1
|
Krantz S, Bell B, Lund K, Parra NS, Ng Y, De Oliveira Rosa N, Mukhopadhyay S, Croix BS, Sarin KY, Weigert R, Raimondi F, Iglesias-Bartolome R. Dissection of Gαs and Hedgehog signaling crosstalk reveals therapeutic opportunities to target adenosine receptor 2b in Hedgehog-dependent tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639530. [PMID: 40060632 PMCID: PMC11888225 DOI: 10.1101/2025.02.21.639530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Basal cell carcinoma (BCC), the most common human cancer, is driven by hyperactivation of Hedgehog Smoothened (SMO) and GLI transcription. Gαs and protein kinase A (PKA) negatively regulate Hedgehog signaling, offering an alternative BCC development and treatment pathway. Here, using histology alongside bulk and single-cell RNA sequencing, we find that mouse BCC-like tumors that originate from Gαs pathway inactivation are strikingly similar to those driven by canonical Hedgehog SMO. Interestingly, mutations that reduce Gαs and PKA activity are present in human BCC. Tumors from Gαs pathway inactivation are independent of the canonical Hedgehog regulators SMO and GPR161, establishing them as an SMO-independent oncogenic Hedgehog signaling model. Finally, we demonstrate that activation of the Gαs-coupled adenosine 2B receptor counteracts oncogenic SMO, reducing Hedgehog signaling and tumor formation and offering a potential therapeutic strategy for BCC.
Collapse
Affiliation(s)
- Sarah Krantz
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Braden Bell
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Natalia Salinas Parra
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Texas, United States
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
2
|
Suntharesan J, Lyulcheva-Bennett E, Hart R, Pizer B, Hayden J, Ramakrishnan R. Medulloblastoma in a child with osteoma cutis - a rare association due to loss of GNAS expression. J Pediatr Endocrinol Metab 2024; 37:467-471. [PMID: 38529810 DOI: 10.1515/jpem-2023-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Inactivating GNAS mutations result in varied phenotypes depending on parental origin. Maternally inherited mutations typically lead to hormone resistance and Albright's hereditary osteodystrophy (AHO), characterised by short stature, round facies, brachydactyly and subcutaneous ossifications. Paternal inheritance presents with features of AHO or ectopic ossification without hormone resistance. This report describes the case of a child with osteoma cutis and medulloblastoma. The objective of this report is to highlight the emerging association between inactivating germline GNAS mutations and medulloblastoma, aiming to shed light on its implications for tumor biology and promote future development of targeted surveillance strategies to improve outcomes in paediatric patients with these mutations. CASE PRESENTATION A 12-month-old boy presented with multiple plaque-like skin lesions. Biopsy confirmed osteoma cutis, prompting genetic testing which confirmed a heterozygous inactivating GNAS mutation. At 2.5 years of age, he developed neurological symptoms and was diagnosed with a desmoplastic nodular medulloblastoma, SHH molecular group, confirmed by MRI and histology. Further analysis indicated a biallelic loss of GNAS in the tumor. CONCLUSIONS This case provides important insights into the role of GNAS as a tumor suppressor and the emerging association between inactivating GNAS variants and the development of medulloblastoma. The case underscores the importance of careful neurological assessment and ongoing vigilance in children with known inactivating GNAS variants or associated phenotypes. Further work to establish genotype-phenotype correlations is needed to inform optimal management of these patients.
Collapse
Affiliation(s)
- Jananie Suntharesan
- Department of Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
- Department of Paediatric and Adolocents Diabetes and Endocrinology, Sirimavo Bandaranayake Specialized Children's Hospital, Peradeniya, Sri Lanka
| | | | - Rachel Hart
- Liverpool Centre for Genomic Medicine (LCGM), Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Barry Pizer
- Department of Oncology, Alder Hey Children's Hospital, Liverpool, UK
| | - James Hayden
- Department of Oncology, Alder Hey Children's Hospital, Liverpool, UK
| | | |
Collapse
|
3
|
Liserre R, Branzoli F, Pagani F, Gryzik M, Cominelli M, Miele E, Marjańska M, Doglietto F, Poliani PL. Exceptionally rare IDH1-mutant adult medulloblastoma with concurrent GNAS mutation revealed by in vivo magnetic resonance spectroscopy and deep sequencing. Acta Neuropathol Commun 2023; 11:47. [PMID: 36941703 PMCID: PMC10029199 DOI: 10.1186/s40478-023-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor occurring in childhood and rarely found in adults. Based on transcriptome profile, MB are currently classified into four major molecular groups reflecting a considerable biological heterogeneity: WNT-activated, SHH-activated, group 3 and group 4. Recently, DNA methylation profiling allowed the identification of additional subgroups within the four major molecular groups associated with different clinic-pathological and molecular features. Isocitrate dehydrogenase-1 and 2 (IDH1 and IDH2) mutations have been described in several tumors, including gliomas, while in MB are rarely reported and not routinely investigated. By means of magnetic resonance spectroscopy (MRS), we unequivocally assessed the presence the oncometabolite D-2-hydroxyglutarate (2HG), a marker of IDH1 and IDH2 mutations, in a case of adult MB. Immunophenotypical work-up and methylation profiling assigned the diagnosis of MB, subclass SHH-A, and molecular testing revealed the presence of the non-canonical somatic IDH1(p.R132C) mutation and an additional GNAS mutation, also rarely described in MB. To the best of our knowledge, this is the first reported case of MB simultaneously harboring both mutations. Of note, tumor exhibited a heterogeneous phenotype with a tumor component displaying glial differentiation, with robust GFAP expression, and a component with conventional MB features and selective presence of GNAS mutation, suggesting co-existence of two different major tumor subclones. These findings drew attention to the need for a deeper genetic characterization of MB, in order to get insights into their biology and improve stratification and clinical management of the patients. Moreover, our results underlined the importance of performing MRS for the identification of IDH mutations in non-glial tumors. The use of throughput molecular profiling analysis and advanced medical imaging will certainly increase the frequency with which tumor entities with rare molecular alterations will be identified. Whether these findings have any specific therapeutic implications or prognostic relevance requires further investigations.
Collapse
Affiliation(s)
- Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Francesca Branzoli
- Paris Brain Institute - Institut du Cerveau (ICM), Centre de NeuroImagerie de Recherche (CENIR), Paris, France
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili 1, 25125, Brescia, BS, Italy
| | - Magdalena Gryzik
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili 1, 25125, Brescia, BS, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili 1, 25125, Brescia, BS, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Francesco Doglietto
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University School of Medicine, Rome, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili 1, 25125, Brescia, BS, Italy.
| |
Collapse
|
4
|
Chan GKL, Maisel S, Hwang YC, Pascual BC, Wolber RRB, Vu P, Patra KC, Bouhaddou M, Kenerson HL, Lim HC, Long D, Yeung RS, Sethupathy P, Swaney DL, Krogan NJ, Turnham RE, Riehle KJ, Scott JD, Bardeesy N, Gordan JD. Oncogenic PKA signaling increases c-MYC protein expression through multiple targetable mechanisms. eLife 2023; 12:e69521. [PMID: 36692000 PMCID: PMC9925115 DOI: 10.7554/elife.69521] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Genetic alterations that activate protein kinase A (PKA) are found in many tumor types. Yet, their downstream oncogenic signaling mechanisms are poorly understood. We used global phosphoproteomics and kinase activity profiling to map conserved signaling outputs driven by a range of genetic changes that activate PKA in human cancer. Two signaling networks were identified downstream of PKA: RAS/MAPK components and an Aurora Kinase A (AURKA)/glycogen synthase kinase (GSK3) sub-network with activity toward MYC oncoproteins. Findings were validated in two PKA-dependent cancer models: a novel, patient-derived fibrolamellar carcinoma (FLC) line that expresses a DNAJ-PKAc fusion and a PKA-addicted melanoma model with a mutant type I PKA regulatory subunit. We identify PKA signals that can influence both de novo translation and stability of the proto-oncogene c-MYC. However, the primary mechanism of PKA effects on MYC in our cell models was translation and could be blocked with the eIF4A inhibitor zotatifin. This compound dramatically reduced c-MYC expression and inhibited FLC cell line growth in vitro. Thus, targeting PKA effects on translation is a potential treatment strategy for FLC and other PKA-driven cancers.
Collapse
Affiliation(s)
- Gary KL Chan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Samantha Maisel
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Yeonjoo C Hwang
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Bryan C Pascual
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Rebecca RB Wolber
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Phuong Vu
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Krushna C Patra
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- J. David Gladstone InstituteSan FranciscoUnited States
| | - Heidi L Kenerson
- Department of Surgery and Northwest Liver Research Program, University of WashingtonSeattleUnited States
| | - Huat C Lim
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Donald Long
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityNew YorkUnited States
| | - Raymond S Yeung
- Department of Surgery and Northwest Liver Research Program, University of WashingtonSeattleUnited States
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityNew YorkUnited States
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- J. David Gladstone InstituteSan FranciscoUnited States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Rigney E Turnham
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Kimberly J Riehle
- Department of Surgery and Northwest Liver Research Program, University of WashingtonSeattleUnited States
| | - John D Scott
- Department of Pharmacology, University of Washington Medical CenterSeattleUnited States
| | - Nabeel Bardeesy
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - John D Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
5
|
Tong Y, Yue D, Xin Y, Zhang D. GNAS mutation is an unusual cause of primary adrenal insufficiency: a case report. BMC Pediatr 2022; 22:472. [PMID: 35927642 PMCID: PMC9351131 DOI: 10.1186/s12887-022-03517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Primary adrenal insufficiency in children has non-specific and extensive clinical features, so the diagnosis of its etiology is complex and challenging. Although congenital adrenal hyperplasia is the most common cause, more and more other genetic causes have been identified. GNAS mutation is easily overlooked as a rare cause of primary adrenal insufficiency. Here we firstly report a neonatal case of primary adrenal insufficiency caused by GNAS mutation. Case presentation A boy was diagnosed with congenital hypothyroidism 10 days post-partum and treated immediately. He also had persistent hyperkalaemia and hyponatraemia with elevated adrenocorticotropic hormone. At 70 days after birth, he was transferred to our hospital on suspicion of congenital adrenal hyperplasia. Physical examination found no other abnormalities except for growth retardation. Laboratory examination revealed increased aldosterone and normal cortisol, 17-hydroxyprogesterone, and androstenedione levels. Abnormally elevated parathyroid hormone was accompanied by normal blood calcium. Genetic assessment found a de novo, heterozygous c.432 + 1G > A variant in GNAS. Conclusions We report this case to highlight that GNAS mutation is an unusual cause of primary adrenal insufficiency. The combination of primary hypothyroidism and /or pseudohypoparathyroidism will provide diagnostic clues to this condition.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P. R. China
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P. R. China
| | - Ying Xin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P. R. China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P. R. China.
| |
Collapse
|
6
|
Goode E, Montoya L, Graham E, Pruniski B, Simmons C, Ngwube A, Hoffman LM, Tiwari N, Aldape K, Price HN, Paulson V, Mangum R. Diagnostic and Prognostic Implications of GNAS Inactivation in Sonic Hedgehog-Activated Medulloblastoma: Case Report with Comprehensive Molecular Profiling and Review of Literature. JCO Precis Oncol 2022; 6:e2100403. [PMID: 35357904 PMCID: PMC9848563 DOI: 10.1200/po.21.00403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
SHH medulloblastoma from GNAS mutation (molecular profiling confirmation) with osteoma cutis & syndromic features.![]()
Collapse
Affiliation(s)
- Erin Goode
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Liliana Montoya
- Division of Dermatology, Phoenix Children's Hospital, Phoenix, AZ
| | - Eric Graham
- Department of Radiology, Phoenix Children's Hospital, Phoenix, AZ
| | - Brianna Pruniski
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ,Department of Genetics, Phoenix Children's Hospital, Phoenix, AZ
| | - Curtis Simmons
- Department of Radiology, Phoenix Children's Hospital, Phoenix, AZ
| | - Alexander Ngwube
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Lindsey M. Hoffman
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Nishant Tiwari
- Department of Pathology, Phoenix Children's Hospital, Phoenix, AZ
| | | | - Harper N. Price
- Division of Dermatology, Phoenix Children's Hospital, Phoenix, AZ
| | - Vera Paulson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Ross Mangum
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ,Ross Mangum, MD, Phoenix Children's Hospital, 1919 East Thomas Rd, Phoenix, AZ 85016; e-mail:
| |
Collapse
|
7
|
Chang G, Li Q, Li N, Li G, Li J, Ding Y, Huang X, Shen Y, Wang J, Wang X. Evaluating the variety of GNAS inactivation disorders and their clinical manifestations in 11 Chinese children. BMC Endocr Disord 2022; 22:70. [PMID: 35296306 PMCID: PMC8928694 DOI: 10.1186/s12902-022-00941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/30/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The GNAS gene on chromosome 20q13.3, encodes the alpha-subunit of the stimulatory G protein, which is expressed in most tissues and regulated through reciprocal genomic imprinting. Disorders of GNAS inactivation produce several different clinical phenotypes including pseudohypoparathyroidism (PHP), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). The clinical and biochemical characteristics overlap of PHP subtypes and other related disorders presents challenges for differential diagnosis. METHODS We enrolled a total of 11 Chinese children with PHP in our study and analyzed their clinical characteristics, laboratory results, and genetic mutations. RESULTS Among these 11 patients, nine of them (9/11) presented with resistance to parathyroid hormone (PTH); and nine (9/11) presented with an Albright's hereditary osteodystrophy (AHO) phenotype. GNAS abnormalities were detected in all 11 patients, including nine cases with GNAS gene variations and two cases with GNAS methylation defects. These GNAS variations included an intronic mutation (c.212 + 3_212 + 6delAAGT), three missense mutations (c.314C > T, c.308 T > C, c.1123G > T), two deletion mutations (c.565_568delGACT*2, c.74delA), and two splicing mutations (c.721 + 1G > A, c.432 + 1G > A). Three of these mutations, namely, c.314C > T, c.1123G > T, and c.721 + 1G > A, were found to be novel. This data was then used to assign a GNAS subtype to each of these patients with six cases diagnosed as PHP1a, two cases as PHP1b, one as PPHP, and two as POH. CONCLUSIONS Evaluating patients with PTH resistance and AHO phenotype improved the genetic diagnosis of GNAS mutations significantly. In addition, our results suggest that when GNAS gene sequencing is negative, GNAS methylation study should be performed. Early genetic detection is required for the differential diagnosis of GNAS disorders and is critical to the clinician's ability to distinguish between heterotopic ossification in the POH and AHO phenotype.
Collapse
MESH Headings
- Adolescent
- Bone Diseases, Metabolic/diagnosis
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/pathology
- Child
- Child, Preschool
- China
- Chromogranins/genetics
- Female
- GTP-Binding Protein alpha Subunits, Gs/genetics
- Humans
- Infant
- Male
- Ossification, Heterotopic/diagnosis
- Ossification, Heterotopic/genetics
- Ossification, Heterotopic/pathology
- Pseudohypoparathyroidism/diagnosis
- Pseudohypoparathyroidism/genetics
- Pseudohypoparathyroidism/pathology
- Pseudopseudohypoparathyroidism/diagnosis
- Pseudopseudohypoparathyroidism/genetics
- Pseudopseudohypoparathyroidism/pathology
- Skin Diseases, Genetic/diagnosis
- Skin Diseases, Genetic/genetics
- Skin Diseases, Genetic/pathology
Collapse
Affiliation(s)
- Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Qun Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostics Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostics Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Xiaodong Huang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Yongnian Shen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostics Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|