1
|
Kim PM, Nejati R, Lu P, Thakkar D, Mackrides N, Dupoux V, Nakhoda S, Baldwin DA, Pei J, Dave SS, Wang YL, Wasik MA. Leukemic presentation and progressive genomic alterations of MCD/C5 diffuse large B-cell lymphoma (DLBCL). Cold Spring Harb Mol Case Stud 2023; 9:a006283. [PMID: 37730436 PMCID: PMC10815299 DOI: 10.1101/mcs.a006283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/30/2023] [Indexed: 09/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogenous group of lymphoid malignancies. Based on gene expression profiling, it has been subdivided into germinal center (GC)-derived and activated B-cell (ABC) types. Advances in molecular methodologies have further refined the subclassification of DLBCL, based on recurrent genetic abnormalities. Here, we describe a distinct case of DLBCL that presented in leukemic form. DNA sequencing targeting 275 genes revealed pathogenically relevant mutations of CD79B, MyD88, TP53, TBL1XR1, and PIM1 genes, indicating that this lymphoma would be best classified as MCD/C5 DLBCL, an ABC subtype. Despite an initial good clinical response to BTK inhibitor ibrutinib, anti-CD20 antibody rituxan, alkylating agent bendamustine, and hematopoietic stem-cell transplant, the lymphoma relapsed, accompanied by morphologic and molecular evidence of disease progression. Specifically, the recurrent tumor developed loss of TP53 heterozygosity (LOH) and additional chromosomal changes central to ABC DLBCL pathogenesis, such as PRDM1 loss. Acquired resistance to ibrutinib and rituxan was indicated by the emergence of BTK and FOXO1 mutations, respectively, as well as apparent activation of alternative cell-activation pathways, through copy-number alterations (CNAs), detected by high-resolution chromosomal microarrays. In vitro, studies of relapsed lymphoma cells confirmed resistance to standard BTK inhibitors but sensitivity to vecabrutinib, a noncovalent inhibitor active against both wild-type as well as mutated BTK. In summary, we provide in-depth molecular characterization of a de novo leukemic DLBCL and discuss mechanisms that may have contributed to the lymphoma establishment, progression, and development of drug resistance.
Collapse
Affiliation(s)
- Patricia M Kim
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Pin Lu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | - Nicholas Mackrides
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Vanessa Dupoux
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Shazia Nakhoda
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Don A Baldwin
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Sandeep S Dave
- Duke University, Durham, North Carolina 27708, USA
- Data Driven Bioscience, Durham, North Carolina 27707, USA
| | - Y Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
| |
Collapse
|
2
|
Dcunha N, Sakhti D, Sigamani E, Chandramohan J, Korula A, George B, Manipadam MT, Pai R. Utility of reverse transcriptase - Multiplex ligation-dependant probe amplification (RT-MLPA) in the molecular classification of Diffuse Large B cell lymphoma (DLBCL) by cell-of-origin (COO). INDIAN J PATHOL MICR 2023; 66:714-719. [PMID: 38084521 DOI: 10.4103/ijpm.ijpm_326_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Classifying diffuse large B cell lymphomas, not otherwise specified (DLBCL, NOS), is based on their cell-of-origin (COO) which is included in the WHO classification (2016), is essential to characterize them better in context of prognostication. While gene expression profiling (GEP) considered the gold standard and more recently, the Nanostring-based approach, classify these tumors accurately, many laboratories with limited resources and instrumentation need an alternate approach that is reliable, inexpensive, and with a reasonable turnaround. The Reverse Transcriptase Multiplex Ligation Dependant Probe Amplification (RT-MLPA) to subtype DLBCL, NOS cases, as designed by CALYM group appears to provide a good alternative but needs to be validated in other centres. Therefore, this study evaluated DLBCL, NOS and compared the results of RT-MLPA to that obtained by immunohistochemistry using the Hans algorithm. Materials and Methods Sixty-five DLBCL, NOS cases were included and the RT-MLPA was set up and standardized using probes that were designed by the CALYM study group. Briefly, RNA was extracted converted to cDNA and the 21-gene expression classifier that also included probes to detect MYD88 mutations and EBER mRNA was performed by MLPA. The results were analyzed by the open home grown software designed by the same group and compared to the results obtained by IHC. Results Forty-four of the sixty-five cases provided concordant results (k = 0.35) and if the MYD88 results were to be used as a classifier the concordance would have improved from 67.7% to 82%. The 21 discordant cases were divided into five categories to provide a possible explanation for the discordance. Further 26% and 31% of the samples tested were positive for MYD88 mutations and EBER mRNA, respectively. The test had a turnaround of three days. Conclusion The test provided moderate (67.7%) concordance when compared with IHC and perhaps would have provided higher concordance if compared with GEP. The test also has the advantage of providing information on the MYD88 and EBV infection status. It was found to be reliable, easy to perform and standardize, requiring only routine instruments available in most molecular laboratories. The RT-MLPA assay therefore provides an alternative for laboratories that would require subtyping of DLBCL, NOS cases in the absence of an access to GEP or other instrument intensive methods.
Collapse
Affiliation(s)
- Nicholas Dcunha
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Dhananjayan Sakhti
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Jagan Chandramohan
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Rekha Pai
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Delage L, Lambert M, Bardel É, Kundlacz C, Chartoire D, Conchon A, Peugnet AL, Gorka L, Auberger P, Jacquel A, Soussain C, Destaing O, Delecluse HJ, Delecluse S, Merabet S, Traverse-Glehen A, Salles G, Bachy E, Billaud M, Ghesquières H, Genestier L, Rouault JP, Sujobert P. BTG1 inactivation drives lymphomagenesis and promotes lymphoma dissemination through activation of BCAR1. Blood 2023; 141:1209-1220. [PMID: 36375119 DOI: 10.1182/blood.2022016943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the functional role of mutated genes in cancer is required to translate the findings of cancer genomics into therapeutic improvement. BTG1 is recurrently mutated in the MCD/C5 subtype of diffuse large B-cell lymphoma (DLBCL), which is associated with extranodal dissemination. Here, we provide evidence that Btg1 knock out accelerates the development of a lethal lymphoproliferative disease driven by Bcl2 overexpression. Furthermore, we show that the scaffolding protein BCAR1 is a BTG1 partner. Moreover, after BTG1 deletion or expression of BTG1 mutations observed in patients with DLBCL, the overactivation of the BCAR1-RAC1 pathway confers increased migration ability in vitro and in vivo. These modifications are targetable with the SRC inhibitor dasatinib, which opens novel therapeutic opportunities in BTG1 mutated DLBCL.
Collapse
Affiliation(s)
- Lorric Delage
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Mireille Lambert
- Université de Paris, Institut Cochin, INSERM U1016, Plateforme BioMecan'IC, Biomécanique de la cellule, Paris, France
| | - Émilie Bardel
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Cindy Kundlacz
- Institut de Génomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Chartoire
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Axel Conchon
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Anne-Laure Peugnet
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Lucas Gorka
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Patrick Auberger
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Arnaud Jacquel
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Carole Soussain
- Institut Curie, Site de Saint-Cloud, Hematologie, et INSERM U932 Institut Curie, PSL Research University, Paris, France
| | - Olivier Destaing
- Centre de Recherche UGA, INSERM U1209, Institute for Advanced Biosciences, Grenoble, France
| | | | | | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Alexandra Traverse-Glehen
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Gilles Salles
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emmanuel Bachy
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Marc Billaud
- INSERM Unité Mixte de Recherche (UMR)-U1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Hervé Ghesquières
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Laurent Genestier
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Jean-Pierre Rouault
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
- INSERM Unité Mixte de Recherche (UMR)-U1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Pierre Sujobert
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| |
Collapse
|
4
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Balasubramanian S, Hodkinson B, Schuster SJ, Fowler NH, Trotman J, Hess G, Cheson BD, Schaffer M, Sun S, Deshpande S, Vermeulen J, Salles G, Gopal AK. Identification of a genetic signature enriching for response to ibrutinib in relapsed/refractory follicular lymphoma in the DAWN phase 2 trial. Cancer Med 2021; 11:61-73. [PMID: 34791836 PMCID: PMC8704158 DOI: 10.1002/cam4.4422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Background The single‐arm DAWN trial (NCT01779791) of ibrutinib monotherapy in patients with relapsed/refractory follicular lymphoma (FL) showed an overall response rate (ORR) of 20.9% and a median response duration of 19.4 months. This biomarker analysis of the DAWN dataset sought to determine genetic classifiers for prediction of response to ibrutinib treatment. Methods Whole exome sequencing was performed on baseline tumor samples. Potential germline variants were excluded; a custom set of 1216 cancer‐related genes was examined. Responder‐ versus nonresponder‐associated variants were identified using Fisher's exact test. Classifiers with increasing numbers of genes were created using a greedy algorithm that repeatedly selected genes, adding the most nonresponders to the existing “predicted nonresponders” set and were evaluated with 10‐fold cross‐validation. Results Exome data were generated from 88 patient samples and 13,554 somatic mutation variants were inferred. Response data were available for 83 patients (17 responders, 66 nonresponders). Each sample showed 100 to >500 mutated genes, with greater variance across nonresponders. The overall variant pattern was consistent with previous FL studies; 75 genes had mutations in >10% of patients, including genes previously reported as associated with FL. Univariate analysis yielded responder‐associated genes FANCA, HISTH1B, ANXA6, BTG1, and PARP10, highlighting the importance of functions outside of B‐cell receptor signaling, including epigenetic processes, DNA damage repair, cell cycle/proliferation, and cell motility/invasiveness. While nonresponder‐associated genes included well‐known TP53 and CARD11, genetic classifiers developed using nonresponder‐associated genes included ATP6AP1, EP400, ARID1A, SOCS1, and TBL1XR1, suggesting resistance to ibrutinib may be related to broad biological functions connected to epigenetic modification, telomere maintenance, and cancer‐associated signaling pathways (mTOR, JAK/STAT, NF‐κB). Conclusion The results from univariate and genetic classifier analyses provide insights into genes associated with response or resistance to ibrutinib in FL and identify a classifier developed using nonresponder‐associated genes, which warrants further investigation. Trial registration: NCT01779791.
Collapse
Affiliation(s)
| | | | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan H Fowler
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Judith Trotman
- Haematology Department, Concord Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Georg Hess
- Department of Hematology/Oncology, Johannes Gutenberg-University, Mainz, Germany
| | - Bruce D Cheson
- Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, District of Columbia, USA
| | | | - Steven Sun
- Janssen Research & Development, Raritan, New Jersey, USA
| | | | | | - Gilles Salles
- Hospices Civils de Lyon, Université de Lyon, Pierre-Bénite Cedex, Lyon, France
| | - Ajay K Gopal
- Division of Medical Oncology, Department of Medicine, The University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Lymphoma Program, Seattle Cancer Care Alliance, Seattle, Washington, USA
| |
Collapse
|
6
|
SGK1 mutations in DLBCL generate hyperstable protein neoisoforms that promote AKT independence. Blood 2021; 138:959-964. [PMID: 33988691 DOI: 10.1182/blood.2020010432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Serum and Glucocorticoid-regulated Kinase-1 (SGK1) is one of the most frequently mutated genes in Diffuse Large B Cell Lymphoma (DLBCL). However, little is known about its function or the consequence of its mutation. The frequent finding of truncating mutations has led to the widespread assumption that these represent loss-of-function variants and accordingly, that SGK1 must act as a tumour suppressor. Here we show that instead, the most common SGK1 mutations lead to production of aberrantly spliced mRNA neoisoforms in which translation is initiated from downstream methionines. The resulting N-terminal truncated protein isoforms show increased expression due to the exclusion of an N-terminal degradation domain. However, they retain a functional kinase domain, the over-expression of which renders cells resistant to AKT inhibition in part due to increased phosphorylation of GSK3B. These findings challenge the prevailing assumption that SGK1 is a tumour suppressor gene in DLBCL and provide the impetus to explore further the pharmacological inhibition of SGK1 as a therapeutic strategy for DLBCL.
Collapse
|
7
|
Xie S, Fan W, Yang C, Lei W, Pan H, Tong X, Wu Y, Wang S. Beclin1‑armed oncolytic Vaccinia virus enhances the therapeutic efficacy of R‑CHOP against lymphoma in vitro and in vivo. Oncol Rep 2021; 45:987-996. [PMID: 33469679 PMCID: PMC7860022 DOI: 10.3892/or.2021.7942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a form of lymphoid malignancy, with diffuse large B cell lymphoma (DLBCL) being the most common NHL isoform. Approximately half of patients with DLBCL are successfully cured via first-line Rituximab, Cyclophosphamide, Epirubicin, Vindesine, Prednisolone (R-CHOP) treatment. However, 30–40% of patients with DLBCL ultimately suffer from treatment-refractory or relapsed disease. These patients often suffer from high mortality rates owing to a lack of suitable therapeutic options, and all patients are at a high risk of serious treatment-associated dose-dependent toxicity. As such, it is essential to develop novel treatments for NHL that are less toxic and more efficacious. Oncolytic Vaccinia virus (OVV) has shown promise as a means of treating numerous types of cancer. Gene therapy strategies further enhance OVV-based therapy by improving tumor cell recognition and immune evasion. Beclin1 is an autophagy-associated gene that, when upregulated, induces excess autophagy and cell death. The present study aimed to develop an OVV-Beclin1 therapy capable of inducing autophagic tumor cell death. OVV-Beclin1 was able to efficiently kill NHL cells and to increase the sensitivity of these cells to R-CHOP, thereby decreasing the dose-dependent toxic side effects associated with this chemotherapeutic regimen. The combination of OVV-Beclin1 and R-CHOP also significantly improved tumor growth inhibition and survival in a BALB/c murine model system owing to the synergistic induction of autophagic cell death. Together, these findings suggest that OVV-Beclin1 infection can induce significant autophagic cell death in NHL, highlighting this as a novel means of inducing tumor cell death via a mechanism that is distinct from apoptosis and necrosis.
Collapse
Affiliation(s)
- Shufang Xie
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, P.R. China
| | - Weimin Fan
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Chen Yang
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Hongying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiangmin Tong
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yi Wu
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
8
|
Lodhi N, Tun M, Nagpal P, Inamdar AA, Ayoub NM, Siyam N, Oton-Gonzalez L, Gerona A, Morris D, Sandhu R, Suh KS. Biomarkers and novel therapeutic approaches for diffuse large B-cell lymphoma in the era of precision medicine. Oncotarget 2020; 11:4045-4073. [PMID: 33216822 PMCID: PMC7646825 DOI: 10.18632/oncotarget.27785] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the great efforts for better treatment options for diffuse large B-cell lymphoma (DLBCL) (most common form of non-Hodgkin lymphoma, NHL) to treat and prevent relapse, it continues to be a challenge. Here, we present an overview of DLBCL and address the diagnostic assays and molecular techniques used in its diagnosis, role of biomarkers in detection, treatment of early and advanced stage DLBCL, and novel drug regimens. We discuss the significant biomarkers that have emerged as essential tools for stratifying patients according to risk factors and for providing insights into the use of more targeted and individualized therapeutics. We discuss techniques such as gene expression studies, including next-generation sequencing, which have enabled a more understanding of the complex pathogenesis of DLBCL and have helped determine molecular targets for novel therapeutic agents. We examine current treatment approaches, outline the findings of completed clinical trials, and provide updates for ongoing clinical trials. We highlight clinical trials relevant to the significant fraction of DLBCL patients who present with complex cases marked by high relapse rates. Supported by an increased understanding of targetable pathways in DLBCL, clinical trials involving specialized combination therapies are bringing us within reach the promise of an effective cure to DLBCL using precision medicine. Optimization of therapy remains a crucial objective, with the end goal being a balance between high survival rates through targeted and personalized treatment while reducing adverse effects in DLBCL patients of all subsets.
Collapse
Affiliation(s)
- Niraj Lodhi
- Department of Immunotherapeutic and Biotechnology, Texas Tech Health Science Center, Abilene, TX, USA
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Moe Tun
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Poonam Nagpal
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- College of Natural, Applied, and Health Sciences, Kean University, Union, NJ, USA
| | - Arati A. Inamdar
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Noor Siyam
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | | | - Angela Gerona
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Dainelle Morris
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Rana Sandhu
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Kwangsun Stephen Suh
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- DiagnoCine, Hackensack, NJ, USA
| |
Collapse
|
9
|
Xu-Monette ZY, Zhang H, Zhu F, Tzankov A, Bhagat G, Visco C, Dybkaer K, Chiu A, Tam W, Zu Y, Hsi ED, You H, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, van Krieken JH, Piris MA, Winter JN, Hagemeister FB, Shahbaba B, De Dios I, Zhang H, Li Y, Xu B, Albitar M, Young KH. A refined cell-of-origin classifier with targeted NGS and artificial intelligence shows robust predictive value in DLBCL. Blood Adv 2020; 4:3391-3404. [PMID: 32722783 PMCID: PMC7391158 DOI: 10.1182/bloodadvances.2020001949] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous entity of B-cell lymphoma. Cell-of-origin (COO) classification of DLBCL is required in routine practice by the World Health Organization classification for biological and therapeutic insights. Genetic subtypes uncovered recently are based on distinct genetic alterations in DLBCL, which are different from the COO subtypes defined by gene expression signatures of normal B cells retained in DLBCL. We hypothesize that classifiers incorporating both genome-wide gene-expression and pathogenetic variables can improve the therapeutic significance of DLBCL classification. To develop such refined classifiers, we performed targeted RNA sequencing (RNA-Seq) with a commercially available next-generation sequencing (NGS) platform in a large cohort of 418 DLBCLs. Genetic and transcriptional data obtained by RNA-Seq in a single run were explored by state-of-the-art artificial intelligence (AI) to develop a NGS-COO classifier for COO assignment and NGS survival models for clinical outcome prediction. The NGS-COO model built through applying AI in the training set was robust, showing high concordance with COO classification by either Affymetrix GeneChip microarray or the NanoString Lymph2Cx assay in 2 validation sets. Although the NGS-COO model was not trained for clinical outcome, the activated B-cell-like compared with the germinal-center B-cell-like subtype had significantly poorer survival. The NGS survival models stratified 30% high-risk patients in the validation set with poor survival as in the training set. These results demonstrate that targeted RNA-Seq coupled with AI deep learning techniques provides reproducible, efficient, and affordable assays for clinical application. The clinical grade assays and NGS models integrating both genetic and transcriptional factors developed in this study may eventually support precision medicine in DLBCL.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, NC
| | - Hongwei Zhang
- Department of Hematology, Shanxi Cancer Hospital, Taiyuan, China
| | - Feng Zhu
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, NC
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Govind Bhagat
- Department of Pathology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY
| | - Carlo Visco
- Department of Hematology, University of Verona, Verona, Italy
| | - Karen Dybkaer
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - April Chiu
- Department of Pathology, Mayo Clinic, Rochester, MN
| | - Wayne Tam
- Department of Pathology, Weill Medical College of Cornell University, New York, NY
| | - Youli Zu
- Department of Pathology, Houston Methodist Hospital, Houston, TX
| | - Eric D Hsi
- Department of Pathology, Cleveland Clinic, Cleveland, OH
| | - Hua You
- Department of Hematology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Maurilio Ponzoni
- Department of Hematology and Pathology, San Raffaele H. Scientific Institute, Milan, Italy
| | - Andrés J M Ferreri
- Department of Hematology and Pathology, San Raffaele H. Scientific Institute, Milan, Italy
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Benjamin M Parsons
- Department of Hematology, Gundersen Lutheran Health System, La Crosse, WI
| | - J Han van Krieken
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Miguel A Piris
- Department of Pathology, Fundación Jiménez Díaz, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jane N Winter
- Department of Hematology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Fredrick B Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Babak Shahbaba
- Department of Biostatistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, CA
| | | | - Hong Zhang
- Department of Computer Science, Georgia Southern University, Savannah, GA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China; and
| | | | - Ken H Young
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, NC
- Hematologic Malignancy Program, Duke Cancer Institute, Durham, NC
| |
Collapse
|
10
|
Facciotto C, Casado J, Turunen L, Leivonen SK, Tumiati M, Rantanen V, Kauppi L, Lehtonen R, Leppä S, Wennerberg K, Hautaniemi S. Drug screening approach combines epigenetic sensitization with immunochemotherapy in cancer. Clin Epigenetics 2019; 11:192. [PMID: 31829282 PMCID: PMC6907220 DOI: 10.1186/s13148-019-0781-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The epigenome plays a key role in cancer heterogeneity and drug resistance. Hence, a number of epigenetic inhibitors have been developed and tested in cancers. The major focus of most studies so far has been on the cytotoxic effect of these compounds, and only few have investigated the ability to revert the resistant phenotype in cancer cells. Hence, there is a need for a systematic methodology to unravel the mechanisms behind epigenetic sensitization. RESULTS We have developed a high-throughput protocol to screen non-simultaneous drug combinations, and used it to investigate the reprogramming potential of epigenetic inhibitors. We demonstrated the effectiveness of our protocol by screening 60 epigenetic compounds on diffuse large B-cell lymphoma (DLBCL) cells. We identified several histone deacetylase (HDAC) and histone methyltransferase (HMT) inhibitors that acted synergistically with doxorubicin and rituximab. These two classes of epigenetic inhibitors achieved sensitization by disrupting DNA repair, cell cycle, and apoptotic signaling. The data used to perform these analyses are easily browsable through our Results Explorer. Additionally, we showed that these inhibitors achieve sensitization at lower doses than those required to induce cytotoxicity. CONCLUSIONS Our drug screening approach provides a systematic framework to test non-simultaneous drug combinations. This methodology identified HDAC and HMT inhibitors as successful sensitizing compounds in treatment-resistant DLBCL. Further investigation into the mechanisms behind successful epigenetic sensitization highlighted DNA repair, cell cycle, and apoptosis as the most dysregulated pathways. Altogether, our method adds supporting evidence in the use of epigenetic inhibitors as sensitizing agents in clinical settings.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Cycle/drug effects
- Cell Line, Tumor
- DNA Repair/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- High-Throughput Screening Assays
- Histone Deacetylase Inhibitors/pharmacology
- Histone Methyltransferases/antagonists & inhibitors
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Rituximab/pharmacology
Collapse
Affiliation(s)
- Chiara Facciotto
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Julia Casado
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Laura Turunen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Suvi-Katri Leivonen
- Department of Oncology, Helsinki University Hospital Cancer Center, Helsinki, Finland
- Research Program in Applied Tumor Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Manuela Tumiati
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Ville Rantanen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Liisa Kauppi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Rainer Lehtonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Sirpa Leppä
- Department of Oncology, Helsinki University Hospital Cancer Center, Helsinki, Finland
- Research Program in Applied Tumor Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| |
Collapse
|
11
|
Harkins RA, Chang A, Patel SP, Lee MJ, Goldstein JS, Merdan S, Flowers CR, Koff JL. Remaining challenges in predicting patient outcomes for diffuse large B-cell lymphoma. Expert Rev Hematol 2019; 12:959-973. [PMID: 31513757 PMCID: PMC6821591 DOI: 10.1080/17474086.2019.1660159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022]
Abstract
Introduction: Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma and is an aggressive malignancy with heterogeneous outcomes. Diverse methods for DLBCL outcomes assessment ranging from clinical to genomic have been developed with variable predictive and prognostic success.Areas covered: The authors provide an overview of the various methods currently used to estimate prognosis in DLBCL patients. Models incorporating cell of origin, genomic features, sociodemographic factors, treatment effectiveness measures, and machine learning are described.Expert opinion: The clinical and genetic heterogeneity of DLBCL presents distinct challenges in predicting response to therapy and overall prognosis. Successful integration of predictive and prognostic tools in clinical trials and in a standard clinical workflow for DLBCL will likely require a combination of methods incorporating clinical, sociodemographic, and molecular factors with the aid of machine learning and high-dimensional data analysis.
Collapse
Affiliation(s)
- R. Andrew Harkins
- Emory University School of Medicine, Atlanta, Georgia 30322-1007, USA
| | - Andres Chang
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322-1007, USA
| | | | - Michelle J. Lee
- Emory University School of Medicine, Atlanta, Georgia 30322-1007, USA
| | | | - Selin Merdan
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322-1007, USA
- Georgia Institute of Technology, Atlanta, Georgia 30332-0002, USA
| | | | - Jean L. Koff
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322-1007, USA
| |
Collapse
|
12
|
Feng J, Yang W, Wang J, Pu Z, Han Y, Wan L. Z-VRPR-FMK can inhibit the growth and invasiveness of diffuse large B-cell lymphoma by depressing NF-κB activation and MMP expression induced by MALT1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1947-1955. [PMID: 31934017 PMCID: PMC6949647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the therapeutic effect of the mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) on diffuse large B-cell lymphoma (DLBCL) and its underlying molecular mechanism through the application of Z-Val-Arg-Pro-DL-Arg-fluoromethyl ketone (Z-VRPR-FMK). Cultured OCI-LY10 cells and their xenografts in nude mice were treated with Z-VRPR-FMK. The growth and invasiveness of the tumor were observed. The components of the NF-κB signaling pathways, such as P65, MALT1, A20, matrix metalloproteinase 2 (MMP2) and MMP9, were detected using a real-time fluorescent quantitative polymerase chain reaction, immunohistochemical staining, and a Western blot analysis. Z-VRPR-FMK inhibited the growth and invasiveness of OCI-LY10 cells and their xenografts. The increase in the tumor volume was slower in the experimental group than it was in the control group, and the weight of the nude mice was significantly different between the two groups on the 11th and 13th days of treatment. The expression of P65 was significantly lower at the gene level in cultured OCI-LY10 cells and transplanted tumors than in the controls after treatment with Z-VRPR-FMK. The nuclear expression of the P65 protein of xenografts also decreased, but the nuclear expression of the A20 protein followed a reverse pattern. The expressions of the MALT1, MMP2, and MMP9 proteins were lower in the OCI-LY10 cells and transplanted tumors treated with Z-VRPR-FMK compared with the controls. This study indicates that MALT1 might serve as an effective therapeutic target for activated B-cell (ABC)-like DLBCL. Z-VRPR-FMK inhibits the growth and invasiveness of ABC-like DLBCL by depressing the proteolysis of A20, the activation of NF-κB, and the expression of MMP9 and MMP2 induced by the MALT1 protein.
Collapse
Affiliation(s)
- Jianglong Feng
- Department of Pathology, Affiliated Hospital, Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Wenxiu Yang
- Department of Pathology, Affiliated Hospital, Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Jiarui Wang
- Department of Pathology, Maternal and Child Health Hospital of Guiyang CityGuiyang, Guizhou, China
| | - Zhenhong Pu
- Department of Pathology, Affiliated Hospital, Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Ying Han
- Department of Pathology, Guizhou Medical UniversityGuiyang 550025, Guizhou, China
| | - Long Wan
- Department of Pathology, Guizhou Medical UniversityGuiyang 550025, Guizhou, China
| |
Collapse
|
13
|
Ren J, Asche CV, Shou Y, Galaznik A. Economic burden and treatment patterns for patients with diffuse large B-cell lymphoma and follicular lymphoma in the USA. J Comp Eff Res 2019; 8:393-402. [DOI: 10.2217/cer-2018-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are common types of non-Hodgkin's lymphoma, and real-world evidence continues to be lacking for healthcare costs and utilization among DLBCL and FL patients. Our study aims to describe medical and pharmacy costs and health resource utilization and to characterize longitudinal treatment patterns among these patients. Methods: A retrospective observational study was performed among adult patients with DLBCL or FL using the US MarketScan (Truven) administrative claims data from 1 January 2007 to 31 December 2015. Diagnoses of DLBCL and FL were based upon ICD-9 codes. Identifications of treatment lines involved 30 lymphoma-specific anticancer systemic agents. Direct healthcare costs and utilizations were computed in the 1-year postdiagnosis period. Generalized linear models with a gamma link were used to compare healthcare costs between therapies with and without rituximab. Results: A total of 2767 DLBCL and 5989 FL patients received frontline therapy. The majority received treatment within 3 months after initial diagnosis (DLBCL 79.9% and FL 62.4%) and were treated with rituximab or bendamustine either alone or in combination (DLBCL 67.4% and FL 84.7%). The total healthcare costs were US $15,555 and $10,192 per patient per month within 1 year following their initial diagnosis for DLBCL and FL, respectively. The medical costs were nearly twice as much as the drug costs for DLBCL patients. Both DLBCL and FL patients receiving rituximab had higher pharmacy costs but lower medical costs (p < 0.001). During the first year following initial diagnosis, the resource utilization (per patient per month) of DLBCL patients included 0.21 inpatient admissions, 0.26 radiation therapy, 2.63 outpatient or office visits, 0.18 emergency room visits, 0.06 intensive care unit admissions and 0.10 stem cell transplantation. FL patients occupied less health resources than DLBCL patients. Conclusion: The healthcare costs and health resources utilized were considerable in non-Hodgkin's lymphoma, especially DLBCL patients.
Collapse
Affiliation(s)
- Jinma Ren
- Center for Outcomes Research, Department of Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Carl V Asche
- Center for Outcomes Research, Department of Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Center for Pharmacoepidemiology & Pharmacoeconomic Research, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Yaping Shou
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Aaron Galaznik
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| |
Collapse
|
14
|
Huang H, Li Z, Huang C, Rao J, Xie Q, Cui W, Tou F, Zheng Z. CD5 and CD43 Expression are Associate with Poor Prognosis in DLBCL Patients. Open Med (Wars) 2018; 13:605-609. [PMID: 30519638 PMCID: PMC6272054 DOI: 10.1515/med-2018-0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 01/03/2023] Open
Abstract
Objective To investigate the expression and clinical significance of CD5 and CD43 in diffuse large B cell lymphoma (DLBCL) (unspecified). Methods Sixty - five patients with diagnosed DLBCL were enrolled. The expressions of CD5, CD43, CD10, Bcl-6 and Mun-1 were detected by immuno histochemistry. The relationship between CD5 and CD43 and clinicopathological features and prognosis of DLBCL was analyzed. Results In sixty - five adult DLBCL patients , 6 cases of DLBCL (9.2%) were CD5 positive, 24 cases of DLBCL (36.9%) were CD43 positive, 5 cases of DLBCL (7.7%) were both CD5 and CD43 positive. 40 cases of DLBCL (61.5%) were CD5 and CD43 negative. CD5 expression was not related to age, sex, clinical stage, type of immunophenotype (Hans typing), location, and whether infected with hepatitis B virus (HBV); CD43 expression was correlated with immunophenotyping and HBV i nfection, but was not correlated with the age, sex, clinical stage, and site. Median survival time was significantly lower in CD5- and CD43- positive DLBCL patients than CD5- and CD43-negative patien ts. Conclusion The prognosis of DLBCL patients may be worse with positive CD5 and CD43 expression.
Collapse
Affiliation(s)
- Hui Huang
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, Beijing 100142, P. R China
| | - Zhandong Li
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, Beijing 100142, P. R China
| | - Chuansheng Huang
- Department of Internal Medicine 5th Division Jiangxi Cancer Center, Jiangxi Cancer Hospital, Nanchang University, Nanchang, 330029 P.R. China
| | - Jun Rao
- Department of Internal Medicine 5th Division Jiangxi Cancer Center, Jiangxi Cancer Hospital, Nanchang University, Nanchang, 330029 P.R. China
| | - Qin Xie
- Department of Internal Medicine 5th Division Jiangxi Cancer Center, Jiangxi Cancer Hospital, Nanchang University, Nanchang, 330029 P.R. China
| | - Wenhao Cui
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Fangfang Tou
- Department of Internal Medicine 5th Division Jiangxi Cancer Center, Jiangxi Cancer Hospital, Nanchang University, Nanchang, 330029 P.R. China
| | - Zhi Zheng
- Department of Internal Medicine 5th Division Jiangxi Cancer Center, Jiangxi Cancer Hospital, Nanchang University, Nanchang, 330029 P.R. China
| |
Collapse
|
15
|
Systematic review of therapy used in relapsed or refractory diffuse large B-cell lymphoma and follicular lymphoma. Future Sci OA 2018; 4:FSO322. [PMID: 30112190 PMCID: PMC6088264 DOI: 10.4155/fsoa-2018-0049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
To identify real-world evidence on outcomes from therapies for relapsed/refractory diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), we systematically reviewed literature in Medline/Embase for DLBCL/FL-related articles on real-world results published during January 2012–May 2016. Among 33 included articles, therapies included stem cell transplant (SCT) and chemotherapy, including experimental regimens. The highest overall survival rates were observed for SCT, long considered an optimal strategy following initial relapse. Prognoses were inferior among DLBCL patients receiving rituximab-based regimens rather than SCT, particularly among studies that exclusively focused on those ineligible for SCT due to age or co-morbidity. A lack of viable treatment options for DLBCL/FL patients ineligible for SCT after relapse remains a significant gap in care. Non-Hodgkin lymphoma is the most prevalent blood cancer. Diffuse large B-cell lymphoma and follicular lymphoma account for nearly two-thirds of all non-Hodgkin lymphomas. One-third of patients with diffuse large B-cell lymphoma continue on to relapsed or refractory disease. While follicular lymphoma tends to be less aggressive, relapses do occur. Stem cell transplant and chemotherapy/immunotherapy are the current treatment options for relapsed or refractory patients. However, many patients are ineligible for stem cell transplant, due to age or preexisting medical conditions, so safe and effective treatment choices for these patients are a must. The lack of viable treatment options highlights this unmet need.
Collapse
|
16
|
Pierpont TM, Limper CB, Richards KL. Past, Present, and Future of Rituximab-The World's First Oncology Monoclonal Antibody Therapy. Front Oncol 2018; 8:163. [PMID: 29915719 PMCID: PMC5994406 DOI: 10.3389/fonc.2018.00163] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Rituximab is a chimeric mouse/human monoclonal antibody (mAb) therapy with binding specificity to CD20. It was the first therapeutic antibody approved for oncology patients and was the top-selling oncology drug for nearly a decade with sales reaching $8.58 billion in 2016. Since its initial approval in 1997, it has improved outcomes in all B-cell malignancies, including diffuse large B-cell lymphoma, follicular lymphoma, and chronic lymphocytic leukemia. Despite widespread use, most mechanistic data have been gathered from in vitro studies while the roles of the various response mechanisms in humans are still largely undetermined. Polymorphisms in Fc gamma receptor and complement protein genes have been implicated as potential predictors of differential response to rituximab, but have not yet shown sufficient influence to impact clinical decisions. Unlike most targeted therapies developed today, no known biomarkers to indicate target engagement/tumor response have been identified, aside from reduced tumor burden. The lack of companion biomarkers beyond CD20 itself has made it difficult to predict which patients will respond to any given anti-CD20 antibody. In the past decade, two new anti-CD20 antibodies have been approved: ofatumumab, which binds a distinct epitope of CD20, and obinutuzumab, a mAb derived from rituximab with modifications to the Fc portion and to its glycosylation. Both are fully humanized and have biological activity that is distinct from that of rituximab. In addition to these new anti-CD20 antibodies, another imminent change in targeted lymphoma treatment is the multitude of biosimilars that are becoming available as rituximab's patent expires. While the widespread use of rituximab itself will likely continue, its biosimilars will increase global access to the therapy. This review discusses current research into mechanisms and potential biomarkers of rituximab response, as well as its biosimilars and the newer CD20 binding mAb therapies. Increased ability to assess the effectiveness of rituximab in an individual patient, along with the availability of alternative anti-CD20 antibodies will likely lead to dramatic changes in how we use CD20 antibodies going forward.
Collapse
Affiliation(s)
- Timothy M. Pierpont
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Candice B. Limper
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Kristy L. Richards
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
17
|
Lopez-Santillan M, Larrabeiti-Etxebarria A, Arzuaga-Mendez J, Lopez-Lopez E, Garcia-Orad A. Circulating miRNAs as biomarkers in diffuse large B-cell lymphoma: a systematic review. Oncotarget 2018; 9:22850-22861. [PMID: 29854319 PMCID: PMC5978269 DOI: 10.18632/oncotarget.25230] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy, with highly variable outcomes among patients. Although classification and prognostic tools have been developed, standard therapy still fails in 30-40% of patients. Hence, identification of novel biomarkers is needed. Recently, circulating microRNAs (miRNAs) have been suggested as non-invasive biomarkers in cancer. Our aim was to review the potential role of circulating miRNAs as biomarkers for diagnosis, classification, prognosis, and treatment response in DLBCL. We performed a search in PubMed using the terms [((‘Non-coding RNA’) OR (‘microRNA’ OR ‘miRNA’ OR ‘miR’) OR (‘exosome’) OR (‘extracellular vesicle’) OR (‘secretome’)) AND (‘Diffuse large B cell lymphoma’ OR ‘DLBCL’)] to identify articles that evaluated the impact of circulating miRNAs as diagnosis, subtype, treatment response or prognosis biomarkers in DLBCL in human population. Among the twelve articles that met the inclusion criteria, eleven considered circulating miRNAs as biomarkers for diagnosis, two for classification, and five for prognosis or treatment response. The limited number of studies performed and lack of consistency in results make it difficult to draw conclusions about the role of circulating miRNAs as non-invasive biomarkers in DLBCL. Although the preliminary associations observed seem promising, the only consistent result is the upregulation of mir-21 in DLBCL patients, which could be a biomarker for diagnosis. Further studies are needed.
Collapse
Affiliation(s)
- Maria Lopez-Santillan
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,Medical Oncology Service, Basurto University Hospital, Bilbao, Spain
| | - Ane Larrabeiti-Etxebarria
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,Pharmacy Service, Araba University Hospital-Txagorritxu, Vitoria, Spain
| | - Javier Arzuaga-Mendez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,Hematology and Hemotherapy Service, Cruces University Hospital, Barakaldo, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
18
|
Zhao X, Zhang Z, Moreira D, Su YL, Won H, Adamus T, Dong Z, Liang Y, Yin HH, Swiderski P, Pillai RK, Kwak L, Forman S, Kortylewski M. B Cell Lymphoma Immunotherapy Using TLR9-Targeted Oligonucleotide STAT3 Inhibitors. Mol Ther 2018; 26:695-707. [PMID: 29433938 PMCID: PMC5910676 DOI: 10.1016/j.ymthe.2018.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 01/22/2023] Open
Abstract
Growing evidence links the aggressiveness of non-Hodgkin’s lymphoma, especially the activated B cell-like type diffuse large B cell lymphomas (ABC-DLBCLs) to Toll-like receptor 9 (TLR9)/MyD88 and STAT3 transcription factor signaling. Here, we describe a dual-function molecule consisting of a clinically relevant TLR9 agonist (CpG7909) and a STAT3 inhibitor in the form of a high-affinity decoy oligodeoxynucleotide (dODN). The CpG-STAT3dODN blocked STAT3 DNA binding and activity, thus reducing expression of downstream target genes, such as MYC and BCL2L1, in human and mouse lymphoma cells. We further demonstrated that injections (i.v.) of CpG-STAT3dODN inhibited growth of human OCI-Ly3 lymphoma in immunodeficient mice. Moreover, systemic CpG-STAT3dODN administration induced complete regression of the syngeneic A20 lymphoma, resulting in long-term survival of immunocompetent mice. Both TLR9 stimulation and concurrent STAT3 inhibition were critical for immune-mediated therapeutic effects, since neither CpG7909 alone nor CpG7909 co-injected with unconjugated STAT3dODN extended mouse survival. The CpG-STAT3dODN induced expression of genes critical to antigen-processing/presentation and Th1 cell activation while suppressing survival signaling. These effects resulted in the generation of lymphoma cell-specific CD8/CD4-dependent T cell immunity protecting mice from tumor rechallenge. Our results suggest that CpG-STAT3dODN as a systemic/local monotherapy or in combination with PD1 blockade can provide an opportunity for treating patients with B cell NHL.
Collapse
Affiliation(s)
- Xingli Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China
| | - Zhuoran Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Dayson Moreira
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yu-Lin Su
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Haejung Won
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Tomasz Adamus
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Zhenyuan Dong
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yong Liang
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hongwei H Yin
- Molecular Pathology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Raju K Pillai
- Molecular Pathology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Larry Kwak
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Stephen Forman
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|