easily inhibited. On the contrary, the RDMU can be easily sensitized or dishabituated if BSH and BHDH curves shift towards smaller values of C2. Our numerical simulations readily demonstrate that higher values of the Morris-Lecar relaxation parameter, greater leakage and potassium conductances, reduced length of the interneuron, and higher values of C1 all result in easier habituation of the RDMU. In contrast, we found that at higher values of C4 the RDMU becomes significantly more prone to dishabituation. Based on these simulations one can quantify BSH and BHDH curve shifts and relate them to particular neural outcomes.
Collapse
Affiliation(s)
- Matthew M. Carnaghi
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Joseph M. Starobin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
Yang Q, Antonov I, Castillejos D, Nagaraj A, Bostwick C, Kohn A, Moroz LL, Hawkins RD. Intermediate-term memory in Aplysia involves neurotrophin signaling, transcription, and DNA methylation. ACTA ACUST UNITED AC 2018; 25:620-628. [PMID: 30442770 PMCID: PMC6239133 DOI: 10.1101/lm.047977.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022]
Abstract
Long-term but not short-term memory and synaptic plasticity in many brain areas require neurotrophin signaling, transcription, and epigenetic mechanisms including DNA methylation. However, it has been difficult to relate these cellular mechanisms directly to behavior because of the immense complexity of the mammalian brain. To address that problem, we and others have examined numerically simpler systems such as the hermaphroditic marine mollusk Aplysia californica. As a further simplification, we have used a semi-intact preparation of the Aplysia siphon withdrawal reflex in which it is possible to relate cellular plasticity directly to behavioral learning. We find that inhibitors of neurotrophin signaling, transcription, and DNA methylation block sensitization and classical conditioning beginning ∼1 h after the start of training, which is in the time range of an intermediate-term stage of plasticity that combines elements of short- and long-term plasticity and may form a bridge between them. Injection of decitabine (an inhibitor of DNA methylation that may have other actions in these experiments) into an LE sensory neuron blocks the neural correlates of conditioning in the same time range. In addition, we found that both DNA and RNA methylation in the abdominal ganglion are correlated with learning in the same preparations. These results begin to suggest the functions and integration of these different molecular mechanisms during behavioral learning.
Collapse
Affiliation(s)
- Qizong Yang
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Igor Antonov
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - David Castillejos
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Anagha Nagaraj
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Caleb Bostwick
- Whitney Laboratory for Marine Biosciences, University of Florida, Saint Augustine, Florida 32080, USA.,Department of Neuroscience, University of Florida, Gainesville, Florida 32610, USA
| | - Andrea Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, Saint Augustine, Florida 32080, USA
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, Saint Augustine, Florida 32080, USA.,Department of Neuroscience, University of Florida, Gainesville, Florida 32610, USA
| | - Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,Division of Systems Neuroscience, New York State Psychiatric Institute, New York, New York 10032, USA
| |
Collapse
|
6
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus blocks the acquisition of conditioned responses and timing changes in conditioning-specific reflex modification of the rabbit eyeblink response. Neurobiol Learn Mem 2018; 155:143-156. [PMID: 30053576 PMCID: PMC6731038 DOI: 10.1016/j.nlm.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Conditioning-specific reflex modification (CRM) of the rabbit eyeblink response is an associative phenomenon characterized by increases in the frequency, size, and peak latency of the reflexive unconditioned eyeblink response (UR) when the periorbital shock unconditioned stimulus (US) is presented alone following conditioning, particularly to lower intensity USs that produced minimal responding prior to conditioning. Previous work has shown that CRM shares many commonalities with the conditioned eyeblink response (CR) including a similar response topography, suggesting the two may share similar neural substrates. The following study examined the hypothesis that the interpositus nucleus (IP) of the cerebellum, an essential part of the neural circuitry of eyeblink conditioning, is also required for the acquisition of CRM. Tests for CRM occurred following delay conditioning under muscimol inactivation of the IP and also after additional conditioning without IP inactivation. Results showed that IP inactivation blocked acquisition of CRs and the timing aspect of CRM but did not prevent increases in UR amplitude and area. Following the cessation of inactivation, CRs and CRM latency changes developed similarly to controls with intact IP functioning, but with some indication that CRs may have been facilitated in muscimol rabbits. In conclusion, CRM timing and CRs both likely require the development of plasticity in the IP, but other associative UR changes may involve non-cerebellar structures interacting with the eyeblink conditioning circuitry, a strong candidate being the amygdala, which is also likely involved in the facilitation of conditioning. Other candidates worth consideration include the cerebellar cortex, prefrontal and motor cortices.
Collapse
Affiliation(s)
- Lauren B Burhans
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Bernard G Schreurs
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
7
|
Roberts AC, Pearce KC, Choe RC, Alzagatiti JB, Yeung AK, Bill BR, Glanzman DL. Long-term habituation of the C-start escape response in zebrafish larvae. Neurobiol Learn Mem 2016; 134 Pt B:360-8. [PMID: 27555232 DOI: 10.1016/j.nlm.2016.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 01/01/2023]
Abstract
The cellular and molecular basis of long-term memory in vertebrates remains poorly understood. Knowledge regarding long-term memory has been impeded by the enormous complexity of the vertebrate brain, particularly the mammalian brain, as well as by the relative complexity of the behavioral alterations examined in most studies of long-term memory in vertebrates. Here, we demonstrate a long-term form of nonassociative learning-specifically, long-term habituation (LTH)-of a simple reflexive escape response, the C-start, in zebrafish larvae. The C-start is triggered by the activation of one of a pair of giant neurons in the zebrafish's hindbrain, the Mauthner cells. We show that LTH of the C-start requires the activity of NMDA receptors and involves macromolecular synthesis. We further show that the long-term habituated reflex can by rapidly dishabituated by a brief tactile stimulus. Our results set the stage for rigorous, mechanistic investigations of the long-term memory for habituation of a reflexive behavioral response, one that is mediated by a relatively simple, neurobiologically tractable, neural circuit. Moreover, the demonstration of NMDAR and transcriptionally dependent LTH in a translucent vertebrate organism should facilitate the use of optical recording, and optogenetic manipulation, of neuronal activity to elucidate the cellular basis of a long-term vertebrate memory.
Collapse
Affiliation(s)
- Adam C Roberts
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Kaycey C Pearce
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Ronny C Choe
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Joseph B Alzagatiti
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Anthony K Yeung
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Brent R Bill
- Center for Autism Research and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States; Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Biology, University of Texas at Tyler, Tyler, TX, United States
| | - David L Glanzman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Integrative Center for Learning and Memory, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
8
|
Price KH, Dziema H, Aten S, Loeser J, Norona FE, Hoyt K, Obrietan K. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits. Behav Brain Res 2016; 308:222-35. [PMID: 27091299 PMCID: PMC5344043 DOI: 10.1016/j.bbr.2016.04.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/27/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day.
Collapse
Affiliation(s)
- Kaiden H Price
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Heather Dziema
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Jacob Loeser
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Frances E Norona
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Kari Hoyt
- Division of Pharmacology, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Abstract
In the present study, we performed behavioral analyses of the habituation of backward escape swimming in the marbled crayfish, Procambarus fallax. Application of rapid mechanical stimulation to the rostrum elicited backward swimming following rapid abdominal flexion of crayfish. Response latency was very short-tens of msec-suggesting that backward swimming is mediated by MG neurons. When stimulation was repeated with 10 sec interstimulus intervals the MG-like tailflip did not occur, as the animals showed habituation. Retention of habituation was rather short, with most animals recovering from habituation within 10 min. Previous experience of habituation was remembered and animals habituated faster during a second series of experiments with similar repetitive stimuli. About half the number of stimulus trials was necessary to habituate in the second test compared to the first test. This promotion of habituation was observed in animals with delay periods of rest within 60 min following the first habituation. After 90 min of rest from the first habitation, animals showed a similar time course for the second habituation. With five stimuli at 15 min interval during 90 min of the rest, trained animals showed rapid habituation, indicating reinforcement of the memory of previous experiments. Crayfish also showed dishabituation when mechanical stimulation was applied to the tail following habituation.
Collapse
Affiliation(s)
- Azusa Kasuya
- Department of Biology, Faculty of Science, Yamagata University, 990 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990 Yamagata, Japan
| |
Collapse
|
10
|
Roberts AC, Bill BR, Glanzman DL. Learning and memory in zebrafish larvae. Front Neural Circuits 2013; 7:126. [PMID: 23935566 PMCID: PMC3731533 DOI: 10.3389/fncir.2013.00126] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/11/2013] [Indexed: 01/22/2023] Open
Abstract
Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory.
Collapse
Affiliation(s)
- Adam C. Roberts
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
| | - Brent R. Bill
- Center for Autism Research and Program in Neurobehavioral Genetics, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California at Los AngelesLos Angeles, CA, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California at Los AngelesLos Angeles, CA, USA
| | - David L. Glanzman
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los AngelesLos Angeles, CA, USA
- Integrative Center for Learning and Memory, David Geffen School of Medicine, Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA
| |
Collapse
|
11
|
Hoffman KL, Basurto E. One-trial object recognition memory in the domestic rabbit (Oryctolagus cuniculus) is disrupted by NMDA receptor antagonists. Behav Brain Res 2013; 250:62-73. [PMID: 23651879 DOI: 10.1016/j.bbr.2013.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/24/2013] [Accepted: 04/28/2013] [Indexed: 11/28/2022]
Abstract
The spontaneous response to novelty is the basis of one-trial object recognition tests for the study of object recognition memory (ORM) in rodents. We describe an object recognition task for the rabbit, based on its natural tendency to scent-mark ("chin") novel objects. The object recognition task comprised a 15min sample phase in which the rabbit was placed into an open field arena containing two similar objects, then removed for a 5-360min delay, and then returned to the same arena that contained one object similar to the original ones ("Familiar") and one that differed from the original ones ("Novel"), for a 15min test phase. Chin-marks directed at each of the objects were registered. Some animals received injections (sc) of saline, ketamine (1mg/kg), or MK-801 (37μg/kg), 5 or 20min before the sample phase. We found that chinning decreased across the sample phase, and that this response showed stimulus specificity, a defining characteristic of habituation: in the test phase, chinning directed at the Novel, but not Familiar, object was increased. Chinning directed preferentially at the novel object, which we interpret as novelty-induced sensitization and the behavioral correlate of ORM, was promoted by tactile/visual and spatial novelty. ORM deficits were induced by pre-treatment with MK-801 and, to a lesser extent, ketamine. Novel object discrimination was not observed after delays longer than 5min. These results suggest that short-term habituation and sensitization, not long-term memory, underlie novel object discrimination in this test paradigm.
Collapse
Affiliation(s)
- Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal (CIRA), Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| | | |
Collapse
|
12
|
Stahlman WD, Chan AAYH, Blumstein DT, Fast CD, Blaisdell AP. Auditory stimulation dishabituates anti-predator escape behavior in hermit crabs (Coenobita clypeatus). Behav Processes 2011; 88:7-11. [DOI: 10.1016/j.beproc.2011.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 05/21/2011] [Accepted: 06/20/2011] [Indexed: 11/16/2022]
|
13
|
Boehnke SE, Berg DJ, Marino RA, Baldi PF, Itti L, Munoz DP. Visual adaptation and novelty responses in the superior colliculus. Eur J Neurosci 2011; 34:766-79. [PMID: 21864319 DOI: 10.1111/j.1460-9568.2011.07805.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The brain's ability to ignore repeating, often redundant, information while enhancing novel information processing is paramount to survival. When stimuli are repeatedly presented, the response of visually sensitive neurons decreases in magnitude, that is, neurons adapt or habituate, although the mechanism is not yet known. We monitored the activity of visual neurons in the superior colliculus (SC) of rhesus monkeys who actively fixated while repeated visual events were presented. We dissociated adaptation from habituation as mechanisms of the response decrement by using a Bayesian model of adaptation, and by employing a paradigm including rare trials that included an oddball stimulus that was either brighter or dimmer. If the mechanism is adaptation, response recovery should be seen only for the brighter stimulus; if the mechanism is habituation, response recovery ('dishabituation') should be seen for both the brighter and dimmer stimuli. We observed a reduction in the magnitude of the initial transient response and an increase in response onset latency with stimulus repetition for all visually responsive neurons in the SC. Response decrement was successfully captured by the adaptation model, which also predicted the effects of presentation rate and rare luminance changes. However, in a subset of neurons with sustained activity in response to visual stimuli, a novelty signal akin to dishabituation was observed late in the visual response profile for both brighter and dimmer stimuli, and was not captured by the model. This suggests that SC neurons integrate both rapidly discounted information about repeating stimuli and novelty information about oddball events, to support efficient selection in a cluttered dynamic world.
Collapse
Affiliation(s)
- Susan E Boehnke
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
14
|
Fischer TM, Jacobson DA, Counsell AN, Pelot MA, Demorest K. Regulation of low-threshold afferent activity may contribute to short-term habituation in Aplysia californica. Neurobiol Learn Mem 2011; 95:248-59. [DOI: 10.1016/j.nlm.2010.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/27/2010] [Accepted: 11/28/2010] [Indexed: 11/29/2022]
|
15
|
Abstract
Studies of the neural mechanisms of learning, especially of sensitization, have benefitted from extensive research on the model species, Aplysia californica (hereafter Aplysia). Considering this volume of literature on mechanisms, it is surprising that our understanding of the ecological context of sensitization in Aplysia is completely lacking. Indeed, the widespread use of strong electric shock to induce sensitization (an enhancement of withdrawal reflexes following noxious stimulation) is completely unnatural and leaves unanswered the question of whether this simple form of learning has any ecological relevance. We hypothesized that sublethal attack by a co-occurring predator, the spiny lobster, Panulirus interruptus, might be a natural sensitizing stimulus. We tested reflex withdrawal of the tail-mantle and head of individual Aplysia before and after attack by lobsters. Lobster attack significantly increased the amplitude of both reflexes, with a temporal onset that closely matched that observed with electric shock. This result suggests that electric shock may indeed mimic at least one naturally occurring sensitizing stimulus, suggesting, for the first time, an ecological context for this well studied form of learning.
Collapse
|
16
|
Presynaptic and postsynaptic mechanisms of synaptic plasticity and metaplasticity during intermediate-term memory formation in Aplysia. J Neurosci 2010; 30:5781-91. [PMID: 20410130 DOI: 10.1523/jneurosci.4947-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity and learning involve different mechanisms depending on the following: (1) the stage of plasticity and (2) the history of plasticity, or metaplasticity. However, little is known about how these two factors are related. We have addressed that question by examining mechanisms of synaptic plasticity during short-term and intermediate-term behavioral sensitization and dishabituation in a semi-intact preparation of the Aplysia siphon-withdrawal reflex. Dishabituation differs from sensitization in that it is preceded by habituation, and is thus a paradigm for metaplasticity. We find that whereas facilitation during short-term sensitization by one tail shock involves presynaptic covalent modifications by protein kinase A (PKA) and CamKII, facilitation during intermediate-term sensitization by four shocks involves both presynaptic (PKA, CaMKII) and postsynaptic (Ca(2+), CaMKII) covalent modifications, as well as both presynaptic and postsynaptic protein synthesis. The facilitation also involves presynaptic spike broadening 2.5 min after either one or four shocks, but not at later times. Dishabituation by four shocks differs from sensitization in several ways. First, it does not involve PKA or CaMKII, but rather involves presynaptic PKC. In addition, unlike sensitization with the same shock, dishabituation by four shocks does not involve protein synthesis or presynaptic spike broadening, and it also does not involve postsynaptic Ca(2+). These results demonstrate that not only the mechanisms but also the site of plasticity depend on both the stage of plasticity and metaplasticity during memory formation.
Collapse
|
17
|
Geva N, Guershon M, Orlova M, Ayali A. Memoirs of a locust: density-dependent behavioral change as a model for learning and memory. Neurobiol Learn Mem 2009; 93:175-82. [PMID: 19766727 DOI: 10.1016/j.nlm.2009.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
A locust outbreak is a stupendous natural phenomenon that remains in the memory of whoever has been lucky (or unlucky) enough to witness it. Recent years have provided novel and important insights into the neurobiology of locust swarming. However, the central nervous system processes that accompany and perhaps even lie at the basis of locust phase transformation are still far from being fully understood. Our current work deals with the memory of a locust outbreak from a new perspective: that of the individual locust. We take locust density-dependent phase transformation - a unique example of extreme behavioral plasticity, and place it within the context of the accepted scheme of learning and memory. We confirm that a short time period of exposure to a small crowd of locusts is sufficient to induce a significant behavioral change in a previously solitary locust. Our results suggest that part of the behavioral change is due to long-term habituation of evasive and escape responses. We further demonstrate that the memory of a crowding event lasts for at least 24h, and that this memory is sensitive to a protein synthesis blocker. These findings add much to our understanding of locust density-dependent phase polyphenism. Furthermore, they offer a novel and tractable model for the study of learning and memory-related processes in a very distinctive behavioral context.
Collapse
Affiliation(s)
- N Geva
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
18
|
Engel JE, Wu CF. Neurogenetic approaches to habituation and dishabituation in Drosophila. Neurobiol Learn Mem 2009; 92:166-75. [PMID: 18765288 PMCID: PMC2730516 DOI: 10.1016/j.nlm.2008.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 08/03/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
Abstract
We review work in the major model systems for habituation in Drosophila melanogaster, encompassing several sensory modalities and behavioral contexts: visual (giant fiber escape response, landing response); chemical (proboscis extension reflex, olfactory jump response, locomotory startle response, odor-induced leg response, experience-dependent courtship modification); electric (shock avoidance); and mechanical (leg resistance reflex, cleaning reflex). Each model system shows several of Thompson and Spencer's [Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73, 16-43] parametric criteria for habituation: spontaneous recovery and dishabituation have been described in almost all of them and dependence of habituation upon stimulus frequency and stimulus intensity in the majority. Stimulus generalization (and conversely, the delineation of stimulus specificity) has given insights into the localization of habituation or the neural architecture underlying sensory processing. The strength of Drosophila for studying habituation is the range of genetic approaches available. Mutations have been used to modify specific neuroanatomical structures, ion channels, elements of synaptic transmission, and second-messenger pathways. rutabaga and dunce, genes of the cAMP signal pathway that have been studied most often in the reviewed experiments, have also been implicated in synaptic plasticity and associative conditioning in Drosophila and other species including mammals. The use of the Gal4/UAS system for targeting gene expression has enabled genetic perturbation of defined sets of neurons. One clear lesson is that a gene may affect habituation differently in different behaviors, depending on the expression, processing, and localization of the gene product in specific circuits. Mutations of specific genes not only provide links between physiology and behavior in the same circuit, but also reveal common mechanisms in different paradigms of behavioral plasticity. The rich repertoire of models for habituation in the fly is an asset for combining a genetic approach with behavioral, anatomical and physiological methods with the promise of a more complete understanding.
Collapse
Affiliation(s)
- Jeff E. Engel
- Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA. Fax: +1 309 298 2270.
| | - Chun-Fang Wu
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA. Fax: +1 319 335 1103.
| |
Collapse
|
19
|
Auditory stimulation dishabituates olfactory responses via noradrenergic cortical modulation. Neural Plast 2009; 2009:754014. [PMID: 19343110 PMCID: PMC2664459 DOI: 10.1155/2009/754014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/20/2009] [Indexed: 11/24/2022] Open
Abstract
Dishabituation is a return of a habituated response if context or contingency changes. In the mammalian olfactory system, metabotropic glutamate receptor mediated synaptic depression of cortical afferents underlies short-term habituation to odors. It was hypothesized that a known antagonistic interaction between these receptors and norepinephrine ß-receptors provides a mechanism for dishabituation. The results demonstrate that a
108 dB siren induces a two-fold increase in norepinephrine content in the piriform cortex.
The same auditory stimulus induces dishabituation of odor-evoked heart rate orienting bradycardia
responses in awake rats. Finally, blockade of piriform cortical norepinephrine ß-receptors with bilateral intracortical infusions of propranolol
(100 μM) disrupts auditory-induced dishabituation of odor-evoked bradycardia responses. These results provide a cortical mechanism for a return of habituated sensory responses following a
cross-modal alerting stimulus.
Collapse
|
20
|
Bevilaqua LRM, Rossato JI, Bonini JS, Myskiw JC, Clarke JR, Monteiro S, Lima RH, Medina JH, Cammarota M, Izquierdo I. The role of the entorhinal cortex in extinction: influences of aging. Neural Plast 2008; 2008:595282. [PMID: 18584042 PMCID: PMC2435227 DOI: 10.1155/2008/595282] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 05/23/2008] [Indexed: 11/17/2022] Open
Abstract
The entorhinal cortex is perhaps the area of the brain in which neurofibrillary tangles and amyloid plaques are first detectable in old age with or without mild cognitive impairment, and very particularly in Alzheimer's disease. It plays a key role in memory formation, retrieval, and extinction, as part of circuits that include the hippocampus, the amygdaloid nucleus, and several regions of the neocortex, in particular of the prefrontal cortex. Lesions or biochemical impairments of the entorhinal cortex hinder extinction. Microinfusion experiments have shown that glutamate NMDA receptors, calcium and calmodulin-dependent protein kinase II, and protein synthesis in the entorhinal cortex are involved in and required for extinction. Aging also hinders extinction; it is possible that its effect may be in part mediated by the entorhinal cortex.
Collapse
Affiliation(s)
- Lia R. M. Bevilaqua
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
- Centro Universitário IPA, Rua Cel. Joaquim Pedro Salgado 80, 90420-060 Porto Alegre, RS, Brazil
| | - Janine I. Rossato
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Juliana S. Bonini
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Jociane C. Myskiw
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Julia R. Clarke
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Siomara Monteiro
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Ramón H. Lima
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Jorge H. Medina
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 7th floor, 1121 Buenos Aires, Argentina
| | - Martín Cammarota
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Iván Izquierdo
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Urazaev AK, Arganda S, Muller KJ, Sahley CL. Lasting changes in a network of interneurons after synapse regeneration and delayed recovery of sensitization. Neuroscience 2007; 150:915-25. [PMID: 18031937 PMCID: PMC2198935 DOI: 10.1016/j.neuroscience.2007.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/26/2007] [Accepted: 10/05/2007] [Indexed: 12/15/2022]
Abstract
Regeneration of neuronal circuits cannot be successful without restoration of full function, including recovery of behavioral plasticity, which we have found is delayed after regeneration of specific synapses. Experiments were designed to measure neuronal changes that may underlie recovery of function. Sensitization of the leech withdrawal reflex is a non-associative form of learning that depends on the S-interneuron. Cutting an S-cell axon in Faivre's nerve disrupted the capacity for sensitization. The S-cell axon regenerated its electrical synapse with its homologous cell after 3-4 weeks, but the capacity for sensitization was delayed for an additional 2-3 weeks. In the present experiments another form of non-associative conditioning, dishabituation, was also eliminated by S-cell axotomy; it returned following regeneration. Semi-intact preparations were made for behavioral studies, and chains of ganglia with some skin were used for intracellular recording and skin stimulation. In both preparations there was a similar time-course, during 6 weeks, of a lesion-induced decrease and delayed restoration of both S-cell action potential threshold to depolarizing pulses and S-cell firing in response to test stimuli. However, the ability of sensitizing stimuli to decrease S-cell threshold and enhance S-cell activity in response to test stimuli did not fully return after regeneration, indicating that there were lasting changes in the circuit extending beyond the period necessary for full recovery of behavior. Intracellular recordings from the axotomized S-cell revealed a shift in the usual balance of excitatory and inhibitory input, with inhibition enhanced. These results indicate that loss of behavioral plasticity of reflexive shortening following axotomy in the S-cell chain may be related to reduced S-cell activity, and that additional processes underlie full recovery of sensitization of the whole body shortening reflex.
Collapse
Affiliation(s)
- Albert K. Urazaev
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Sara Arganda
- Department of Theoretical Physics, Universidad Autonoma de Madrid, Madrid, Spain
| | - Kenneth J. Muller
- Department of Physiology & Biophysics and Neuroscience Program, University of Miami School of Medicine, Miami, FL 33101
| | - Christie L. Sahley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|