1
|
Mickes L, Morgan DP, Fuentes Grandón DA, Boogert S, Kazanina N. Illustrations of interactions needed when investigating sleep using a type of AM-PM PM-AM design. Psychon Bull Rev 2023; 30:2106-2115. [PMID: 37322385 PMCID: PMC10728231 DOI: 10.3758/s13423-023-02248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Sleep has long been thought of and promoted to be beneficial for memory. Some claims that sleep aids memory have been made in the absence of a critical interaction. This condition is necessary when using a commonly-used experimental design (a type of AM-PM PM-AM design). We propose that a sleep effect exists only if there is an interaction between groups (experimental and time-of-day controls) and the time of test or study (morning and evening). We show different patterns of results that would and would not support a sleep effect with empirical and model-generated data from recognition memory experiments and hypothetical data. While we use these data to make our point, our suggestions apply to any memory and non-memory-related investigation (e.g., emotional memory, false memory susceptibility, language learning, problem-solving). Testing for and finding the proper interaction will add to the evidence that sleep boosts performance.
Collapse
Affiliation(s)
| | - David P Morgan
- Department of Clinical Psychology, Heidelberg University, Heidelberg, Germany
- Department of Addiction Behaviour and Addiction Medicine, Heidelberg University, Heidelberg, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | | | | | | |
Collapse
|
2
|
Truong C, Ruffino C, Gaveau J, White O, Hilt PM, Papaxanthis C. Time of day and sleep effects on motor acquisition and consolidation. NPJ SCIENCE OF LEARNING 2023; 8:30. [PMID: 37658041 PMCID: PMC10474136 DOI: 10.1038/s41539-023-00176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/17/2023] [Indexed: 09/03/2023]
Abstract
We investigated the influence of the time-of-day and sleep on skill acquisition (i.e., skill improvement immediately after a training-session) and consolidation (i.e., skill retention after a time interval including sleep). Three groups were trained at 10 a.m. (G10am), 3 p.m. (G3pm), or 8 p.m. (G8pm) on a finger-tapping task. We recorded the skill (i.e., the ratio between movement duration and accuracy) before and immediately after the training to evaluate acquisition, and after 24 h to measure consolidation. We did not observe any difference in acquisition according to the time of the day. Interestingly, we found a performance improvement 24 h after the evening training (G8pm), while the morning (G10am) and the afternoon (G3pm) groups deteriorated and stabilized their performance, respectively. Furthermore, two control experiments (G8awake and G8sleep) supported the idea that a night of sleep contributes to the skill consolidation of the evening group. These results show a consolidation when the training is carried out in the evening, close to sleep, and forgetting when the training is carried out in the morning, away from sleep. This finding may have an important impact on the planning of training programs in sports, clinical, or experimental domains.
Collapse
Affiliation(s)
- Charlène Truong
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France.
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
- EA4660, C3S Laboratory, C3S Culture Sport Health Society, Université de Bourgogne Franche-Comté, UPFR Sports, 25000, Besançon, France
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Olivier White
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Pauline M Hilt
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
- Pôle Recherche et Santé Publique, CHU Dijon Bourgogne, F-21000, Dijon, France
| |
Collapse
|
3
|
Han B, Kikuta S, Kamogashira T, Kondo K, Yamasoba T. Sleep deprivation induces delayed regeneration of olfactory sensory neurons following injury. Front Neurosci 2022; 16:1029279. [DOI: 10.3389/fnins.2022.1029279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
The circadian system, which is essential for the alignment of sleep/wake cycles, modulates adult neurogenesis. The olfactory epithelium (OE) has the ability to generate new neurons throughout life. Loss of olfactory sensory neurons (OSNs) as a result of injury to the OE triggers the generation of new OSNs, which are incorporated into olfactory circuits to restore olfactory sensory perception. This regenerative potential means that it is likely that the OE is substantially affected by sleep deprivation (SD), although how this may occur remains unclear. The aim of this study is to address how SD affects the process of OSN regeneration following OE injury. Mice were subjected to SD for 2 weeks, which induced changes in circadian activity. This condition resulted in decreased activity during the night-time and increased activity during the daytime, and induced no histological changes in the OE. However, when subjected to SD during the regeneration process after OE injury, a significant decrease in the number of mature OSNs in the dorsomedial area of the OE, which is the only area containing neurons expressing NQO1 (quinone dehydrogenase 1), was observed compared to the NQO1-negative OE. Furthermore, a significant decrease in proliferating basal cells was observed in the NQO1-positive OE compared to the NQO1-negative OE, but no increase in apoptotic OSNs was observed. These results indicate that SD accompanied by disturbed circadian activity could induce structurally negative effects on OSN regeneration, preferentially in the dorsomedial area of the OE, and that this area-specific regeneration delay might involve the biological activity of NQO1.
Collapse
|
4
|
King EM, Edwards LL, Borich MR. Effects of short-term arm immobilization on motor skill acquisition. PLoS One 2022; 17:e0276060. [PMID: 36240219 PMCID: PMC9565666 DOI: 10.1371/journal.pone.0276060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2022] [Indexed: 01/17/2023] Open
Abstract
Learning to sequence movements is necessary for skillful interaction with the environment. Neuroplasticity, particularly long-term potentiation (LTP), within sensorimotor networks underlies the acquisition of motor skill. Short-term immobilization of the arm, even less than 12 hours, can reduce corticospinal excitability and increase the capacity for LTP-like plasticity within the contralateral primary motor cortex. However, it is still unclear whether short-term immobilization influences motor skill acquisition. The current study aimed to evaluate the effect of short-term arm immobilization on implicit, sequence-specific motor skill acquisition using a modified Serial Reaction Time Task (SRTT). Twenty young, neurotypical adults underwent a single SRTT training session after six hours of immobilization of the non-dominant arm or an equivalent period of no immobilization. Our results demonstrated that participants improved SRTT performance overall after training, but there was no evidence of an effect of immobilization prior to task training on performance improvement. Further, improvements on the SRTT were not sequence-specific. Taken together, motor skill acquisition for sequential, individuated finger movements improved following training but the effect of six hours of immobilization was difficult to discern.
Collapse
Affiliation(s)
- Erin M. King
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States of America
| | - Lauren L. Edwards
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States of America
| | - Michael R. Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States of America
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation-spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. eLife 2022; 11:e66761. [PMID: 35188457 PMCID: PMC8860438 DOI: 10.7554/elife.66761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
Previously, we demonstrated that precise temporal coordination between slow oscillations (SOs) and sleep spindles indexes declarative memory network development (Hahn et al., 2020). However, it is unclear whether these findings in the declarative memory domain also apply in the motor memory domain. Here, we compared adolescents and adults learning juggling, a real-life gross-motor task. Juggling performance was impacted by sleep and time of day effects. Critically, we found that improved task proficiency after sleep lead to an attenuation of the learning curve, suggesting a dynamic juggling learning process. We employed individualized cross-frequency coupling analyses to reduce inter- and intragroup variability of oscillatory features. Advancing our previous findings, we identified a more precise SO-spindle coupling in adults compared to adolescents. Importantly, coupling precision over motor areas predicted overnight changes in task proficiency and learning curve, indicating that SO-spindle coupling relates to the dynamic motor learning process. Our results provide first evidence that regionally specific, precisely coupled sleep oscillations support gross-motor learning.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kathrin Bothe
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Dominik Heib
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Manuel Schabus
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| |
Collapse
|
6
|
Lutz ND, Admard M, Genzoni E, Born J, Rauss K. Occipital sleep spindles predict sequence learning in a visuo-motor task. Sleep 2021; 44:zsab056. [PMID: 33743012 PMCID: PMC8361350 DOI: 10.1093/sleep/zsab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The brain appears to use internal models to successfully interact with its environment via active predictions of future events. Both internal models and the predictions derived from them are based on previous experience. However, it remains unclear how previously encoded information is maintained to support this function, especially in the visual domain. In the present study, we hypothesized that sleep consolidates newly encoded spatio-temporal regularities to improve predictions afterwards. METHODS We tested this hypothesis using a novel sequence-learning paradigm that aimed to dissociate perceptual from motor learning. We recorded behavioral performance and high-density electroencephalography (EEG) in male human participants during initial training and during testing two days later, following an experimental night of sleep (n = 16, including high-density EEG recordings) or wakefulness (n = 17). RESULTS Our results show sleep-dependent behavioral improvements correlated with sleep-spindle activity specifically over occipital cortices. Moreover, event-related potential (ERP) responses indicate a shift of attention away from predictable to unpredictable sequences after sleep, consistent with enhanced automaticity in the processing of predictable sequences. CONCLUSIONS These findings suggest a sleep-dependent improvement in the prediction of visual sequences, likely related to visual cortex reactivation during sleep spindles. Considering that controls in our experiments did not fully exclude oculomotor contributions, future studies will need to address the extent to which these effects depend on purely perceptual versus oculomotor sequence learning.
Collapse
Affiliation(s)
- Nicolas D Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience/IMPRS for Cognitive & Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Marie Admard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Elsa Genzoni
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Germany
| | - Karsten Rauss
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Picard-Deland C, Aumont T, Samson-Richer A, Paquette T, Nielsen T. Whole-body procedural learning benefits from targeted memory reactivation in REM sleep and task-related dreaming. Neurobiol Learn Mem 2021; 183:107460. [PMID: 34015442 DOI: 10.1016/j.nlm.2021.107460] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Sleep facilitates memory consolidation through offline reactivations of memory traces. Dreaming may play a role in memory improvement and may reflect these memory reactivations. To experimentally address this question, we used targeted memory reactivation (TMR), i.e., application, during sleep, of a stimulus that was previously associated with learning, to assess whether it influences task-related dream imagery (or task-dream reactivations). Specifically, we asked if TMR or task-dream reactivations in either slow-wave (SWS) or rapid eye movement (REM) sleep benefit whole-body procedural learning. Healthy participants completed a virtual reality (VR) flying task prior to and following a morning nap or rest period during which task-associated tones were readministered in either SWS, REM sleep, wake or not at all. Findings indicate that learning benefits most from TMR when applied in REM sleep compared to a Control-sleep group. REM dreams that reactivated kinesthetic elements of the VR task (e.g., flying, accelerating) were also associated with higher improvement on the task than were dreams that reactivated visual elements (e.g., landscapes) or that had no reactivations. TMR did not itself influence dream content but its effects on performance were greater when coexisting with task-dream reactivations in REM sleep. Findings may help explain the mechanistic relationships between dream and memory reactivations and may contribute to the development of sleep-based methods to optimize complex skill learning.
Collapse
Affiliation(s)
- Claudia Picard-Deland
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Tomy Aumont
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Biomedical Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Arnaud Samson-Richer
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tyna Paquette
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tore Nielsen
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Sleep-dependent motor memory consolidation in healthy adults: A meta-analysis. Neurosci Biobehav Rev 2020; 118:270-281. [PMID: 32730847 DOI: 10.1016/j.neubiorev.2020.07.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/24/2020] [Indexed: 01/20/2023]
Abstract
It is widely accepted that sleep better facilitates the consolidation of motor memories than does a corresponding wake interval (King et al., 2017). However, no in-depth analysis of the various motor tasks and their relative sleep gain has been conducted so far. Therefore, the present meta-analysis considered 48 studies with a total of 53 sleep (n = 829) and 53 wake (n = 825) groups. An overall comparison between all sleep and wake groups resulted in a small effect for the relative sleep gain in motor memory consolidation (g = 0.43). While no subgroup differences were identified for differing designs, a small effect for the finger tapping task (g = 0.47) and a medium effect for the mirror tracing task (g = 0.62) were found. In summary, the meta-analysis substantiates that sleep generally benefits the consolidation of motor memories. However, to further our understanding of the mechanisms underlying this effect, examining certain task dimensions and their relative sleep gain would be a promising direction for future research.
Collapse
|
9
|
Lerner I, Gluck MA. Sleep and the extraction of hidden regularities: A systematic review and the importance of temporal rules. Sleep Med Rev 2019; 47:39-50. [PMID: 31252335 DOI: 10.1016/j.smrv.2019.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
As part of its role in memory consolidation, sleep has been repeatedly identified as critical for the extraction of regularities from wake experiences. However, many null results have been published as well, with no clear consensus emerging regarding the conditions that yield this sleep effect. Here, we systematically review the role of sleep in the extraction of hidden regularities, specifically those involving associative relations embedded in newly learned information. We found that the specific behavioral task used in a study had far more impact on whether a sleep effect was discovered than either the category of the cognitive processes targeted, or the particular experimental design employed. One emerging pattern, however, was that the explicit detection of hidden rules is more likely to happen when the rules are of a temporal nature (i.e., event A at time t predicts a later event B) than when they are non-temporal. We discuss this temporal rule sensitivity in reference to the compressed memory replay occurring in the hippocampus during slow-wave-sleep, and compare this effect to what happens when the extraction of regularities depends on prior knowledge and relies on structures other than the hippocampus.
Collapse
Affiliation(s)
- Itamar Lerner
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA
| |
Collapse
|
10
|
Sleep preferentially enhances memory for a cognitive strategy but not the implicit motor skills used to acquire it. Neurobiol Learn Mem 2019; 161:135-142. [DOI: 10.1016/j.nlm.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022]
|
11
|
Backhaus W, Braass H, Gerloff C, Hummel FC. Can Daytime Napping Assist the Process of Skills Acquisition After Stroke? Front Neurol 2018; 9:1002. [PMID: 30524365 PMCID: PMC6262055 DOI: 10.3389/fneur.2018.01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/06/2018] [Indexed: 01/14/2023] Open
Abstract
Acquisition and reacquisition of skills is a main pillar of functional recovery after stroke. Nighttime sleep has a positive influence on motor learning in healthy individuals, whereas the effect of daytime sleep on neuro-rehabilitative training and relearning of the trained skills is often neglected. The aim of this study was to investigate the relationship between daytime sleep (napping) and the ability to learn a new visuomotor task in chronic stroke patients. The main hypothesis was that sleep enhances motor memory consolidation after training resulting in better motor performance after a period of daytime sleep. Thirty stroke survivors completed the study. They were randomized to one of three different conditions (i) wakeful resting, (ii) short nap (10-20 min), or (iii) long nap (50-80 min). All individuals trained the task with the contralesional, stroke-impaired hand, behavioral evaluation was performed after the break time (wake, nap), and 24 h later. Patients demonstrated a significant task-related behavioral improvement throughout the training. In contrast to the main hypothesis, there was no evidence for sleep-dependent motor consolidation early after the initial, diurnal break, or after an additional full night of sleep. In a secondary analysis, the performance changes of stroke survivors were compared with those of a group of healthy older adults who performed the identical task within the same experimental setup with their non-dominant hand. Performance levels were comparable between both cohorts at all time points. Stroke-related difficulties in motor control did not impact on the degree of performance improvement through training and daytime sleep did not impact on the behavioral gains in the two groups. In summary, the current study indicates that one-time daytime sleep after motor training does not influence behavioral gains.
Collapse
Affiliation(s)
- Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Hanna Braass
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedhelm C. Hummel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, Medical School University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Adult Gross Motor Learning and Sleep: Is There a Mutual Benefit? Neural Plast 2018; 2018:3076986. [PMID: 30186317 PMCID: PMC6110005 DOI: 10.1155/2018/3076986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 12/26/2022] Open
Abstract
Posttraining consolidation, also known as offline learning, refers to neuroplastic processes and systemic reorganization by which newly acquired skills are converted from an initially transient state into a more permanent state. An extensive amount of research on cognitive and fine motor tasks has shown that sleep is able to enhance these processes, resulting in more stable declarative and procedural memory traces. On the other hand, limited evidence exists concerning the relationship between sleep and learning of gross motor skills. We are particularly interested in this relationship with the learning of gross motor skills in adulthood, such as in the case of sports, performing arts, devised experimental tasks, and rehabilitation practice. Thus, the present review focuses on sleep and gross motor learning (GML) in adults. The literature on the impact of sleep on GML, the consequences of sleep deprivation, and the influence of GML on sleep architecture were evaluated for this review. While sleep has proven to be beneficial for most gross motor tasks, sleep deprivation in turn has not always resulted in performance decay. Furthermore, correlations between motor performance and sleep parameters have been found. These results are of potential importance for integrating sleep in physiotherapeutic interventions, especially for patients with impaired gross motor functions.
Collapse
|
13
|
Viczko J, Sergeeva V, Ray LB, Owen AM, Fogel SM. Does sleep facilitate the consolidation of allocentric or egocentric representations of implicitly learned visual-motor sequence learning? ACTA ACUST UNITED AC 2018; 25:67-77. [PMID: 29339558 PMCID: PMC5772393 DOI: 10.1101/lm.044719.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/03/2017] [Indexed: 11/25/2022]
Abstract
Sleep facilitates the consolidation (i.e., enhancement) of simple, explicit (i.e., conscious) motor sequence learning (MSL). MSL can be dissociated into egocentric (i.e., motor) or allocentric (i.e., spatial) frames of reference. The consolidation of the allocentric memory representation is sleep-dependent, whereas the egocentric consolidation process is independent of sleep or wake for explicit MSL. However, it remains unclear the extent to which sleep contributes to the consolidation of implicit (i.e., unconscious) MSL, nor is it known what aspects of the memory representation (egocentric, allocentric) are consolidated by sleep. Here, we investigated the extent to which sleep is involved in consolidating implicit MSL, specifically, whether the egocentric or the allocentric cognitive representations of a learned sequence are enhanced by sleep, and whether these changes support the development of explicit sequence knowledge across sleep but not wake. Our results indicate that egocentric and allocentric representations can be behaviorally dissociated for implicit MSL. Neither representation was preferentially enhanced across sleep nor were developments of explicit awareness observed. However, after a 1-wk interval performance enhancement was observed in the egocentric representation. Taken together, these results suggest that like explicit MSL, implicit MSL has dissociable allocentric and egocentric representations, but unlike explicit sequence learning, implicit egocentric and allocentric memory consolidation is independent of sleep, and the time-course of consolidation differs significantly.
Collapse
Affiliation(s)
- Jeremy Viczko
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Valya Sergeeva
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Laura B Ray
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada
| | - Adrian M Owen
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Stuart M Fogel
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.,The Royal's Institute for Mental Health Research, Ottawa, Ontario K1Z 7K5, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
14
|
Tucker MA, Morris CJ, Morgan A, Yang J, Myers S, Pierce JG, Stickgold R, Scheer FAJL. The Relative Impact of Sleep and Circadian Drive on Motor Skill Acquisition and Memory Consolidation. Sleep 2017; 40:3765296. [PMID: 28460138 DOI: 10.1093/sleep/zsx036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Study Objectives Sleep during the biological night facilitates memory consolidation. Here we determined the impact of sleep and wake on motor skill learning (acquisition) and subsequent off-line skill improvement (memory consolidation), independent of circadian phase, and compared this to the impact of the endogenous circadian system, independent of whether sleep occurred during the biological night or day. Methods Participants completed two 8-day sleep laboratory visits, adhering on one visit to a circadian aligned ("normal") sleep schedule for the full duration of the protocol, and on the other to a circadian misaligned (12-hour inverted) schedule, with alignment during the first 3 days, a 12-hour 'slam shift' on Day 4, followed by circadian misalignment during the last 4 days of the protocol. Participants were repeatedly trained and tested on different versions of the finger-tapping motor sequence task across each visit. Results Sleep facilitated offline memory consolidation regardless of whether it occurred during the biological day or night, while circadian phase had no significant impact. These sleep-related benefits remained after accounting for general motor speed, measured in the absence of learning. In addition, motor skill acquisition was facilitated when the training session followed shortly after sleep, without significant impact of circadian phase (biological morning vs. evening). This effect was largely driven by heightened acquisition in participants who slept during the day and were trained shortly thereafter, that is, when acquisition occurred during the biological evening. These benefits were also retained after controlling for general motor speed. Conclusions Sleep benefits both the acquisition and consolidation of motor skill regardless of whether they occur during the biological day or night. After controlling for general motor speed, a critical adjustment that few studies perform, these sleep benefits remain intact. Our findings have clear implications for night shift workers who obtain their sleep during the day.
Collapse
Affiliation(s)
- Matthew A Tucker
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC
| | - Christopher J Morris
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | | | - Jessica Yang
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA
| | - Samantha Myers
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA
| | - Joanna Garcia Pierce
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA
| | - Robert Stickgold
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Maier JG, Piosczyk H, Holz J, Landmann N, Deschler C, Frase L, Kuhn M, Klöppel S, Spiegelhalder K, Sterr A, Riemann D, Feige B, Voderholzer U, Nissen C. Brief periods of NREM sleep do not promote early offline gains but subsequent on-task performance in motor skill learning. Neurobiol Learn Mem 2017; 145:18-27. [DOI: 10.1016/j.nlm.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 07/11/2017] [Accepted: 08/18/2017] [Indexed: 12/27/2022]
|
16
|
de Beukelaar TT, Van Soom J, Huber R, Wenderoth N. A Day Awake Attenuates Motor Learning-Induced Increases in Corticomotor Excitability. Front Hum Neurosci 2016; 10:138. [PMID: 27065837 PMCID: PMC4811895 DOI: 10.3389/fnhum.2016.00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/15/2016] [Indexed: 12/28/2022] Open
Abstract
The "synaptic homeostasis hypothesis" proposes that the brain's capacity to exhibit synaptic plasticity is reduced during the day but restores when sleeping. While this prediction has been confirmed for declarative memories, it is currently unknown whether it is also the case for motor memories. We quantified practice-induced changes in corticomotor excitability in response to repetitive motor sequence training as an indirect marker of synaptic plasticity in the primary motor cortex (M1). Subjects either practiced a motor sequence in the morning and a new motor sequence in the evening, i.e., after a 12 h period of wakefulness (wake group); or they practiced a sequence in the evening and a new sequence in the morning, i.e., after a 12 h period including sleep (sleep group). In both wake and sleep groups motor training improved movement performance irrespective of the time of day. Learning a new sequence in the morning triggered a clear increase in corticomotor excitability suggesting that motor training triggered synaptic adaptation in the M1 that was absent when a new sequence was learned in the evening. Thus, the magnitude of the practice-induced increase in corticomotor excitability was significantly influenced by time of day while the magnitude of motor performance improvements were not. These results suggest that the motor cortex's potential to efficiently adapt to the environment by quickly adjusting synaptic strength in an activity-dependent manner is higher in the morning than in the evening.
Collapse
Affiliation(s)
- Toon T de Beukelaar
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Jago Van Soom
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Reto Huber
- Child Development Center and Pediatric Sleep Disorders Center, University Children's Hospital Zurich Zurich, Switzerland
| | - Nicole Wenderoth
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Katholieke Universiteit LeuvenLeuven, Belgium; Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zurich (ETH Zürich)Zurich, Switzerland
| |
Collapse
|
17
|
Backhaus W, Braaß H, Renné T, Krüger C, Gerloff C, Hummel FC. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning. Neurobiol Learn Mem 2016; 131:147-54. [PMID: 27021017 DOI: 10.1016/j.nlm.2016.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/26/2022]
Abstract
Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged.
Collapse
Affiliation(s)
- Winifried Backhaus
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hanna Braaß
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, SE-171 76 Stockholm, Sweden
| | - Christian Krüger
- University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany
| | - Christian Gerloff
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Friedhelm C Hummel
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany.
| |
Collapse
|
18
|
Genzel L, Bäurle A, Potyka A, Wehrle R, Adamczyk M, Friess E, Steiger A, Dresler M. Diminished nap effects on memory consolidation are seen under oral contraceptive use. Neuropsychobiology 2016; 70:253-261. [PMID: 25720656 DOI: 10.1159/000369022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/10/2014] [Indexed: 11/19/2022]
Abstract
Many young females take exogenous hormones as oral contraceptive (OC), a condition rarely controlled for in studies on sleep and memory consolidation even though sex hormones influence consolidation. This study investigated the effects of OCs on sleep-related consolidation of a motor and declarative task, utilizing a daytime nap protocol. Fifteen healthy, young females taking OCs came to the sleep lab for three different conditions: nap with previous learning, wake with previous learning and nap without learning. They underwent each condition twice, once during the "pill-active" weeks and once during the "pill-free" week, resulting in 6 visits. In all conditions, participants showed a significant off-line consolidation effect, independent of pill week or nap/wake condition. There were no significant differences in sleep stage duration, spindle activity or spectral EEG frequency bands between naps with or without the learning condition. The present data showed a significant off-line enhancement in memory irrespective of potential beneficial effects of a nap. In comparison to previous studies, this may suggest that the use of OCs may enhance off-line memory consolidation in motor and verbal tasks per se. These results stress the importance to control for the use of OCs in studies focusing on memory performance.
Collapse
|
19
|
Ren J, Guo W, Yan JH, Liu G, Jia F. Practice and nap schedules modulate children's motor learning. Dev Psychobiol 2015; 58:107-19. [PMID: 26582507 DOI: 10.1002/dev.21380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/17/2015] [Indexed: 01/04/2023]
Abstract
Night- or day-time sleep enhances motor skill acquisition. However, prominent issues remained about the circadian (time-of-day) and homeostatic (time since last sleep) effects of sleep on developmental motor learning. Therefore, we examined the effects of nap schedules and nap-test-intervals (NTIs) on the learning of finger tapping sequences on computer keyboards. Children aged 6-7, 8-9, and 10-11 years explicitly acquired the short and long tapping orders that share the same movement strings (4-2-3-1-4, 4-2-3-1-4-2-3-1-4). Following a constant 8- or 10-hr post-learning period in one of the four NTIs (2, 4, 5, 7 hr), children in the morning napping groups, the afternoon napping groups, or the waking group performed the original long sequence in retention test (4-2-3-1-4-2-3-1-4) and the mirrored-order sequence in transfer test (1-3-2-4-1-3-2-4-1). Age and treatment differences in the movement time (MT, ms) and sequence accuracy (SA, %) were compared during skill learning and in retrieval tests. Results suggest that practice or nap affects MT and SA in a greater extent for the younger learners than for the older learners. The circadian effects might not change nap-based skill learning. Importantly, the longer NTIs resulted in superior retention performance than the shorter ones, suggesting that children require a relatively longer post-nap period to form motor memory. Finally, nap-based motor learning was more marked in skill retention than in skill transfer. Brain development may play an important role in motor learning. Our discussion centers on memory consolidation and its relevance for skill acquisition from early to late childhood.
Collapse
Affiliation(s)
- Jie Ren
- Department of Sport Psychology, Shanghai Sports University, Shanghai, China
| | - Wei Guo
- Department of Sport Psychology, Shanghai Sports University, Shanghai, China
| | - Jin H Yan
- Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, 3688 Nan Hai Ave., Shenzhen, Guangdong, 518060, China.
| | - Guanmin Liu
- Department of Psychology, Tsinghua University, Beijing, China
| | - Fujun Jia
- Guangdong Mental Health Center, Guangdong General Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Fernandes C, Rocha NBF, Rocha S, Herrera-Solís A, Salas-Pacheco J, García-García F, Murillo-Rodríguez E, Yuan TF, Machado S, Arias-Carrión O. Detrimental role of prolonged sleep deprivation on adult neurogenesis. Front Cell Neurosci 2015; 9:140. [PMID: 25926773 PMCID: PMC4396387 DOI: 10.3389/fncel.2015.00140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/24/2015] [Indexed: 01/17/2023] Open
Abstract
Adult mammalian brains continuously generate new neurons, a phenomenon called adult neurogenesis. Both environmental stimuli and endogenous factors are important regulators of adult neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and adult neurogenesis in brain function, such as learning, memory, and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on adult neurogenesis.
Collapse
Affiliation(s)
- Carina Fernandes
- Faculty of Medicine, University of PortoPorto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of PortoPorto, Portugal
| | | | - Susana Rocha
- School of Accounting and Administration of Porto, Polytechnic Institute of PortoPorto, Portugal
| | - Andrea Herrera-Solís
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González/Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - Fabio García-García
- Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad VeracruzanaXalapa, Mexico
| | - Eric Murillo-Rodríguez
- División Ciencias de la Salud, Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, Universidad Anáhuac MayabMérida, México
| | - Ti-Fei Yuan
- School of Psychology, Nanjing Normal UniversityNanjing, China
| | - Sergio Machado
- Panic and Respiration, Institute of Psychiatry of Federal University of Rio de JaneiroRio de Janeiro, Brazil
- Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira UniversityNiterói, Brazil
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González/Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| |
Collapse
|
21
|
Schönauer M, Grätsch M, Gais S. Evidence for two distinct sleep-related long-term memory consolidation processes. Cortex 2015; 63:68-78. [DOI: 10.1016/j.cortex.2014.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/19/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022]
|
22
|
Offline consolidation in implicit sequence learning. Cortex 2014; 57:156-66. [DOI: 10.1016/j.cortex.2014.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/29/2013] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
|
23
|
Pigarev IN, Pigareva ML. Partial sleep in the context of augmentation of brain function. Front Syst Neurosci 2014; 8:75. [PMID: 24822040 PMCID: PMC4013465 DOI: 10.3389/fnsys.2014.00075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/14/2014] [Indexed: 11/13/2022] Open
Abstract
Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all "computational power" of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the "intellectual power" and the restorative function of sleep for visceral organs.
Collapse
Affiliation(s)
- Ivan N. Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of SciencesMoscow, Russia
| | - Marina L. Pigareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
24
|
Genzel L, Quack A, Jäger E, Konrad B, Steiger A, Dresler M. Complex motor sequence skills profit from sleep. Neuropsychobiology 2013; 66:237-43. [PMID: 23095374 DOI: 10.1159/000341878] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022]
Abstract
Simple motor memory has been shown to benefit from sleep; however, more complex motor skills have rarely been investigated so far. We investigated complex motor learning using a dance mat and choreographies in 36 healthy, young male subjects. Subjects performed one song and two new songs in three sessions distributed over 24 h to test sequence-specific learning and skill transfer. Each song had a unique choreography. One group learned the main song in the evening and was retested 12 and 24 h later on the main song and each one new song (PM-AM-PM). The second group underwent the same procedure; however, the first session was in the morning (AM-PM-AM). Thus, one group slept before the first retest (PM-AM-PM) while the other group slept between the first and the second retest (AM-PM-AM). Regarding sequence-specific learning, sleep induced a significant difference between the groups, which disappeared after both groups had slept. A significant transfer effect occurred independent of sleep. During both new songs, no difference between the groups was seen; however, the second and third songs were learned significantly faster than the first song. This study could show that complex motor sequence learning benefits from sleep while skill transfer seems to occur independently of sleep.
Collapse
Affiliation(s)
- Lisa Genzel
- Max Planck Institute of Psychiatry, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Time of day does not modulate improvements in motor performance following a repetitive ballistic motor training task. Neural Plast 2013; 2013:396865. [PMID: 23577271 PMCID: PMC3612484 DOI: 10.1155/2013/396865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/18/2013] [Indexed: 11/17/2022] Open
Abstract
Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS) paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM) and once in the evening (8 PM) on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions.
Collapse
|
26
|
Albouy G, Fogel S, Pottiez H, Nguyen VA, Ray L, Lungu O, Carrier J, Robertson E, Doyon J. Daytime sleep enhances consolidation of the spatial but not motoric representation of motor sequence memory. PLoS One 2013; 8:e52805. [PMID: 23300993 PMCID: PMC3534707 DOI: 10.1371/journal.pone.0052805] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/21/2012] [Indexed: 11/20/2022] Open
Abstract
Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates.
Collapse
Affiliation(s)
- Geneviève Albouy
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychology Department, University of Montreal, Montreal, Canada
| | - Stuart Fogel
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychology Department, University of Montreal, Montreal, Canada
| | - Hugo Pottiez
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
| | - Vo An Nguyen
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
| | - Laura Ray
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
| | - Ovidiu Lungu
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychiatry Department, University of Montreal, Montreal, Canada
- Department of Research, Donald Berman Maimonides Geriatric Center, Montreal, Canada
| | - Julie Carrier
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychology Department, University of Montreal, Montreal, Canada
- Centre of Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montreal, Montreal, Canada
| | - Edwin Robertson
- Harvard Center for Noninvasive Brain Stimulation, Harvard Medical School and Beth Israel Deaconess Medical Center, Neurology Department, Boston, Massachusetts, United States of America
| | - Julien Doyon
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychology Department, University of Montreal, Montreal, Canada
| |
Collapse
|
27
|
Henderson LM, Weighall AR, Brown H, Gareth Gaskell M. Consolidation of vocabulary is associated with sleep in children. Dev Sci 2012; 15:674-87. [DOI: 10.1111/j.1467-7687.2012.01172.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Warker JA. Investigating the retention and time course of phonotactic constraint learning from production experience. J Exp Psychol Learn Mem Cogn 2012; 39:96-109. [PMID: 22686839 DOI: 10.1037/a0028648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adults can rapidly learn artificial phonotactic constraints such as /f/ occurs only at the beginning of syllables by producing syllables that contain those constraints. This implicit learning is then reflected in their speech errors. However, second-order constraints in which the placement of a phoneme depends on another characteristic of the syllable (e.g., if the vowel is /æ/, /f/ occurs at the beginning of syllables and /s/ occurs at the end of syllables, but if the vowel is /I/, the reverse is true) require a longer learning period. Two experiments investigated the transience of second-order learning and whether consolidation plays a role in learning phonological dependencies, with speech errors used as a measure of learning. Experiment 1 tested the durability of learning and found that learning was still present in speech errors a week later. Experiment 2 looked at whether more time in the form of a consolidation period or more experience in the form of more trials was necessary for learning to be revealed in speech errors. Both consolidation and more trials led to learning; however, consolidation provided a more substantial benefit.
Collapse
Affiliation(s)
- Jill A Warker
- University of Scranton, Department of Psychology, 800 Linden Street, Scranton, PA 18510, USA.
| |
Collapse
|
29
|
Wilhelm I, Metzkow-Mészàros M, Knapp S, Born J. Sleep-dependent consolidation of procedural motor memories in children and adults: the pre-sleep level of performance matters. Dev Sci 2012; 15:506-15. [DOI: 10.1111/j.1467-7687.2012.01146.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Onal-Hartmann C, Fiorio M, Gentner R, Zeller D, Pauli P, Classen J. After-training emotional interference may modulate sequence awareness in a serial reaction time task. Exp Brain Res 2012; 219:75-84. [PMID: 22430186 DOI: 10.1007/s00221-012-3068-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/04/2012] [Indexed: 11/29/2022]
Abstract
The purpose of the present experiment was to investigate the effects of emotional interference on consolidation of sequential learning. In different sessions, 6 groups of subjects were initially trained on a serial reaction time task (SRTT). To modulate consolidation of the newly learned skill, subjects were exposed, after the training, to 1 of 3 (positive, negative or neutral) different classes of emotional stimuli which consisted of a set of emotional pictures combined with congruent emotional musical pieces or neutral sound. Emotional intervention for each subject group was done in 2 different time intervals (either directly after the training session or 6 h later). After a 72 h post-training interval, each group was retested on the SRTT. Re-test performance was evaluated in terms of response times and accuracy during execution of a target sequence. Emotional intervention did not influence either response times or accuracy of re-testing SRTT target task performance, both variables sensitive to implicit knowledge acquired during SRTT training. However, explicit awareness of sequence knowledge after 72 h was enhanced when negative stimuli had been applied at 0 h after training. These findings suggest that consolidation of explicit aspects of procedural learning may be more responsive toward emotional interference than implicit aspects.
Collapse
Affiliation(s)
- Cigdem Onal-Hartmann
- Human Cortical Physiology and Motor Control Laboratory, Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Borich MR, Kimberley TJ. Both sleep and wakefulness support consolidation of continuous, goal-directed, visuomotor skill. Exp Brain Res 2011; 214:619-30. [PMID: 21912927 PMCID: PMC6309914 DOI: 10.1007/s00221-011-2863-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
Abstract
Sleep has been shown to benefit memory consolidation for certain motor skills, but it remains unclear if this relationship exists for motor skills with direct rehabilitation applications. We aimed to determine the neurobehavioral relationship between finger-tracking skill development and sleep following skill training in young, healthy subjects. Forty subjects received tracking training in the morning (n = 20) or the evening (n = 20). Measures of tracking skill and cortical excitability were collected before and after training. Following training, tracking skill and measures of cortical excitability were assessed at two additional follow-up visits (12 and 24 h post-training) for each subject following an episode of sleep or waking activity. Two-way repeated-measures ANOVAs with Bonferroni-adjusted post hoc tests were conducted for tracking accuracy and measures of cortical excitability. Skill performance improved after training and continued to develop offline during the first post-training interval (12 h). This development was not further enhanced by sleep during this interval. Level of skill improvement was maintained for at least one day in both training groups. Cortical excitability was reduced following training and was related to level of skill performance at follow-up assessment. These data suggest offline memory consolidation of a continuous, visuospatial, finger-tracking skill is not dependent on sleep. These findings are in agreement with recent literature, indicating characteristics of a motor skill may be sensitive to the beneficial effect of sleep on post-training information processing.
Collapse
Affiliation(s)
- Michael R Borich
- Department of Physical Medicine and Rehabilitation, Program in Physical Therapy/Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|
32
|
Rieth CA, Cai DJ, McDevitt EA, Mednick SC. The role of sleep and practice in implicit and explicit motor learning. Behav Brain Res 2010; 214:470-4. [PMID: 20553972 PMCID: PMC2921792 DOI: 10.1016/j.bbr.2010.05.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Sleep is hypothesized to play a functional role in the consolidation of memory, with more robust findings for implicit, than explicit memory. Previous studies have observed improvements on an explicit motor task after a sleep period. We examined the role of massed practice and sleep on implicit and explicit learning within a motor task. Controlling for non-sleep factors (e.g. massed practice, circadian confounds) eliminated both explicit and implicit learning effects that have been attributed to sleep.
Collapse
Affiliation(s)
- Cory A Rieth
- University of California, San Diego, Department of Psychology, United States
| | | | | | | |
Collapse
|
33
|
Davis MH, Gaskell MG. A complementary systems account of word learning: neural and behavioural evidence. Philos Trans R Soc Lond B Biol Sci 2009; 364:3773-800. [PMID: 19933145 PMCID: PMC2846311 DOI: 10.1098/rstb.2009.0111] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this paper we present a novel theory of the cognitive and neural processes by which adults learn new spoken words. This proposal builds on neurocomputational accounts of lexical processing and spoken word recognition and complementary learning systems (CLS) models of memory. We review evidence from behavioural studies of word learning that, consistent with the CLS account, show two stages of lexical acquisition: rapid initial familiarization followed by slow lexical consolidation. These stages map broadly onto two systems involved in different aspects of word learning: (i) rapid, initial acquisition supported by medial temporal and hippocampal learning, (ii) slower neocortical learning achieved by offline consolidation of previously acquired information. We review behavioural and neuroscientific evidence consistent with this account, including a meta-analysis of PET and functional Magnetic Resonance Imaging (fMRI) studies that contrast responses to spoken words and pseudowords. From this meta-analysis we derive predictions for the location and direction of cortical response changes following familiarization with pseudowords. This allows us to assess evidence for learning-induced changes that convert pseudoword responses into real word responses. Results provide unique support for the CLS account since hippocampal responses change during initial learning, whereas cortical responses to pseudowords only become word-like if overnight consolidation follows initial learning.
Collapse
|
34
|
Abstract
Sleep is often viewed as a vulnerable state that is incompatible with behaviours that nourish and propagate species. This has led to the hypothesis that sleep has survived because it fulfills some universal, but as yet unknown, vital function. I propose that sleep is best understood as a variant of dormant states seen throughout the plant and animal kingdoms and that it is itself highly adaptive because it optimizes the timing and duration of behaviour. Current evidence indicates that ecological variables are the main determinants of sleep duration and intensity across species.
Collapse
Affiliation(s)
- Jerome M Siegel
- Jerome M. Siegel is at the Department of Psychiatry, School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
35
|
Abstract
Sleep following motor skill practice has repeatedly been demonstrated to enhance motor skill learning off-line (continued overnight improvements in motor skill that are not associated with additional physical practice) for young people who are healthy. Mounting evidence suggests that older people who are healthy fail to demonstrate sleep-dependent off-line motor learning. However, little is known regarding the influence of sleep on motor skill enhancement following damage to the brain. Emerging evidence suggests that individuals with brain damage, particularly following stroke, do benefit from sleep to promote off-line motor skill learning. Because rehabilitation following stroke requires learning new, and re-learning old, motor skills, awareness that individuals with stroke benefit from a period of sleep following motor skill practice to enhance skill learning could affect physical therapist practice. The objective of this article is to present the evidence demonstrating sleep-dependent off-line motor learning in young people who are healthy and the variables that may influence this beneficial sleep-dependent skill enhancement. In young people who are healthy, these variables include the stages of memory formation, the type of memory, the type of instruction provided (implicit versus explicit learning), and the task utilized. The neural mechanisms thought to be associated with sleep-dependent off-line motor learning also are considered. Research examining whether older adults who are healthy show the same benefits of sleep as do younger adults is discussed. The data suggest that older adults who are healthy do not benefit from sleep to promote off-line skill enhancement. A possible explanation for the apparent lack of sleep-dependent off-line motor learning by older adults who are healthy is presented. Last, emerging evidence showing that individuals with chronic stroke demonstrate sleep-dependent off-line motor skill learning and some of the possible mechanisms for this effect are considered.
Collapse
|
36
|
Brawn TP, Fenn KM, Nusbaum HC, Margoliash D. Consolidation of sensorimotor learning during sleep. Learn Mem 2008; 15:815-9. [PMID: 18984561 DOI: 10.1101/lm.1180908] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Consolidation of nondeclarative memory is widely believed to benefit from sleep. However, evidence is mainly limited to tasks involving rote learning of the same stimulus or behavior, and recent findings have questioned the extent of sleep-dependent consolidation. We demonstrate consolidation during sleep for a multimodal sensorimotor skill that was trained and tested in different visual-spatial virtual environments. Participants performed a task requiring the production of novel motor responses in coordination with continuously changing audio-visual stimuli. Performance improved with training, decreased following waking retention, but recovered and stabilized following sleep. These results extend the domain of sleep-dependent consolidation to more complex, adaptive behaviors.
Collapse
Affiliation(s)
- Timothy P Brawn
- Department of Psychology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
37
|
Wilhelm I, Diekelmann S, Born J. Sleep in children improves memory performance on declarative but not procedural tasks. Learn Mem 2008; 15:373-7. [PMID: 18441295 DOI: 10.1101/lm.803708] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|