1
|
Kaya E, Wegienka E, Akhtarzandi-Das A, Do H, Eban-Rothschild A, Rothschild G. Food intake enhances hippocampal sharp wave-ripples. eLife 2025; 14:RP105059. [PMID: 40227932 PMCID: PMC11996173 DOI: 10.7554/elife.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Effective regulation of energy metabolism is critical for survival. Metabolic control involves various nuclei within the hypothalamus, which receive information about the body's energy state and coordinate appropriate responses to maintain homeostasis, such as thermogenesis, pancreatic insulin secretion, and food-seeking behaviors. It has recently been found that the hippocampus, a brain region traditionally associated with memory and spatial navigation, is also involved in metabolic regulation. Specifically, hippocampal sharp wave-ripples (SWRs), which are high-frequency neural oscillations supporting memory consolidation and foraging decisions, have been shown to reduce peripheral glucose levels. However, whether SWRs are enhanced by recent feeding-when the need for glucose metabolism increases, and if so, whether feeding-dependent modulation of SWRs is communicated to other brain regions involved in metabolic regulation-remains unknown. To address these gaps, we recorded SWRs from the dorsal CA1 region of the hippocampus of mice during sleep sessions before and after consumption of meals of varying caloric values. We found that SWRs occurring during sleep are significantly enhanced following food intake, with the magnitude of enhancement being dependent on the caloric content of the meal. This pattern occurred under both food-deprived and ad libitum feeding conditions. Moreover, we demonstrate that GABAergic neurons in the lateral hypothalamus, which are known to regulate food intake, exhibit a robust SWR-triggered increase in activity. These findings identify the satiety state as a factor modulating SWRs and suggest that hippocampal-lateral hypothalamic communication is a potential mechanism by which SWRs could modulate peripheral metabolism and food intake.
Collapse
Affiliation(s)
- Ekin Kaya
- Department of Psychology, University of MichiganAnn ArborUnited States
| | - Evan Wegienka
- Department of Psychology, University of MichiganAnn ArborUnited States
| | | | - Hanh Do
- Department of Psychology, University of MichiganAnn ArborUnited States
| | | | - Gideon Rothschild
- Department of Psychology, University of MichiganAnn ArborUnited States
- Kresge Hearing Research Institute and Department of Otolaryngology, Head and Neck Surgery, University of MichiganAnn ArborUnited States
| |
Collapse
|
2
|
Chen H, Wang B, Zhan Y, Liu J, Yang S, Tan X, Zhang W, Zhang J, Yang Y, Liu Y, Wang M, Zhang H, Li X, Yao Z, Pema D, Li H, Chen H, Hu B. Dynamics of hippocampal reactivation for temporal association memory in mice. Prog Neurobiol 2025; 247:102729. [PMID: 40023311 DOI: 10.1016/j.pneurobio.2025.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Reactivation refers to the re-emergence of activity in neuronal ensembles that were active during information encoding. Hippocampal CA1 neuronal ensembles generate firing activities that encode the temporal association among time-separated events. However, whether and how temporal association memory-related CA1 neuronal ensembles reactivate during sleep and their role in temporal association memory consolidation remain unclear. We utilized multiple unit recordings to monitor CA1 neuronal activity in mice learning a trace eyeblink conditioning (tEBC) task, in which presentation of the conditioned stimulus (CS, a light flash) was paired with presentation of the unconditioned stimulus (US, corneal puff) by a time-separated interval. We found that the CS-US paired training mice exhibited few conditioned eyeblink responses (CRs) at the initial-learning stage (ILS) and an asymptotic level of CRs at the well-learning stage (WLS). More than one third of CA1 pyramidal cells (PYR) in the CS-US paired training mice manifested a CS-evoked firing activity that was sustained from the CS to time-separated interval. The CS-evoked PYR firing activity was required for the tEBC acquisition and was greater when the CRs occurred. Intriguingly, the CS-evoked firing PYR ensembles reactivated, which coincided with increased hippocampal ripples during post-training sleep. The reactivation of CS-evoked firing PYR ensembles diminished across learning stages, with greater strength in the ILS. Disrupting the ripple-associated PYR activity impaired both the reactivation of CS-evoked firing PYR ensembles and tEBC consolidation. Our findings highlight the features of hippocampal CA1 neuronal ensemble reactivation during sleep, which support the consolidation of temporal association memory.
Collapse
Affiliation(s)
- Hui Chen
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Bin Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yue Zhan
- Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Junqi Liu
- Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Sicheng Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Xuan Tan
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Weiwei Zhang
- Department of Physiology, School of Basic Medicine, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ye Yang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yanji Liu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Meilin Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Haibo Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhongxiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Drolma Pema
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hongli Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Hao Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Bo Hu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
van der Meer MAA, Bendor D. Awake replay: off the clock but on the job. Trends Neurosci 2025; 48:257-267. [PMID: 40121166 DOI: 10.1016/j.tins.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/27/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
Hippocampal replay is widely thought to support two key cognitive functions: online decision-making and offline memory consolidation. In this review, we take a closer look at the hypothesized link between awake replay and online decision-making in rodents, and find only marginal evidence in support of this role. By contrast, the consolidation view is bolstered by new computational ideas and recent data, suggesting that (i) replay performs offline fictive learning for later goal-oriented behavior; and (ii) replay tags memories prior to sleep, prioritizing them for consolidation. Based on these recent advances, we favor an updated and refined role for awake replay - that is, supporting prioritized offline learning and tagging outside the hippocampus - rather than a direct, online role in guiding behavior.
Collapse
Affiliation(s)
| | - Daniel Bendor
- Institute of Behavioural Neuroscience, Dept. of Experimental Psychology, University College London, London, UK.
| |
Collapse
|
4
|
Yeung D, Talukder A, Shi M, Umbach DM, Li Y, Motsinger-Reif A, Hwang JJ, Fan Z, Li L. Differences in brain spindle density during sleep between patients with and without type 2 diabetes. Comput Biol Med 2025; 184:109484. [PMID: 39622099 DOI: 10.1016/j.compbiomed.2024.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Sleep spindles may be implicated in sensing and regulation of peripheral glucose. Whether spindle density in patients with type 2 diabetes mellitus (T2DM) differs from that of healthy subjects is unknown. METHODS Our retrospective analysis of polysomnography (PSG) studies identified 952 patients with T2DM and 952 sex-, age- and BMI-matched control subjects. We extracted spindles from PSG electroencephalograms and used rank-based statistical methods to test for differences between subjects with and without diabetes. We also explored potential modifiers of spindle density differences. We replicated our analysis on independent data from the Sleep Heart Health Study. RESULTS We found that patients with T2DM exhibited about half the spindle density during sleep as matched controls (P < 0.0001). The replication dataset showed similar trends. The patient-minus-control paired difference in spindle density for pairs where the patient had major complications were larger than corresponding paired differences in pairs where the patient lacked major complications, despite both patient groups having significantly lower spindle density compared to their respective control subjects. Patients with a prescription for a glucagon-like peptide 1 receptor agonist had significantly higher spindle density than those without one (P ≤ 0.03). Spindle density in patients with T2DM monotonically decreased as their highest recorded HbA1C level increased (P ≤ 0.003). CONCLUSIONS T2DM patients had significantly lower spindle density than control subjects; the size of that difference was correlated with markers of disease severity (complications and glycemic control). These findings expand our understanding of the relationships between sleep and glucose regulation.
Collapse
Affiliation(s)
- Deryck Yeung
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amlan Talukder
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Janice J Hwang
- Division of Endocrinology and Metabolism and Department of Internal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zheng Fan
- Division of Sleep Medicine and Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Bratsch-Prince JX, Jones GC, Warren JW, Mott DD. Synaptic acetylcholine induces sharp wave ripples in the basolateral amygdala through nicotinic receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626291. [PMID: 39677685 PMCID: PMC11642747 DOI: 10.1101/2024.12.01.626291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
While the basolateral amygdala (BLA) is critical in the consolidation of emotional memories, mechanisms underlying memory consolidation in this region are not well understood. In the hippocampus, memory consolidation depends upon network signatures termed sharp wave ripples (SWR). These SWRs largely occur during states of awake rest or slow wave sleep and are inversely correlated with cholinergic tone. While high frequency cholinergic stimulation can inhibit SWRs through muscarinic acetylcholine receptors, it is unclear how nicotinic acetylcholine receptors or different cholinergic firing patterns may influence SWR generation. SWRs are also present in BLA in vivo. Interestingly, the BLA receives extremely dense cholinergic inputs, yet the relationship between acetylcholine (ACh) and BLA SWRs is unexplored. Here, using brain slice electrophysiology in male and female mice, we show that brief stimulation of ACh inputs to BLA reliably induces SWRs that resemble those that occur in the BLA in vivo. Repeated ACh-SWRs are induced with single pulse stimulation at low, but not higher frequencies. ACh-SWRs are driven by nicotinic receptors which recruit different classes of local interneurons and trigger glutamate release from external inputs. In total, our findings establish a previously undefined mechanism for SWR induction in the brain. They also challenge the previous notion of neuromodulators as purely modulatory agents gating these events but instead reveal these systems can directly instruct SWR induction with temporal precision. Further, these results intriguingly suggest a new role for the nicotinic system in emotional memory consolidation.
Collapse
Affiliation(s)
| | - Grace C. Jones
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - James W. Warren
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - David D. Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| |
Collapse
|
6
|
Khamassi M, Peyrache A, Benchenane K, Hopkins DA, Lebas N, Douchamps V, Droulez J, Battaglia FP, Wiener SI. Rat anterior cingulate neurons responsive to rule or strategy changes are modulated by the hippocampal theta rhythm and sharp-wave ripples. Eur J Neurosci 2024; 60:5300-5327. [PMID: 39161082 DOI: 10.1111/ejn.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
To better understand neural processing during adaptive learning of stimulus-response-reward contingencies, we recorded synchrony of neuronal activity in anterior cingulate cortex (ACC) and hippocampal rhythms in male rats acquiring and switching between spatial and visual discrimination tasks in a Y-maze. ACC population activity as well as single unit activity shifted shortly after task rule changes or just before the rats adopted different task strategies. Hippocampal theta oscillations (associated with memory encoding) modulated an elevated proportion of rule-change responsive neurons (70%), but other neurons that were correlated with strategy-change, strategy value and reward-rate were not. However, hippocampal sharp wave-ripples modulated significantly higher proportions of rule-change, strategy-change and reward-rate responsive cells during post-session sleep but not pre-session sleep. This suggests an underestimated mechanism for hippocampal mismatch and contextual signals to facilitate ACC to detect contingency changes for cognitive flexibility, a function that is attenuated after it is damaged.
Collapse
Affiliation(s)
- M Khamassi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - A Peyrache
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - K Benchenane
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - D A Hopkins
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - N Lebas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - V Douchamps
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - J Droulez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - F P Battaglia
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Donders Institute for Brain, Cognition, and Behavior, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - S I Wiener
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
7
|
Valdivia G, Espinosa N, Lara-Vasquez A, Caneo M, Inostroza M, Born J, Fuentealba P. Sleep-dependent decorrelation of hippocampal spatial representations. iScience 2024; 27:110076. [PMID: 38883845 PMCID: PMC11176648 DOI: 10.1016/j.isci.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Ariel Lara-Vasquez
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Mauricio Caneo
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| |
Collapse
|
8
|
Bredenberg C, Savin C. Desiderata for Normative Models of Synaptic Plasticity. Neural Comput 2024; 36:1245-1285. [PMID: 38776950 DOI: 10.1162/neco_a_01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 05/25/2024]
Abstract
Normative models of synaptic plasticity use computational rationales to arrive at predictions of behavioral and network-level adaptive phenomena. In recent years, there has been an explosion of theoretical work in this realm, but experimental confirmation remains limited. In this review, we organize work on normative plasticity models in terms of a set of desiderata that, when satisfied, are designed to ensure that a given model demonstrates a clear link between plasticity and adaptive behavior, is consistent with known biological evidence about neural plasticity and yields specific testable predictions. As a prototype, we include a detailed analysis of the REINFORCE algorithm. We also discuss how new models have begun to improve on the identified criteria and suggest avenues for further development. Overall, we provide a conceptual guide to help develop neural learning theories that are precise, powerful, and experimentally testable.
Collapse
Affiliation(s)
- Colin Bredenberg
- Center for Neural Science, New York University, New York, NY 10003, U.S.A
- Mila-Quebec AI Institute, Montréal, QC H2S 3H1, Canada
| | - Cristina Savin
- Center for Neural Science, New York University, New York, NY 10003, U.S.A
- Center for Data Science, New York University, New York, NY 10011, U.S.A.
| |
Collapse
|
9
|
Kozlov M. Sleep deprivation disrupts memory: here's why. Nature 2024; 630:542. [PMID: 38867014 DOI: 10.1038/d41586-024-01732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
10
|
Giri B, Kinsky N, Kaya U, Maboudi K, Abel T, Diba K. Sleep loss diminishes hippocampal reactivation and replay. Nature 2024; 630:935-942. [PMID: 38867049 PMCID: PMC11472378 DOI: 10.1038/s41586-024-07538-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Memories benefit from sleep1, and the reactivation and replay of waking experiences during hippocampal sharp-wave ripples (SWRs) are considered to be crucial for this process2. However, little is known about how these patterns are impacted by sleep loss. Here we recorded CA1 neuronal activity over 12 h in rats across maze exploration, sleep and sleep deprivation, followed by recovery sleep. We found that SWRs showed sustained or higher rates during sleep deprivation but with lower power and higher frequency ripples. Pyramidal cells exhibited sustained firing during sleep deprivation and reduced firing during sleep, yet their firing rates were comparable during SWRs regardless of sleep state. Despite the robust firing and abundance of SWRs during sleep deprivation, we found that the reactivation and replay of neuronal firing patterns was diminished during these periods and, in some cases, completely abolished compared to ad libitum sleep. Reactivation partially rebounded after recovery sleep but failed to reach the levels found in natural sleep. These results delineate the adverse consequences of sleep loss on hippocampal function at the network level and reveal a dissociation between the many SWRs elicited during sleep deprivation and the few reactivations and replays that occur during these events.
Collapse
Affiliation(s)
- Bapun Giri
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nathaniel Kinsky
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Utku Kaya
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kourosh Maboudi
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Kamran Diba
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Yeung D, Talukder A, Shi M, Umbach DM, Li Y, Motsinger-Reif A, Fan Z, Li L. Differences in sleep spindle wave density between patients with diabetes mellitus and matched controls: implications for sensing and regulation of peripheral blood glucose. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.11.24305676. [PMID: 38645123 PMCID: PMC11030297 DOI: 10.1101/2024.04.11.24305676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Brain waves during sleep are involved in sensing and regulating peripheral glucose level. Whether brain waves in patients with diabetes differ from those of healthy subjects is unknown. We examined the hypothesis that patients with diabetes have reduced sleep spindle waves, a form of brain wave implicated in periphery glucose regulation during sleep. Methods From a retrospective analysis of polysomnography (PSG) studies on patients who underwent sleep apnea evaluation, we identified 1,214 studies of patients with diabetes mellitus (>66% type 2) and included a sex- and age-matched control subject for each within the scope of our analysis. We similarly identified 376 patients with prediabetes and their matched controls. We extracted spindle characteristics from artifact-removed PSG electroencephalograms and other patient data from records. We used rank-based statistical methods to test hypotheses. We validated our finding on an external PSG dataset. Results Patients with diabetes mellitus exhibited on average about half the spindle density (median=0.38 spindles/min) during sleep as their matched control subjects (median=0.70 spindles/min) (P<2.2e-16). Compared to controls, spindle loss was more pronounced in female patients than in male patients in the frontal regions of the brain (P=0.04). Patients with prediabetes also exhibited signs of lower spindle density compared to matched controls (P=0.01-0.04). Conclusions Patients with diabetes have fewer spindle waves that are implicated in glucose regulation than matched controls during sleep. Besides offering a possible explanation for neurological complications from diabetes, our findings open the possibility that reversing/reducing spindle loss could improve the overall health of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Deryck Yeung
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Amlan Talukder
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Zheng Fan
- Division of Sleep Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
12
|
Zhang Q, Chen F. Impact of single-trial avoidance learning on subsequent sleep. Eur J Neurosci 2024; 59:739-751. [PMID: 38342099 DOI: 10.1111/ejn.16274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Both non-rapid eye movement (NonREM) sleep and rapid eye movement (REM) sleep, as well as sleep spindle and ripple oscillations, are important for memory formation. Through cortical EEG recordings of prefrontal cortex and hippocampus during and after an inhibitory avoidance task, we analysed the dynamic changes in the amounts of sleep, spindle and ripple oscillations related to memory formation. The total amount of NonREM sleep was reduced during the first hour after learning. Moreover, significant decrease of the total spindle and ripple counts was observed at the first hour after learning as well. In addition, foot shock alone, with no associated learning, produced little effect on the dynamics of sleep oscillations, indicating that the learning experience is necessary for these changes to occur.
Collapse
Affiliation(s)
- Qianwen Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Huelin Gorriz M, Takigawa M, Bendor D. The role of experience in prioritizing hippocampal replay. Nat Commun 2023; 14:8157. [PMID: 38071221 PMCID: PMC10710481 DOI: 10.1038/s41467-023-43939-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
During sleep, recent memories are replayed by the hippocampus, leading to their consolidation, with a higher priority given to salient experiences. To examine the role of replay in the selective strengthening of memories, we recorded large ensembles of hippocampal place cells while male rats ran repeated spatial trajectories on two linear tracks, differing in either their familiarity or number of laps run. We observed that during sleep, the rate of replay events for a given track increased proportionally with the number of spatial trajectories run by the animal. In contrast, the rate of sleep replay events decreased if the animal was more familiar with the track. Furthermore, we find that the cumulative number of awake replay events occurring during behavior, influenced by both the novelty and duration of an experience, predicts which memories are prioritized for sleep replay, providing a more parsimonious neural correlate for the selective strengthening of memories.
Collapse
Affiliation(s)
- Marta Huelin Gorriz
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Masahiro Takigawa
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Daniel Bendor
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK.
| |
Collapse
|
14
|
Salgado-Puga K, Rothschild G. Exposure to sounds during sleep impairs hippocampal sharp wave ripples and memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568283. [PMID: 38045371 PMCID: PMC10690295 DOI: 10.1101/2023.11.22.568283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Sleep is critical for the consolidation of recent experiences into long-term memories. As a key underlying neuronal mechanism, hippocampal sharp-wave ripples (SWRs) occurring during sleep define periods of hippocampal reactivation of recent experiences and have been causally linked with memory consolidation. Hippocampal SWR-dependent memory consolidation during sleep is often referred to as occurring during an "offline" state, dedicated to processing internally generated neural activity patterns rather than external stimuli. However, the brain is not fully disconnected from the environment during sleep. In particular, sounds heard during sleep are processed by a highly active auditory system which projects to brain regions in the medial temporal lobe, reflecting an anatomical pathway for sound modulation of hippocampal activity. While neural processing of salient sounds during sleep, such as those of a predator or an offspring, is evolutionarily adaptive, whether ongoing processing of environmental sounds during sleep interferes with SWR-dependent memory consolidation remains unknown. To address this question, we used a closed-loop system to deliver non-waking sound stimuli during or following SWRs in sleeping rats. We found that exposure to sounds during sleep suppressed the ripple power and reduced the rate of SWRs. Furthermore, sounds delivered during SWRs (On-SWR) suppressed ripple power significantly more than sounds delivered 2 seconds after SWRs (Off-SWR). Next, we tested the influence of sound presentation during sleep on memory consolidation. To this end, SWR-triggered sounds were applied during sleep sessions following learning of a conditioned place preference paradigm, in which rats learned a place-reward association. We found that On-SWR sound pairing during post-learning sleep induced a complete abolishment of memory retention 24 h following learning, while leaving memory retention immediately following sleep intact. In contrast, Off-SWR pairing weakened memory 24 h following learning as well as immediately following learning. Notably, On-SWR pairing induced a significantly larger impairment in memory 24 h after learning as compared to Off-SWR pairing. Together, these findings suggest that sounds heard during sleep suppress SWRs and memory consolidation, and that the magnitude of these effects are dependent on sound-SWR timing. These results suggest that exposure to environmental sounds during sleep may pose a risk for memory consolidation processes.
Collapse
|
15
|
Bredenberg C, Savin C. Desiderata for normative models of synaptic plasticity. ARXIV 2023:arXiv:2308.04988v1. [PMID: 37608931 PMCID: PMC10441445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Normative models of synaptic plasticity use a combination of mathematics and computational simulations to arrive at predictions of behavioral and network-level adaptive phenomena. In recent years, there has been an explosion of theoretical work on these models, but experimental confirmation is relatively limited. In this review, we organize work on normative plasticity models in terms of a set of desiderata which, when satisfied, are designed to guarantee that a model has a clear link between plasticity and adaptive behavior, consistency with known biological evidence about neural plasticity, and specific testable predictions. We then discuss how new models have begun to improve on these criteria and suggest avenues for further development. As prototypes, we provide detailed analyses of two specific models - REINFORCE and the Wake-Sleep algorithm. We provide a conceptual guide to help develop neural learning theories that are precise, powerful, and experimentally testable.
Collapse
Affiliation(s)
- Colin Bredenberg
- Center for Neural Science, New York University, New York, NY 10003, USA
- Mila-Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal, QC H2S 3H1
| | - Cristina Savin
- Center for Neural Science, New York University, New York, NY 10003, USA
- Center for Data Science, New York University, New York, NY 10011, USA
| |
Collapse
|
16
|
Modi B, Guardamagna M, Stella F, Griguoli M, Cherubini E, Battaglia FP. State-dependent coupling of hippocampal oscillations. eLife 2023; 12:e80263. [PMID: 37462671 PMCID: PMC10411970 DOI: 10.7554/elife.80263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-vary simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multivariate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.
Collapse
Affiliation(s)
| | - Matteo Guardamagna
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Marilena Griguoli
- European Brain Research InstituteRomeItaly
- CNR, Institute of Molecular Biology and PathologyRomeItaly
| | | | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
17
|
Quigley LD, Pendry R, Mendoza ML, Pfeiffer BE, Volk LJ. Experience alters hippocampal and cortical network communication via a KIBRA-dependent mechanism. Cell Rep 2023; 42:112662. [PMID: 37347662 PMCID: PMC10592482 DOI: 10.1016/j.celrep.2023.112662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
Synaptic plasticity is hypothesized to underlie "replay" of salient experience during hippocampal sharp-wave/ripple (SWR)-based ensemble activity and to facilitate systems-level memory consolidation coordinated by SWRs and cortical sleep spindles. It remains unclear how molecular changes at synapses contribute to experience-induced modification of network function. The synaptic protein KIBRA regulates plasticity and memory. To determine the impact of KIBRA-regulated plasticity on circuit dynamics, we recorded in vivo neural activity from wild-type (WT) mice and littermates lacking KIBRA and examined circuit function before, during, and after novel experience. In WT mice, experience altered population activity and oscillatory dynamics in a manner consistent with incorporation of new information content in replay and enhanced hippocampal-cortical communication. While baseline SWR features were normal in KIBRA conditional knockout (cKO) mice, experience-dependent alterations in SWRs were absent. Furthermore, intra-hippocampal and hippocampal-cortical communication during SWRs was disrupted following KIBRA deletion. These results indicate molecular mechanisms that underlie network-level adaptations to experience.
Collapse
Affiliation(s)
- Lilyana D Quigley
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert Pendry
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew L Mendoza
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brad E Pfeiffer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O' Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lenora J Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O' Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Shiozaki H, Kuga N, Kayama T, Ikegaya Y, Sasaki T. Selective serotonin reuptake inhibitors suppress sharp wave ripples in the ventral hippocampus. J Pharmacol Sci 2023; 152:136-143. [PMID: 37169478 DOI: 10.1016/j.jphs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Biased memory processing contributes to the development and exacerbation of depression, and thus could represent a potential therapeutic target for stress-induced mental disorders. Synchronized spikes in hippocampal neurons, corresponding to sharp wave ripples (SWRs), may play a crucial role in memory reactivation. In this study, we showed that the frequency of SWRs increased in the ventral hippocampus, but not in the dorsal hippocampus, after stress exposure. Administration of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and fluvoxamine inhibited the generation of ventral hippocampal SWRs and reduced locomotor activity and local field potential power in the gamma bands. These results suggest that the antidepressant effects of SSRIs may be mediated by the suppression of ventral hippocampal SWRs.
Collapse
Affiliation(s)
- Hiromi Shiozaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| | - Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Giri B, Kaya U, Maboudi K, Abel T, Diba K. Sleep loss diminishes hippocampal reactivation and replay. RESEARCH SQUARE 2023:rs.3.rs-2540186. [PMID: 36824950 PMCID: PMC9949250 DOI: 10.21203/rs.3.rs-2540186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Memories benefit from sleep, and sleep loss immediately following learning has a negative impact on subsequent memory storage. Several prominent hypotheses ascribe a central role to hippocampal sharp-wave ripples (SWRs), and the concurrent reactivation and replay of neuronal patterns from waking experience, in the offline memory consolidation process that occurs during sleep. However, little is known about how SWRs, reactivation, and replay are affected when animals are subjected to sleep deprivation. We performed long duration (~12 h), high-density silicon probe recordings from rat hippocampal CA1 neurons, in animals that were either sleeping or sleep deprived following exposure to a novel maze environment. We found that SWRs showed a sustained rate of activity during sleep deprivation, similar to or higher than in natural sleep, but with decreased amplitudes for the sharp-waves combined with higher frequencies for the ripples. Furthermore, while hippocampal pyramidal cells showed a log-normal distribution of firing rates during sleep, these distributions were negatively skewed with a higher mean firing rate in both pyramidal cells and interneurons during sleep deprivation. During SWRs, however, firing rates were remarkably similar between both groups. Despite the abundant quantity of SWRs and the robust firing activity during these events in both groups, we found that reactivation of neurons was either completely abolished or significantly diminished during sleep deprivation compared to sleep. Interestingly, reactivation partially rebounded upon recovery sleep, but failed to reach the levels characteristic of natural sleep. Similarly, the number of replays were significantly lower during sleep deprivation and recovery sleep compared to natural sleep. These results provide a network-level account for the negative impact of sleep loss on hippocampal function and demonstrate that sleep loss impacts memory storage by causing a dissociation between the amount of SWRs and the replays and reactivations that take place during these events.
Collapse
Affiliation(s)
- Bapun Giri
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
- Dept of Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201
| | - Utku Kaya
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kourosh Maboudi
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
- Dept of Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Kamran Diba
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
20
|
Dahal P, Rauhala OJ, Khodagholy D, Gelinas JN. Hippocampal-cortical coupling differentiates long-term memory processes. Proc Natl Acad Sci U S A 2023; 120:e2207909120. [PMID: 36749719 PMCID: PMC9963434 DOI: 10.1073/pnas.2207909120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/04/2023] [Indexed: 02/08/2023] Open
Abstract
Reactivation of long-term memories enables experience-dependent strengthening, weakening, or updating of memory traces. Although coupling of hippocampal and cortical activity patterns facilitates initial memory consolidation, whether and how these patterns are involved in postreactivation memory processes are not known. Here, we monitored the hippocampal-cortical network as rats repetitively learned and retrieved spatial and nonspatial memories. We show that interactions between hippocampal sharp wave-ripples (SPW-R), cortical spindles (SPI), and cortical ripples (CXR) are jointly modulated in the absence of memory demand but independently recruited depending on the stage of memory and task type. Reconsolidation of memory after retrieval is associated with an increased and extended window of coupling between hippocampal SPW-Rs and CXRs compared to the initial consolidation. Hippocampal SPW-R and cortical spindle interactions are preferentially engaged during memory consolidation. These findings suggest that specific, time-limited patterns of oscillatory coupling can support the distinct memory processes required to flexibly manage long-term memories in a dynamic environment.
Collapse
Affiliation(s)
- Prawesh Dahal
- Department of Electrical Engineering, Columbia University, New York, NY10027
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY10032
| | - Onni J. Rauhala
- Department of Electrical Engineering, Columbia University, New York, NY10027
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY10032
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY10027
| | - Jennifer N. Gelinas
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY10032
- Department of Neurology, Columbia University Medical Center, New York, NY10032
| |
Collapse
|
21
|
Bozic I, Rusterholz T, Mikutta C, Del Rio-Bermudez C, Nissen C, Adamantidis A. Coupling between the prelimbic cortex, nucleus reuniens, and hippocampus during NREM sleep remains stable under cognitive and homeostatic demands. Eur J Neurosci 2023; 57:106-128. [PMID: 36310348 DOI: 10.1111/ejn.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023]
Abstract
The interplay between the medial prefrontal cortex and hippocampus during non-rapid eye movement (NREM) sleep contributes to the consolidation of contextual memories. To assess the role of the thalamic nucleus reuniens (Nre) in this interaction, we investigated the coupling of neuro-oscillatory activities among prelimbic cortex, Nre, and hippocampus across sleep states and their role in the consolidation of contextual memories using multi-site electrophysiological recordings and optogenetic manipulations. We showed that ripples are time-locked to the Up state of cortical slow waves, the transition from UP to DOWN state in thalamic slow waves, the troughs of cortical spindles, and the peaks of thalamic spindles during spontaneous sleep, rebound sleep and sleep following a fear conditioning task. In addition, spiking activity in Nre increased before hippocampal ripples, and the phase-locking of hippocampal ripples and thalamic spindles during NREM sleep was stronger after acquisition of a fear memory. We showed that optogenetic inhibition of Nre neurons reduced phase-locking of ripples to cortical slow waves in the ventral hippocampus whilst their activation altered the preferred phase of ripples to slow waves in ventral and dorsal hippocampi. However, none of these optogenetic manipulations of Nre during sleep after acquisition of fear conditioning did alter sleep-dependent memory consolidation. Collectively, these results showed that Nre is central in modulating hippocampus and cortical rhythms during NREM sleep.
Collapse
Affiliation(s)
- Ivan Bozic
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Privatklinik Meiringen, Meiringen, Switzerland.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Carlos Del Rio-Bermudez
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Kavaliotis E, Boardman JM, Clark JW, Ogeil RP, Verdejo-García A, Drummond SPA. The relationship between sleep and appetitive conditioning: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:105001. [PMID: 36529310 DOI: 10.1016/j.neubiorev.2022.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
This systematic review and meta-analysis (PROSPERO registration animal/human studies: CRD42021234793/CRD42021234790) examined the relationship between sleep and appetitive conditioning. Inclusion criteria included: a) appetitive conditioning paradigm; b) measure of conditioning; c) sleep measurement and/or sleep loss; d) human and/etor non-human animal samples; and e) written in English. Searches of seven databases returned 3777 publications. The final sample consisted of 42 studies using primarily animal samples and involving food- and drug-related conditioning tasks. We found sleep loss disrupted appetitive conditioning of food rewards (p < 0.001) but potentiated appetitive conditioning of drug rewards (p < 0.001). Furthermore, sleep loss negatively impacted extinction learning irrespective of the reward type. Post-learning sleep was associated with increases in REM sleep (p = 0.02). Findings suggest sleep loss potentiates the impact of psychoactive substances in a manner likely to produce an increased risk of problematic substance use. In obese/overweight populations, sleep loss may be associated with deficits in the conditioning and extinction of reward-related behaviours. Further research should assess the relationship between sleep and appetitive conditioning in humans.
Collapse
Affiliation(s)
- Eleni Kavaliotis
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria 3800, Australia
| | - Johanna M Boardman
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria 3800, Australia
| | - Jacob W Clark
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria 3800, Australia
| | - Rowan P Ogeil
- Eastern Health Clinical School and Monash Addiction Research Centre, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria 3800, Australia; Turning Point, Eastern Health, Victoria 3121, Australia
| | - Antonio Verdejo-García
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria 3800, Australia
| | - Sean P A Drummond
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
23
|
Mizuseki K, Miyawaki H. Fast network oscillations during non-REM sleep support memory consolidation. Neurosci Res 2022; 189:3-12. [PMID: 36581177 DOI: 10.1016/j.neures.2022.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The neocortex is disconnected from the outside world during sleep, which has been hypothesized to be relevant for synaptic reorganization involved in memory consolidation. Fast network oscillations, such as hippocampal sharp-wave ripples, cortical ripples, and amygdalar high-frequency oscillations, are prominent during non-REM sleep. Although these oscillations are thought to be generated by local circuit mechanisms, their occurrence rates and amplitudes are modulated by thalamocortical spindles and neocortical slow oscillations during non-REM sleep, suggesting that fast network oscillations and slower oscillations cooperatively work to facilitate memory consolidation. This review discusses the recent progress in understanding the generation, coordination, and functional roles of fast network oscillations. Further, it outlines how fast network oscillations in distinct brain regions synergistically support memory consolidation and retrieval by hosting cross-regional coactivation of memory-related neuronal ensembles.
Collapse
Affiliation(s)
- Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Miyawaki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
24
|
Talamini LM, van Moorselaar D, Bakker R, Bulath M, Szegedi S, Sinichi M, De Boer M. No evidence for a preferential role of sleep in episodic memory abstraction. Front Neurosci 2022; 16:871188. [PMID: 36570837 PMCID: PMC9780604 DOI: 10.3389/fnins.2022.871188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence suggests that sleep has a role in declarative memory consolidation. An influential notion holds that such sleep-related memory consolidation is associated with a process of abstraction. The neural underpinnings of this putative process are thought to involve a hippocampo-neocortical dialogue. Specifically, the idea is that, during sleep, the statistical contingencies across episodes are re-coded to a less hippocampus-dependent format, while at the same time losing configural information. Two previous studies from our lab, however, failed to show a preferential role of sleep in either episodic memory decontextualisation or the formation of abstract knowledge across episodic exemplars. Rather these processes occurred over sleep and wake time alike. Here, we present two experiments that replicate and extend these previous studies and exclude some alternative interpretations. The combined data show that sleep has no preferential function in this respect. Rather, hippocampus-dependent memories are generalised to an equal extent across both wake and sleep time. The one point on which sleep outperforms wake is actually the preservation of episodic detail of memories stored prior to sleep.
Collapse
Affiliation(s)
- Lucia M. Talamini
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- University of Amsterdam—Amsterdam Brain and Cognition, Amsterdam, Netherlands
| | - Dirk van Moorselaar
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Richard Bakker
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Máté Bulath
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Steffie Szegedi
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Mohammadamin Sinichi
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke De Boer
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- University of Amsterdam—Amsterdam Brain and Cognition, Amsterdam, Netherlands
| |
Collapse
|
25
|
Simon KC, Clemenson GD, Zhang J, Sattari N, Shuster AE, Clayton B, Alzueta E, Dulai T, de Zambotti M, Stark C, Baker FC, Mednick SC. Sleep facilitates spatial memory but not navigation using the Minecraft Memory and Navigation task. Proc Natl Acad Sci U S A 2022; 119:e2202394119. [PMID: 36252023 PMCID: PMC9618094 DOI: 10.1073/pnas.2202394119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Sleep facilitates hippocampal-dependent memories, supporting the acquisition and maintenance of internal representation of spatial relations within an environment. In humans, however, findings have been mixed regarding sleep's contribution to spatial memory and navigation, which may be due to task designs or outcome measurements. We developed the Minecraft Memory and Navigation (MMN) task for the purpose of disentangling how spatial memory accuracy and navigation change over time, and to study sleep's independent contributions to each. In the MMN task, participants learned the locations of objects through free exploration of an open field computerized environment. At test, they were teleported to random positions around the environment and required to navigate to the remembered location of each object. In study 1, we developed and validated four unique MMN environments with the goal of equating baseline learning and immediate test performance. A total of 86 participants were administered the training phases and immediate test. Participants' baseline performance was equivalent across all four environments, supporting the use of the MMN task. In study 2, 29 participants were trained, tested immediately, and again 12 h later after a period of sleep or wake. We found that the metric accuracy of object locations, i.e., spatial memory, was maintained over a night of sleep, while after wake, metric accuracy declined. In contrast, spatial navigation improved over both sleep and wake delays. Our findings support the role of sleep in retaining the precise spatial relationships within a cognitive map; however, they do not support a specific role of sleep in navigation.
Collapse
Affiliation(s)
- Katharine C. Simon
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Gregory D. Clemenson
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA 92697
| | - Jing Zhang
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Negin Sattari
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Alessandra E. Shuster
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Brandon Clayton
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| | - Elisabet Alzueta
- Center for Health Sciences, SRI International, Menlo Park, CA 94025
| | - Teji Dulai
- Center for Health Sciences, SRI International, Menlo Park, CA 94025
| | | | - Craig Stark
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA 92697
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA 94025
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Sara C. Mednick
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697
| |
Collapse
|
26
|
Two distinct ways to form long-term object recognition memory during sleep and wakefulness. Proc Natl Acad Sci U S A 2022; 119:e2203165119. [PMID: 35969775 PMCID: PMC9407643 DOI: 10.1073/pnas.2203165119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory consolidation is promoted by sleep. However, there is also evidence for consolidation into long-term memory during wakefulness via processes that preferentially affect nonhippocampal representations. We compared, in rats, the effects of 2-h postencoding periods of sleep and wakefulness on the formation of long-term memory for objects and their associated environmental contexts. We employed a novel-object recognition (NOR) task, using object exploration and exploratory rearing as behavioral indicators of these memories. Remote recall testing (after 1 wk) confirmed significant long-term NOR memory under both conditions, with NOR memory after sleep predicted by the occurrence of EEG spindle-slow oscillation coupling. Rats in the sleep group decreased their exploratory rearing at recall testing, revealing successful recall of the environmental context. By contrast, rats that stayed awake after encoding showed equally high levels of rearing upon remote testing as during encoding, indicating that context memory was lost. Disruption of hippocampal function during the postencoding interval (by muscimol administration) suppressed long-term NOR memory together with context memory formation when animals slept, but enhanced NOR memory when they were awake during this interval. Testing remote recall in a context different from that during encoding impaired NOR memory in the sleep condition, while exploratory rearing was increased. By contrast, NOR memory in the wake rats was preserved and actually superior to that after sleep. Our findings indicate two distinct modes of long-term memory formation: Sleep consolidation is hippocampus dependent and implicates event-context binding, whereas wake consolidation is impaired by hippocampal activation and strengthens context-independent representations.
Collapse
|
27
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
28
|
Huang Q, Liao C, Ge F, Ao J, Liu T. Acetylcholine bidirectionally regulates learning and memory. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Pfeiffer BE. Spatial Learning Drives Rapid Goal Representation in Hippocampal Ripples without Place Field Accumulation or Goal-Oriented Theta Sequences. J Neurosci 2022; 42:3975-3988. [PMID: 35396328 PMCID: PMC9097771 DOI: 10.1523/jneurosci.2479-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
The hippocampus is critical for rapid acquisition of many forms of memory, although the circuit-level mechanisms through which the hippocampus rapidly consolidates novel information are unknown. Here, the activity of large ensembles of hippocampal neurons in adult male Long-Evans rats was monitored across a period of rapid spatial learning to assess how the network changes during the initial phases of memory formation and retrieval. In contrast to several reports, the hippocampal network did not display enhanced representation of the goal location via accumulation of place fields or elevated firing rates at the goal. Rather, population activity rates increased globally as a function of experience. These alterations in activity were mirrored in the power of the theta oscillation and in the quality of theta sequences, without preferential encoding of paths to the learned goal location. In contrast, during brief "offline" pauses in movement, representation of a novel goal location emerged rapidly in ripples, preceding other changes in network activity. These data demonstrate that the hippocampal network can facilitate active navigation without enhanced goal representation during periods of active movement, and further indicate that goal representation in hippocampal ripples before movement onset supports subsequent navigation, possibly through activation of downstream cortical networks.SIGNIFICANCE STATEMENT Understanding the mechanisms through which the networks of the brain rapidly assimilate information and use previously learned knowledge are fundamental areas of focus in neuroscience. In particular, the hippocampal circuit is a critical region for rapid formation and use of spatial memory. In this study, several circuit-level features of hippocampal function were quantified while rats performed a spatial navigation task requiring rapid memory formation and use. During periods of active navigation, a general increase in overall network activity is observed during memory acquisition, which plateaus during memory retrieval periods, without specific enhanced representation of the goal location. During pauses in navigation, rapid representation of the distant goal well emerges before either behavioral improvement or changes in online activity.
Collapse
Affiliation(s)
- Brad E Pfeiffer
- Neuroscience Graduate Program, Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
30
|
Ratner MH, Farb DH. Probing the Neural Circuitry Targets of Neurotoxicants In Vivo Through High Density Silicon Probe Brain Implants. FRONTIERS IN TOXICOLOGY 2022; 4:836427. [PMID: 35548683 PMCID: PMC9081674 DOI: 10.3389/ftox.2022.836427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Adverse effects of drugs on the human nervous system are rarely possible to anticipate based on preclinical neurotoxicity data, thus propagating the centuries long single most important obstacle to drug discovery and development for disorders of the nervous system. An emerging body of evidence indicates that in vivo electrophysiology using chronically implanted high-density electrodes (ciHDE) in freely moving animals is a rigorous method with enhanced potential for use in translational research. In particular, the structure and function of the hippocampal trisynaptic circuit (HTC) is conserved from rodents to primates, including Homo sapiens, suggesting that the effects of therapeutic agents and other potential neurologically active agents, whether beneficial or adverse, are likely to translate across species when interrogated using a conserved neural circuitry platform. This review explores science advances in the rapidly moving field of in vivo ciHDE in animal models of learning and memory. For this reason we focus on the HTC, where substantial research has investigated neural circuitry level responses and specific behaviors that reflect memory permitting a test of the ground truth validity of the findings. Examples of changes in neural network activity induced by endogenous neurotoxicants associated with neurodegenerative diseases, as well as exogenous therapeutics, drugs, and neurotoxicants are presented. Several illustrative examples of relevant findings that involve longer range neural circuitry outside of the HTC are discussed. Lastly, the limitations of in vivo ciHDE as applied to preclinical neurotoxicology are discussed with a view toward leveraging circuitry level actions to enhance our ability to project the specificity of in vitro target engagement with the desired psychopharmacological or neurological outcome. At the same time, the goal of reducing or eliminating significant neurotoxic adverse events in human is the desired endpoint. We believe that this approach will lead to enhanced discovery of high value neuroactive therapeutics that target neural circuitry domains as their primary mechanism of action, thus enhancing their ultimate contribution toward discovery of precision therapeutics.
Collapse
Affiliation(s)
- Marcia H. Ratner
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Marcia H. Ratner,
| | - David H. Farb
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
31
|
Tripathi S, Jha SK. REM Sleep Deprivation Alters Learning-Induced Cell Proliferation and Generation of Newborn Young Neurons in the Dentate Gyrus of the Dorsal Hippocampus. ACS Chem Neurosci 2022; 13:194-206. [PMID: 34990120 DOI: 10.1021/acschemneuro.1c00465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The hippocampus-dependent "trace-appetitive conditioning task" increases cell proliferation and the generation of newborn young neurons. Evidence suggests that adult hippocampal neurogenesis and rapid eye movement (REM) sleep play an essential role in memory consolidation. On the other hand, REM sleep deprivation (REM-SD) induces detrimental effects on training-induced cell proliferation in the hippocampus's dentate gyrus (DG). Nonetheless, the role of REM sleep in the trace-appetitive memory and fate determination of the newly proliferated cells is not known. Here, we have studied the following: (I) the effects of 24 h of REM-SD (soon after training) on trace- and delay-appetitive memory and cell proliferation in the adult DG and (II) the effects of chronic (96 h) REM-SD (3 days after the training, the period in which newly generated cells progressed toward the neuronal lineage) on trace-appetitive memory and the generation of newborn young neurons. We used a modified multiple platform method for the selective REM-SD without altering non-REM (NREM) sleep. We found that 24 h of REM-SD, soon after trace-conditioning, impaired the trace-appetitive memory and the training-induced cell proliferation. Nevertheless, 96 h of REM-SD (3 days after the training) did not impair trace memory. Interestingly, 96 h of REM-SD altered the generation of newborn young neurons. These results suggest that REM sleep plays an essential role in training-induced cell proliferation and the fate determination of the newly generated cells toward the neuronal lineage.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K. Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
32
|
Avvenuti G, Bernardi G. Local sleep: A new concept in brain plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:35-52. [PMID: 35034748 DOI: 10.1016/b978-0-12-819410-2.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Traditionally, sleep and wakefulness have been considered as two global, mutually exclusive states. However, this view has been challenged by the discovery that sleep and wakefulness are actually locally regulated and that islands of these two states may often coexist in the same individual. Importantly, such a local regulation seems to be the key for many essential functions of sleep, including the maintenance of cognitive efficiency and the consolidation of new skills and memories. Indeed, local changes in sleep-related oscillations occur in brain areas that are used and involved in learning during wakefulness. In turn, these changes directly modulate experience-dependent brain adaptations and the consolidation of newly acquired memories. In line with these observations, alterations in the regional balance between wake- and sleep-like activity have been shown to accompany many pathologic conditions, including psychiatric and neurologic disorders. In the last decade, experimental research has started to shed light on the mechanisms involved in the local regulation of sleep and wakefulness. The results of this research have opened new avenues of investigation regarding the function of sleep and have revealed novel potential targets for the treatment of several pathologic conditions.
Collapse
Affiliation(s)
- Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
33
|
Tao K, Chung M, Watarai A, Huang Z, Wang MY, Okuyama T. Disrupted social memory ensembles in the ventral hippocampus underlie social amnesia in autism-associated Shank3 mutant mice. Mol Psychiatry 2022; 27:2095-2105. [PMID: 35115700 PMCID: PMC9126818 DOI: 10.1038/s41380-021-01430-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
The ability to remember conspecifics is critical for adaptive cognitive functioning and social communication, and impairments of this ability are hallmarks of autism spectrum disorders (ASDs). Although hippocampal ventral CA1 (vCA1) neurons are known to store social memories, how their activities are coordinated remains unclear. Here we show that vCA1 social memory neurons, characterized by enhanced activity in response to memorized individuals, were preferentially reactivated during sharp-wave ripples (SPW-Rs). Spike sequences of these social replays reflected the temporal orders of neuronal activities within theta cycles during social experiences. In ASD model Shank3 knockout mice, the proportion of social memory neurons was reduced, and neuronal ensemble spike sequences during SPW-Rs were disrupted, which correlated with impaired discriminatory social behavior. These results suggest that SPW-R-mediated sequential reactivation of neuronal ensembles is a canonical mechanism for coordinating hippocampus-dependent social memories and its disruption underlie the pathophysiology of social memory defects associated with ASD.
Collapse
Affiliation(s)
- Kentaro Tao
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Myung Chung
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Akiyuki Watarai
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Ziyan Huang
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Mu-Yun Wang
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032, Japan. .,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
34
|
He H, Boehringer R, Huang AJY, Overton ETN, Polygalov D, Okanoya K, McHugh TJ. CA2 inhibition reduces the precision of hippocampal assembly reactivation. Neuron 2021; 109:3674-3687.e7. [PMID: 34555316 DOI: 10.1016/j.neuron.2021.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
The structured reactivation of hippocampal neuronal ensembles during fast synchronous oscillatory events, termed sharp-wave ripples (SWRs), has been suggested to play a crucial role in the storage and use of memory. Activity in both the CA2 and CA3 subregions can precede this population activity in CA1, and chronic inhibition of either region alters SWR oscillations. However, the precise contribution of CA2 to the oscillation, as well as to the reactivation of CA1 neurons within it, remains unclear. Here, we employ chemogenetics to transiently silence CA2 pyramidal cells in mice, and we observe that although SWRs still occur, the reactivation of CA1 pyramidal cell ensembles within the events lose both temporal and informational precision. These observations suggest that CA2 activity contributes to the fidelity of experience-dependent hippocampal replay.
Collapse
Affiliation(s)
- Hongshen He
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Roman Boehringer
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Arthur J Y Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Eric T N Overton
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Cognition and Behavior Joint Laboratory, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
35
|
Hsu SY, Jura B, Shih MH, Meyrand P, Tsai FS, Bem T. Recognition of post-learning alteration of hippocampal ripples by convolutional neural network differs in the wild-type and AD mice. Sci Rep 2021; 11:21241. [PMID: 34711860 PMCID: PMC8553820 DOI: 10.1038/s41598-021-00598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Evidence indicates that sharp-wave ripples (SWRs) are primary network events supporting memory processes. However, some studies demonstrate that even after disruption of awake SWRs the animal can still learn spatial task or that SWRs may be not necessary to establish a cognitive map of the environment. Moreover, we have found recently that despite a deficit of sleep SWRs the APP/PS1 mice, a model of Alzheimer’s disease, show undisturbed spatial reference memory. Searching for a learning-related alteration of SWRs that could account for the efficiency of memory in these mice we use convolutional neural networks (CNN) to discriminate pre- and post-learning 256 ms samples of LFP signals, containing individual SWRs. We found that the fraction of samples that were correctly recognized by CNN in majority of discrimination sessions was equal to ~ 50% in the wild-type (WT) and only 14% in APP/PS1 mice. Moreover, removing signals generated in a close vicinity of SWRs significantly diminished the number of such highly recognizable samples in the WT but not in APP/PS1 group. These results indicate that in WT animals a large subset of SWRs and signals generated in their proximity may contain learning-related information whereas such information seem to be limited in the AD mice.
Collapse
Affiliation(s)
- Sheng-Yi Hsu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan.,Research Center for Interneural Computing, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Bartosz Jura
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland.,Institute of Applied Psychology, Jagiellonian University, Cracow, Poland
| | - Mau-Hsiang Shih
- Research Center for Interneural Computing, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Pierre Meyrand
- Neurocentre Magendie, INSERM U1215, University Bordeaux, Bordeaux, France
| | - Feng-Sheng Tsai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan.,Research Center for Interneural Computing, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Tiaza Bem
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland.
| |
Collapse
|
36
|
Li RR, Yan J, Chen H, Zhang WW, Hu YB, Zhang J, Hu ZA, Xiong Y, Yao ZX, Hu B. Sleep Deprivation Impairs Learning-Induced Increase in Hippocampal Sharp Wave Ripples and Associated Spike Dynamics during Recovery Sleep. Cereb Cortex 2021; 32:824-838. [PMID: 34383018 DOI: 10.1093/cercor/bhab247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
Sleep deprivation (SD) causes deficits in off-line memory consolidation, but the underlying network oscillation mechanisms remain unclear. Hippocampal sharp wave ripple (SWR) oscillations play a critical role in off-line memory consolidation. Therefore, we trained mice to learn a hippocampus-dependent trace eyeblink conditioning (tEBC) task and explored the influence of 1.5-h postlearning SD on hippocampal SWRs and related spike dynamics during recovery sleep. We found an increase in hippocampal SWRs during postlearning sleep, which predicted the consolidation of tEBC in conditioned mice. In contrast, sleep-deprived mice showed a loss of tEBC learning-induced increase in hippocampal SWRs during recovery sleep. Moreover, the sleep-deprived mice exhibited weaker reactivation of tEBC learning-associated pyramidal cells in hippocampal SWRs during recovery sleep. In line with these findings, tEBC consolidation was impaired in sleep-deprived mice. Furthermore, sleep-deprived mice showed augmented fast excitation from pyramidal cells to interneurons and enhanced participation of interneurons in hippocampal SWRs during recovery sleep. Among various interneurons, parvalbumin-expressing interneurons specifically exhibited overexcitation during hippocampal SWRs. Our findings suggest that altered hippocampal SWRs and associated spike dynamics during recovery sleep may be candidate network oscillation mechanisms underlying SD-induced memory deficits.
Collapse
Affiliation(s)
- Rong-Rong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jie Yan
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Wei-Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yu-Bo Hu
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yan Xiong
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhong-Xiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.,Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing 400038, China
| |
Collapse
|
37
|
Wittkuhn L, Chien S, Hall-McMaster S, Schuck NW. Replay in minds and machines. Neurosci Biobehav Rev 2021; 129:367-388. [PMID: 34371078 DOI: 10.1016/j.neubiorev.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
Experience-related brain activity patterns reactivate during sleep, wakeful rest, and brief pauses from active behavior. In parallel, machine learning research has found that experience replay can lead to substantial performance improvements in artificial agents. Together, these lines of research suggest replay has a variety of computational benefits for decision-making and learning. Here, we provide an overview of putative computational functions of replay as suggested by machine learning and neuroscientific research. We show that replay can lead to faster learning, less forgetting, reorganization or augmentation of experiences, and support planning and generalization. In addition, we highlight the benefits of reactivating abstracted internal representations rather than veridical memories, and discuss how replay could provide a mechanism to build internal representations that improve learning and decision-making.
Collapse
Affiliation(s)
- Lennart Wittkuhn
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany.
| | - Samson Chien
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany
| | - Sam Hall-McMaster
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany.
| |
Collapse
|
38
|
Abstract
We rely on our long-term memories to guide future behaviors, making it adaptive to prioritize the retention of goal-relevant, salient information in memory. In this review, we discuss findings from rodent and human research to demonstrate that active processes during post-encoding consolidation support the selective stabilization of recent experience into adaptive, long-term memories. Building upon literatures focused on dynamics at the cellular level, we highlight that consolidation also transforms memories at the systems level to support future goal-relevant behavior, resulting in more generalized memory traces in the brain and behavior. We synthesize previous literatures spanning animal research, human cognitive neuroscience, and cognitive psychology to propose an integrative framework for adaptive consolidation by which goal-relevant memoranda are "tagged" for subsequent consolidation, resulting in selective transformations to the structure of memories that support flexible, goal-relevant behaviors.
Collapse
|
39
|
Schmidt B, Redish AD. Disrupting the medial prefrontal cortex with designer receptors exclusively activated by designer drug alters hippocampal sharp-wave ripples and their associated cognitive processes. Hippocampus 2021; 31:1051-1067. [PMID: 34107138 DOI: 10.1002/hipo.23367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/09/2022]
Abstract
The hippocampus and medial prefrontal cortex (mPFC) interact during a myriad of cognitive processes including decision-making and long-term memory consolidation. Exactly how the mPFC and hippocampus interact during goal-directed decision-making remains to be fully elucidated. During periods of rest, bursts of high-frequency oscillations, termed sharp-wave ripple (SWR), appear in the local field potential. Impairing SWRs on the maze or during post-learning rest can interfere with memory-guided decision-making and memory consolidation. We hypothesize that the hippocampus and mPFC bidirectionally interact during SWRs to support memory consolidation and decision-making. Rats were trained on the neuroeconomic spatial decision-making task, Restaurant Row, to make serial stay-skip decisions where the amount of effort (delay to reward) varied upon entry to each restaurant. Hippocampal cells and SWRs were recorded in rats with the mPFC transduced with inhibitory DREADDs. We found that disrupting the mPFC impaired consolidating SWRs in the hippocampus. Hippocampal SWR rates depended on the internalized value of the reward (derived from individual flavor preferences), a parameter important in decision-making, and disrupting the mPFC changed this relationship. Additionally, we found a dissociation between SWRs that occurred while rats were on the maze dependent upon whether those SWRs occurred while the rat was anticipating food reward or during post-reward consumption.
Collapse
Affiliation(s)
- Brandy Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
40
|
Nishimura Y, Ikegaya Y, Sasaki T. Concurrent recordings of hippocampal neuronal spikes and prefrontal synaptic inputs from an awake rat. STAR Protoc 2021; 2:100572. [PMID: 34151297 PMCID: PMC8192860 DOI: 10.1016/j.xpro.2021.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A major challenge in neuroscience is linking synapses to cognition and behavior. Here, we developed an experimental technique to concurrently conduct a whole-cell recording of a prefrontal neuron and a multiunit recording of hippocampal neurons from an awake rat. This protocol includes surgical steps to establish a cranial window and 3D printer-based devices to hold the rat. The data sets allow us to directly compare how subthreshold synaptic transmission is associated with suprathreshold spike patterns of neuronal ensembles. For complete details on the use and execution of this protocol, please refer to Nishimura et al. (2021). A surgical craniotomy is performed on the prefrontal cortex A microdrive is implanted on the hippocampus A patch-clamp recording is obtained from a prefrontal neuron Protocol allows simultaneous multiunit and whole-cell recordings
Collapse
Affiliation(s)
- Yuya Nishimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
41
|
Nishimura Y, Ikegaya Y, Sasaki T. Prefrontal synaptic activation during hippocampal memory reactivation. Cell Rep 2021; 34:108885. [PMID: 33761365 DOI: 10.1016/j.celrep.2021.108885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/07/2020] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
Cooperative reactivation of hippocampal and prefrontal neurons is considered crucial for mnemonic processes. To directly record synaptic substances supporting the interregional interactions, we develop concurrent spike recordings of hippocampal neuronal ensembles and whole-cell patch-clamp recordings of medial prefrontal neurons in awake rats. We find that medial prefrontal neurons depolarize when hippocampal neurons synchronize. The depolarization in medial prefrontal neurons is larger when hippocampal place cells that encoded overlapping place fields and place cells that encoded a novel environment are synchronously reactivated. Our results suggest a functional circuit-synapse association that enables prefrontal neurons to read out specific memory traces from the hippocampus.
Collapse
Affiliation(s)
- Yuya Nishimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
42
|
Moreno-Ruiz B, Mellado S, Zamora-Moratalla A, Albarracín AL, Martín ED. Increase in serum prolactin levels in females improves the performance of spatial learning by promoting changes in the circuital dynamics of the hippocampus. Psychoneuroendocrinology 2021; 124:105048. [PMID: 33249333 DOI: 10.1016/j.psyneuen.2020.105048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Beyond the direct physiological functions associated with motherhood in mammals, previous studies have suggested the potential role of prolactin (Prl) in distinct brain processes such as neuroprotection, neurogenesis, and stress responses. However, the cognitive influence of Prl remains unclear, particularly regarding the mechanisms of acquisition, consolidation and retrieval of information in the brain. Using chronic implanted electrodes in freely moving female mice combined with behavioral tests, we investigated the rhythmic activity changes induced by Prl in a model of hippocampus-dependent learning and memory. Our results show that Prl improves the learning of a spatial memory task in the acquisition stage. The main variations at the circuitry level were in the theta frequency band (4-8 Hz and 8-12 Hz), marked by a faster change in oscillatory activity with no modifications to higher frequencies. These results show that Prl plays a significant role in the acquisition of information during learning of a spatial memory task, suggesting that an increase in Prl levels may induce changes in circuital network plasticity.
Collapse
Affiliation(s)
- Beatriz Moreno-Ruiz
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Susana Mellado
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana L Albarracín
- Departamento de Bioingeniería, Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
43
|
MacDonald KJ, Cote KA. Contributions of post-learning REM and NREM sleep to memory retrieval. Sleep Med Rev 2021; 59:101453. [PMID: 33588273 DOI: 10.1016/j.smrv.2021.101453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It has become clear that sleep after learning has beneficial effects on the later retrieval of newly acquired memories. The neural mechanisms underlying these effects are becoming increasingly clear as well, particularly those of non-REM sleep. However, much is still unknown about the sleep and memory relationship: the sleep state or features of sleep physiology that associate with memory performance often vary by task or experimental design, and the nature of this variability is not entirely clear. This paper describes pertinent features of sleep physiology and provides a detailed review of the scientific literature indicating beneficial effects of post-learning sleep on memory retrieval. This paper additionally introduces a hypothesis which attributes these beneficial effects of post-learning sleep to separable processes of memory reinforcement and memory refinement whereby reinforcement supports one's ability to retrieve a given memory and refinement supports the precision of that memory retrieval in the context of competitive alternatives. It is observed that features of non-REM sleep are involved in a post-learning substantiation of memory representations that benefit memory performance; thus, memory reinforcement is primarily attributed to non-REM sleep. Memory refinement is primarily attributed to REM sleep given evidence of bidirectional synaptic plasticity in REM sleep and findings from studies of selective REM sleep deprivation.
Collapse
|
44
|
Abstract
Abstract
Purpose of Review
This short review article aims at emphasizing interesting and important new insights about investigating sleep and memory in children aged between 6 and 13 years (middle childhood).
Recent Findings
That sleep in comparison to wakefulness benefits the consolidation of memories is well established—especially for the adult population. However, the underlying theoretical frameworks trying to explain the benefits of sleep for memory still strive for more substantiate findings including biological and physiological correlates.
Summary
Based on the most recent literature about sleep-related memory consolidation and its physiological markers during middle childhood, this article provides a review and highlights recent updates in this field.
Collapse
|
45
|
Sippel D, Schwabedal J, Snyder JC, Oyanedel CN, Bernas SN, Garthe A, Tröndle A, Storch A, Kempermann G, Brandt MD. Disruption of NREM sleep and sleep-related spatial memory consolidation in mice lacking adult hippocampal neurogenesis. Sci Rep 2020; 10:16467. [PMID: 33020501 PMCID: PMC7536189 DOI: 10.1038/s41598-020-72362-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
Cellular plasticity at the structural level and sleep at the behavioural level are both essential for memory formation. The link between the two is not well understood. A functional connection between adult neurogenesis and hippocampus-dependent memory consolidation during NREM sleep has been hypothesized but not experimentally shown. Here, we present evidence that during a three-day learning session in the Morris water maze task a genetic knockout model of adult neurogenesis (Cyclin D2-/-) showed changes in sleep macro- and microstructure. Sleep EEG analyses revealed a lower total sleep time and NREM fraction in Cyclin D2-/- mice as well as an impairment of sleep specific neuronal oscillations that are associated with memory consolidation. Better performance in the memory task was associated with specific sleep parameters in wild-type, but not in Cyclin D2-/- mice. In wild-type animals the number of proliferating cells correlated with the amount of NREM sleep. The lack of adult neurogenesis led to changes in sleep architecture and oscillations that represent the dialog between hippocampus and neocortex during sleep. We suggest that adult neurogenesis-as a key event of hippocampal plasticity-might play an important role for sleep-dependent memory consolidation and modulates learning-induced changes of sleep macro- and microstructure.
Collapse
Affiliation(s)
- D Sippel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Tübingen, 72076, Tübingen, Germany
| | - J Schwabedal
- Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany
| | - J C Snyder
- Department of Neurology, University Hospital, Technische Universität Dresden, 01307, Dresden, Germany
| | - C N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| | - S N Bernas
- Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany
| | - A Garthe
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany
| | - A Tröndle
- Department of Neurology, University Hospital, Technische Universität Dresden, 01307, Dresden, Germany.,Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany
| | - A Storch
- German Center for Neurodegenerative Diseases (DZNE) Rostock, 18147, Rostock, Germany.,Department of Neurology, University of Rostock, 18147, Rostock, Germany
| | - G Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany.,Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany
| | - M D Brandt
- Department of Neurology, University Hospital, Technische Universität Dresden, 01307, Dresden, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany.
| |
Collapse
|
46
|
Hippocampal CA2 sharp-wave ripples reactivate and promote social memory. Nature 2020; 587:264-269. [PMID: 32968277 DOI: 10.1038/s41586-020-2758-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
The consolidation of spatial memory depends on the reactivation ('replay') of hippocampal place cells that were active during recent behaviour. Such reactivation is observed during sharp-wave ripples (SWRs)-synchronous oscillatory electrical events that occur during non-rapid-eye-movement (non-REM) sleep1-8 and whose disruption impairs spatial memory3,5,6,8. Although the hippocampus also encodes a wide range of non-spatial forms of declarative memory, it is not yet known whether SWRs are necessary for such memories. Moreover, although SWRs can arise from either the CA3 or the CA2 region of the hippocampus7,9, the relative importance of SWRs from these regions for memory consolidation is unknown. Here we examine the role of SWRs during the consolidation of social memory-the ability of an animal to recognize and remember a member of the same species-focusing on CA2 because of its essential role in social memory10-12. We find that ensembles of CA2 pyramidal neurons that are active during social exploration of previously unknown conspecifics are reactivated during SWRs. Notably, disruption or enhancement of CA2 SWRs suppresses or prolongs social memory, respectively. Thus, SWR-mediated reactivation of hippocampal firing related to recent experience appears to be a general mechanism for binding spatial, temporal and sensory information into high-order memory representations, including social memory.
Collapse
|
47
|
Generation of Sharp Wave-Ripple Events by Disinhibition. J Neurosci 2020; 40:7811-7836. [PMID: 32913107 PMCID: PMC7548694 DOI: 10.1523/jneurosci.2174-19.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Sharp wave-ripple complexes (SWRs) are hippocampal network phenomena involved in memory consolidation. To date, the mechanisms underlying their occurrence remain obscure. Here, we show how the interactions between pyramidal cells, parvalbumin-positive (PV+) basket cells, and an unidentified class of anti-SWR interneurons can contribute to the initiation and termination of SWRs. Using a biophysically constrained model of a network of spiking neurons and a rate-model approximation, we demonstrate that SWRs emerge as a result of the competition between two interneuron populations and the resulting disinhibition of pyramidal cells. Our models explain how the activation of pyramidal cells or PV+ cells can trigger SWRs, as shown in vitro, and suggests that PV+ cell-mediated short-term synaptic depression influences the experimentally reported dynamics of SWR events. Furthermore, we predict that the silencing of anti-SWR interneurons can trigger SWRs. These results broaden our understanding of the microcircuits supporting the generation of memory-related network dynamics. SIGNIFICANCE STATEMENT The hippocampus is a part of the mammalian brain that is crucial for episodic memories. During periods of sleep and inactive waking, the extracellular activity of the hippocampus is dominated by sharp wave-ripple events (SWRs), which have been shown to be important for memory consolidation. The mechanisms regulating the emergence of these events are still unclear. We developed a computational model to study the emergence of SWRs and to explain the roles of different cell types in regulating them. The model accounts for several previously unexplained features of SWRs and thus advances the understanding of memory-related dynamics.
Collapse
|
48
|
Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice. J Neurosci 2020; 40:7105-7118. [PMID: 32817247 DOI: 10.1523/jneurosci.2275-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023] Open
Abstract
The hippocampus plays an essential role in learning. Each of the three major hippocampal subfields, dentate gyrus (DG), CA3, and CA1, has a unique function in memory formation and consolidation, and also exhibit distinct local field potential (LFP) signatures during memory consolidation processes in non-rapid eye movement (NREM) sleep. The classic LFP events of the CA1 region, sharp-wave ripples (SWRs), are induced by CA3 activity and considered to be an electrophysiological biomarker for episodic memory. In LFP recordings along the dorsal CA1-DG axis from sleeping male mice, we detected and classified two types of LFP events in the DG: high-amplitude dentate spikes (DSs), and a novel event type whose current source density (CSD) signature resembled that seen during CA1 SWR, but which, most often, occurred independently of them. Because we hypothesize that this event type is similarly induced by CA3 activity, we refer to it as dentate sharp wave (DSW). We show that both DSWs and DSs differentially modulate the electrophysiological properties of SWR and multiunit activity (MUA). Following two hippocampus-dependent memory tasks, DSW occurrence rates, ripple frequencies, and ripple and sharp wave (SW) amplitudes were increased in both, while SWR occurrence rates in dorsal CA1 increased only after the spatial task. Our results suggest that DSWs, like SWRs, are induced by CA3 activity and that DSWs complement SWRs as a hippocampal LFP biomarker of memory consolidation.SIGNIFICANCE STATEMENT Awake experience is consolidated into long-term memories during sleep. Memory consolidation crucially depends on sharp-wave ripples (SWRs), which are local field potential (LFP) patterns in hippocampal CA1 that increase after learning. The dentate gyrus (DG) plays a central role in the process of memory formation, prompting us to cluster sharp waves (SWs) in the DG [dentate SWs (DSWs)] during sleep. We show that both DSW coupling to CA1 SWRs, and their occurrence rates, robustly increase after learning trials. Our results suggest that the DG is directly affected by memory consolidation processes. DSWs may thus complement SWRs as a sensitive electrophysiological biomarker of memory consolidation in mice.
Collapse
|
49
|
Sawangjit A, Oyanedel CN, Niethard N, Born J, Inostroza M. Deepened sleep makes hippocampal spatial memory more persistent. Neurobiol Learn Mem 2020; 173:107245. [DOI: 10.1016/j.nlm.2020.107245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/28/2020] [Accepted: 05/02/2020] [Indexed: 12/28/2022]
|
50
|
Wamsley EJ, Summer T. Spontaneous Entry into an “Offline” State during Wakefulness: A Mechanism of Memory Consolidation? J Cogn Neurosci 2020; 32:1714-1734. [DOI: 10.1162/jocn_a_01587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Moments of inattention to our surroundings may be essential to optimal cognitive functioning. Here, we investigated the hypothesis that humans spontaneously switch between two opposing attentional states during wakefulness—one in which we attend to the external environment (an “online” state) and one in which we disengage from the sensory environment to focus our attention internally (an “offline” state). We created a data-driven model of this proposed alternation between “online” and “offline” attentional states in humans, on a seconds-level timescale. Participants (n = 34) completed a sustained attention to response task while undergoing simultaneous high-density EEG and pupillometry recording and intermittently reporting on their subjective experience. “Online” and “offline” attentional states were initially defined using a cluster analysis applied to multimodal measures of (1) EEG spectral power, (2) pupil diameter, (3) RT, and (4) self-reported subjective experience. We then developed a classifier that labeled trials as belonging to the online or offline cluster with >95% accuracy, without requiring subjective experience data. This allowed us to classify all 5-sec trials in this manner, despite the fact that subjective experience was probed on only a small minority of trials. We report evidence of statistically discriminable “online” and “offline” states matching the hypothesized characteristics. Furthermore, the offline state strongly predicted memory retention for one of two verbal learning tasks encoded immediately prior. Together, these observations suggest that seconds-timescale alternation between online and offline states is a fundamental feature of wakefulness and that this may serve a memory processing function.
Collapse
|