1
|
Gibson WT, Lengyell TC, Korecki AJ, Janssen SM, Adair BA, Gamu D, Lorincz MC, Simpson EM. Minimally Humanized Ezh2 Exon-18 Mouse Cell Lines Validate Preclinical CRISPR/Cas9 Approach to Treat Weaver Syndrome. Hum Gene Ther 2025; 36:618-627. [PMID: 39964768 DOI: 10.1089/hum.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Weaver syndrome is a rare neurodevelopmental disorder that encompasses macrocephaly, tall stature, obesity, brain anomalies, intellectual disability, and increased susceptibility to cancer. This dominant monogenic disorder is caused by germline variants in enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), a key epigenetic writer. Unfortunately, there are no effective treatments for Weaver syndrome. However, preclinical results support the potential for therapeutic gains, despite the prenatal onset. Thus, for the first time, we tested whether CRISPR/Cas9 gene-editing strategies may be able to "correct" a Weaver syndrome variant at the DNA level. We initiated these preclinical studies by humanizing the region surrounding the most-common recurring patient-variant location in mouse embryonic stem cells (ESCs). Humanization ensures that DNA-binding strategies will be directly translatable to human cells and patients. We then introduced into ESCs the humanized region, but now carrying the Weaver syndrome EZH2 variant c.2035C>T p.Arg684Cys, and characterized the enzymatic properties of this missense variant. Our data showed a significant and dramatic reduction in EZH2-enzymatic activity, supporting previous cell-free studies of this variant as well as in vitro and in vivo mouse work by other teams. Intriguingly, this most-common variant does not create a complete loss-of-function, but rather is a hypomorphic allele. Together with prior reports describing hypomorphic effects of missense EZH2 variants, these results demonstrate that the etiology of Weaver syndrome does not require complete loss of EZH2 enzymatic activity. Toward therapy, we tested four CRISPR gene-editing strategies. We demonstrated that Streptococcus pyogenes Cas9 (SpCas9) showed the highest variant correction (70.5%), but unfortunately also the highest alteration of the nonvariant allele (21.1-26.2%), an important consideration for gene-editing treatment of a dominant syndrome. However, Staphylococcus aureus Cas9 (SaCas9) gave a variant correction (52.5%) that was not significantly different than SpCas9, and encouragingly the lowest alteration of the nonvariant allele (2.0%). Thus, the therapeutic strategy using the small SaCas9 enzyme, a size that allows flexibility in therapeutic delivery, was the most optimal for targeting the Weaver syndrome EZH2 variant c.2035C>T p.Arg684Cys.
Collapse
Affiliation(s)
- William T Gibson
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
| | - Tess C Lengyell
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| | - Sanne M Janssen
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Life Sciences Institute, Vancouver, Canada
| | - Bethany A Adair
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| | - Daniel Gamu
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Matthew C Lorincz
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, The University of British Columbia, Vancouver, Canada
- Life Sciences Institute, Vancouver, Canada
| | - Elizabeth M Simpson
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Gualdrón Duarte JL, Yuan C, Gori AS, Moreira GCM, Takeda H, Coppieters W, Charlier C, Georges M, Druet T. Sequenced-based GWAS for linear classification traits in Belgian Blue beef cattle reveals new coding variants in genes regulating body size in mammals. Genet Sel Evol 2023; 55:83. [PMID: 38017417 PMCID: PMC10683324 DOI: 10.1186/s12711-023-00857-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Cohorts of individuals that have been genotyped and phenotyped for genomic selection programs offer the opportunity to better understand genetic variation associated with complex traits. Here, we performed an association study for traits related to body size and muscular development in intensively selected beef cattle. We leveraged multiple trait information to refine and interpret the significant associations. RESULTS After a multiple-step genotype imputation to the sequence-level for 14,762 Belgian Blue beef (BBB) cows, we performed a genome-wide association study (GWAS) for 11 traits related to muscular development and body size. The 37 identified genome-wide significant quantitative trait loci (QTL) could be condensed in 11 unique QTL regions based on their position. Evidence for pleiotropic effects was found in most of these regions (e.g., correlated association signals, overlap between credible sets (CS) of candidate variants). Thus, we applied a multiple-trait approach to combine information from different traits to refine the CS. In several QTL regions, we identified strong candidate genes known to be related to growth and height in other species such as LCORL-NCAPG or CCND2. For some of these genes, relevant candidate variants were identified in the CS, including three new missense variants in EZH2, PAPPA2 and ADAM12, possibly two additional coding variants in LCORL, and candidate regulatory variants linked to CCND2 and ARMC12. Strikingly, four other QTL regions associated with dimension or muscular development traits were related to five (recessive) deleterious coding variants previously identified. CONCLUSIONS Our study further supports that a set of common genes controls body size across mammalian species. In particular, we added new genes to the list of those associated with height in both humans and cattle. We also identified new strong candidate causal variants in some of these genes, strengthening the evidence of their causality. Several breed-specific recessive deleterious variants were identified in our QTL regions, probably as a result of the extreme selection for muscular development in BBB cattle.
Collapse
Affiliation(s)
- José Luis Gualdrón Duarte
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium.
- Walloon Breeders Association, Rue des Champs Elysées, 4, 5590, Ciney, Belgium.
| | - Can Yuan
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Ann-Stephan Gori
- Walloon Breeders Association, Rue des Champs Elysées, 4, 5590, Ciney, Belgium
| | - Gabriel C M Moreira
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Wouter Coppieters
- GIGA Genomic Platform, GIGA-R, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| |
Collapse
|
3
|
Wang SE, Jiang YH. Novel epigenetic molecular therapies for imprinting disorders. Mol Psychiatry 2023; 28:3182-3193. [PMID: 37626134 PMCID: PMC10618104 DOI: 10.1038/s41380-023-02208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Genomic imprinting disorders are caused by the disruption of genomic imprinting processes leading to a deficit or increase of an active allele. Their unique molecular mechanisms underlying imprinted genes offer an opportunity to investigate epigenetic-based therapy for reactivation of an inactive allele or reduction of an active allele. Current treatments are based on managing symptoms, not targeting the molecular mechanisms underlying imprinting disorders. Here, we highlight molecular approaches of therapeutic candidates in preclinical and clinical studies for individual imprinting disorders. These include the significant progress of discovery and testing of small molecules, antisense oligonucleotides, and CRISPR mediated genome editing approaches as new therapeutic strategies. We discuss the significant challenges of translating these promising therapies from the preclinical stage to the clinic, especially for genome editing based approaches.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Wagner MA, Erickson KI, Bender CM, Conley YP. The Influence of Physical Activity and Epigenomics On Cognitive Function and Brain Health in Breast Cancer. Front Aging Neurosci 2020; 12:123. [PMID: 32457596 PMCID: PMC7225270 DOI: 10.3389/fnagi.2020.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
The risk of breast cancer increases with age, with the majority of women diagnosed with breast cancer being postmenopausal. It has been estimated that 25-75% of women with breast cancer experience changes in cognitive function (CF) related to disease and treatment, which compromises psychological well-being, decision making, ability to perform daily activities, and adherence to cancer therapy. Unfortunately, the mechanisms that underlie neurocognitive changes in women with breast cancer remain poorly understood, which in turn limits the development of effective treatments and prevention strategies. Exercise has great potential as a non-pharmaceutical intervention to mitigate the decline in CF in women with breast cancer. Evidence suggests that DNA methylation, an epigenetic mechanism for gene regulation, impacts CF and brain health (BH), that exercise influences DNA methylation, and that exercise impacts CF and BH. Although investigating DNA methylation has the potential to uncover the biologic foundations for understanding neurocognitive changes within the context of breast cancer and its treatment as well as the ability to understand how exercise mitigates these changes, there is a dearth of research on this topic. The purpose of this review article is to compile the research in these areas and to recommend potential areas of opportunity for investigation.
Collapse
Affiliation(s)
- Monica A. Wagner
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth Campus, Murdoch, WA, Australia
| | | | - Yvette P. Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Cyrus S, Burkardt D, Weaver DD, Gibson WT. PRC2-complex related dysfunction in overgrowth syndromes: A review of EZH2, EED, and SUZ12 and their syndromic phenotypes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:519-531. [PMID: 31724824 DOI: 10.1002/ajmg.c.31754] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
The EZH2, EED, and SUZ12 genes encode proteins that comprise core components of the polycomb repressive complex 2 (PRC2), an epigenetic "writer" with H3K27 methyltransferase activity, catalyzing the addition of up to three methyl groups on histone 3 at lysine residue 27 (H3K27). Partial loss-of-function variants in genes encoding the EZH2 and EED subunits of the complex lead to overgrowth, macrocephaly, advanced bone age, variable intellectual disability, and distinctive facial features. EZH2-associated overgrowth, caused by constitutional heterozygous mutations within Enhancer of Zeste homologue 2 (EZH2), has a phenotypic spectrum ranging from tall stature without obvious intellectual disability or dysmorphic features to classical Weaver syndrome (OMIM #277590). EED-associated overgrowth (Cohen-Gibson syndrome; OMIM #617561) is caused by germline heterozygous mutations in Embryonic Ectoderm Development (EED), and manifests overgrowth and intellectual disability (OGID), along with other features similar to Weaver syndrome. Most recently, rare coding variants in SUZ12 have also been described that present with clinical characteristics similar to the previous two syndromes. Here we review the PRC2 complex and clinical syndromes of OGID associated with core components EZH2, EED, and SUZ12.
Collapse
Affiliation(s)
- Sharri Cyrus
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deepika Burkardt
- Center for Human Genetics, University Hospitals Rainbow Babies and Children/Department of Genetics, Case Western Reserve University, Cleveland, Ohio
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Abstract
Polycomb repressive complex 2 (PRC2) is a conserved chromatin regulator that is responsible for the methylation of histone H3 lysine 27 (H3K27). PRC2 is essential for normal development and its loss of function thus results in a range of developmental phenotypes. Here, we review the latest advances in our understanding of mammalian PRC2 activity and present an updated summary of the phenotypes associated with its loss of function in mice. We then discuss recent studies that have highlighted regulatory interplay between the modifications laid down by PRC2 and other chromatin modifiers, including NSD1 and DNMT3A. Finally, we propose a model in which the dysregulation of these modifications at intergenic regions is a shared molecular feature of genetically distinct but highly phenotypically similar overgrowth syndromes in humans.
Collapse
Affiliation(s)
- Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|