1
|
Huang Y, Zelmann R, Hadar P, Dezha-Peralta J, Richardson RM, Williams ZM, Cash SS, Keller CJ, Paulk AC. Theta-burst direct electrical stimulation remodels human brain networks. Nat Commun 2024; 15:6982. [PMID: 39143083 PMCID: PMC11324911 DOI: 10.1038/s41467-024-51443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Theta-burst stimulation (TBS), a patterned brain stimulation technique that mimics rhythmic bursts of 3-8 Hz endogenous brain rhythms, has emerged as a promising therapeutic approach for treating a wide range of brain disorders, though the neural mechanism of TBS action remains poorly understood. We investigated the neural effects of TBS using intracranial EEG (iEEG) in 10 pre-surgical epilepsy participants undergoing intracranial monitoring. Here we show that individual bursts of direct electrical TBS at 29 frontal and temporal sites evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic local field potential voltage changes over the course of stimulation presentations, including either increasing or decreasing responses, suggestive of short-term plasticity. Stronger stimulation augmented the mean TBS response amplitude and spread with more recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific with stronger TBS responses observed in regions with strong baseline stimulation effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, we could use these measures to predict stable and varying (e.g. short-term plasticity) TBS response locations. Future work may integrate pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaquelin Dezha-Peralta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Savarimuthu A, Ponniah RJ. Receive, Retain and Retrieve: Psychological and Neurobiological Perspectives on Memory Retrieval. Integr Psychol Behav Sci 2024; 58:303-318. [PMID: 36738400 DOI: 10.1007/s12124-023-09752-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Memory and learning are interdependent processes that involve encoding, storage, and retrieval. Especially memory retrieval is a fundamental cognitive ability to recall memory traces and update stored memory with new information. For effective memory retrieval and learning, the memory must be stabilized from short-term memory to long-term memory. Hence, it is necessary to understand the process of memory retention and retrieval that enhances the process of learning. Though previous cognitive neuroscience research has focused on memory acquisition and storage, the neurobiological mechanisms underlying memory retrieval and its role in learning are less understood. Therefore, this article offers the viewpoint that memory retrieval is essential for selecting, reactivating, stabilizing, and storing information in long-term memory. In arguing how memories are retrieved, consolidated, transmitted, and strengthened for the long term, the article will examine the psychological and neurobiological aspects of memory and learning with synaptic plasticity, long-term potentiation, genetic transcription, and theta oscillation in the brain.
Collapse
Affiliation(s)
- Anisha Savarimuthu
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India
| | - R Joseph Ponniah
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India.
| |
Collapse
|
3
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. Repeated finasteride administration promotes synaptic plasticity and produces antidepressant- and anxiolytic-like effects in female rats. J Neurosci Res 2024; 102:e25306. [PMID: 38468573 DOI: 10.1002/jnr.25306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 01/27/2024] [Indexed: 03/13/2024]
Abstract
Finasteride is used in female-pattern hair loss, hirsutism, and polycystic ovarian syndrome. It inhibits 5α-reductase, which is an important enzyme in the biosynthesis of neurosteroids. The effects of finasteride treatment on mental health in female patients as well as the effects of repeated/chronic finasteride administration in female rodents are still unknown. Accordingly, in our study, we administered finasteride (10, 30, or 100 mg/Kg, s.c.) for 6 days in female rats and evaluated behavior, plasma steroid levels, and synaptic plasticity. Depression-like behavior was evaluated using forced swim test (FST) and splash test. Anxiety-like behavior was evaluated using novelty-suppressed feeding task (NSFT), elevated plus maze (EPM), open field test (OFT), and light-dark test (LDT). Plasma steroid levels were assessed using ELISA and synaptic plasticity by field potential recordings. We observed that finasteride decreased total immobility duration in FST, indicating antidepressant-like effect and decreased the latency to first bite in NSFT, showing anxiolytic-like effect. We also found a significant increase in plasma estradiol and a significant decrease in plasma corticosterone level. Furthermore, field potential recordings showed that finasteride increased hippocampal long-term potentiation. These results indicate that repeated finasteride administration in female rats may have antidepressant- and anxiolytic-like effect, which might be mediated by enhanced estradiol levels or decreased corticosterone levels. Further studies are required to validate the molecular mechanisms underlying the effects of finasteride in female rats. Understanding the mechanisms will help us in developing novel neurosteroid-based therapeutics in the treatment of neuropsychiatric disorders in women.
Collapse
Affiliation(s)
- Jose Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
4
|
Sun L, Yang X, Khan A, Yu X, Zhang H, Han S, Habulieti X, Sun Y, Wang R, Zhang X. Panoramic variation analysis of a family with neurodevelopmental disorders caused by biallelic loss-of-function variants in TMEM141, DDHD2, and LHFPL5. Front Med 2024; 18:81-97. [PMID: 37837560 DOI: 10.1007/s11684-023-1006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/27/2023] [Indexed: 10/16/2023]
Abstract
Highly clinical and genetic heterogeneity of neurodevelopmental disorders presents a major challenge in clinical genetics and medicine. Panoramic variation analysis is imperative to analyze the disease phenotypes resulting from multilocus genomic variation. Here, a Pakistani family with parental consanguinity was presented, characterized with severe intellectual disability (ID), spastic paraplegia, and deafness. Homozygosity mapping, integrated single nucleotide polymorphism (SNP) array, whole-exome sequencing, and whole-genome sequencing were performed, and homozygous variants in TMEM141 (c.270G>A, p.Trp90*), DDHD2 (c.411+767_c.1249-327del), and LHFPL5 (c.250delC, p.Leu84*) were identified. A Tmem141p.Trp90*/p.Trp90* mouse model was generated. Behavioral studies showed impairments in learning ability and motor coordination. Brain slice electrophysiology and Golgi staining demonstrated deficient synaptic plasticity in hippocampal neurons and abnormal dendritic branching in cerebellar Purkinje cells. Transmission electron microscopy showed abnormal mitochondrial morphology. Furthermore, studies on a human in vitro neuronal model (SH-SY5Y cells) with stable shRNA-mediated knockdown of TMEM141 showed deleterious effect on bioenergetic function, possibly explaining the pathogenesis of replicated phenotypes in the cross-species mouse model. Conclusively, panoramic variation analysis revealed that multilocus genomic variations of TMEM141, DDHD2, and LHFPL5 together caused variable phenotypes in patient. Notably, the biallelic loss-of-function variants of TMEM141 were responsible for syndromic ID.
Collapse
Affiliation(s)
- Liwei Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, National Key Clinical Speciality Construction Project (Obstetrics and Gynecology), Chongqing Health Center for Women and Children, Chongqing, 400013, China
- Chongqing Clinical Research Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
| | - Xueting Yang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Amjad Khan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Faculty of Biological Sciences, Department of Zoology, University of Lakki Marwat, Khyber Pakhtunkhwa, 28420, Pakistan.
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany.
- Alexander von Humboldt fellowship Foundation, Berlin, 10117, Germany.
| | - Xue Yu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Han Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Laboratory Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Shirui Han
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaerbati Habulieti
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yang Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
5
|
Sanchez-Brualla I, Ghosh A, Gibatova VA, Quinlan S, Witherspoon E, Vicini S, Forcelli PA. Phenobarbital does not worsen outcomes of neonatal hypoxia on hippocampal LTP on rats. Front Neurol 2023; 14:1295934. [PMID: 38073649 PMCID: PMC10703306 DOI: 10.3389/fneur.2023.1295934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 10/28/2024] Open
Abstract
Introduction Neonatal hypoxia is a common cause of early-life seizures. Both hypoxia-induced seizures (HS), and the drugs used to treat them (e.g., phenobarbital, PB), have been reported to have long-lasting impacts on brain development. For example, in neonatal rodents, HS reduces hippocampal long-term potentiation (LTP), while PB exposure disrupts GABAergic synaptic maturation in the hippocampus. Prior studies have examined the impact of HS and drug treatment separately, but in the clinic, PB is unlikely to be given to neonates without seizures, and neonates with seizures are very likely to receive PB. To address this gap, we assessed the combined and separate impacts of neonatal HS and PB treatment on the development of hippocampal LTP. Methods Male and female postnatal day (P)7 rat pups were subjected to graded global hypoxia (or normoxia as a control) and treated with either PB (or vehicle as a control). On P13-14 (P13+) or P29-37 (P29+), we recorded LTP of the Schaffer collaterals into CA1 pyramidal layer in acute hippocampal slices. We compared responses to theta burst stimulation (TBS) and tetanization induction protocols. Results Under the TBS induction protocol, female rats showed an LTP impairment caused by HS, which appeared only at P29+. This impairment was delayed compared to male rats. While LTP in HS males was impaired at P13+, it normalized by P29+. Under the tetanization protocol, hypoxia produced larger LTP in males compared to female rats. PB injection, under TBS, did not exacerbate the effects of hypoxia. However, with the tetanization protocol, PB - on the background of HS - compensated for these effects, returning LTP to control levels. Discussion These results point to different susceptibility to hypoxia as a function of sex and age, and a non-detrimental effect of PB when administered after hypoxic seizures.
Collapse
Affiliation(s)
- Irene Sanchez-Brualla
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Anjik Ghosh
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Viktoriya A. Gibatova
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Sean Quinlan
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Eric Witherspoon
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - Patrick A. Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
6
|
Asp AJ, Chintaluru Y, Hillan S, Lujan JL. Targeted neuroplasticity in spatiotemporally patterned invasive neuromodulation therapies for improving clinical outcomes. Front Neuroinform 2023; 17:1150157. [PMID: 37035718 PMCID: PMC10080034 DOI: 10.3389/fninf.2023.1150157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Anders J. Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yaswanth Chintaluru
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Neurology and Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| | - Sydney Hillan
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Consoli DC, Spitznagel BD, Owen BM, Kang H, Williams Roberson S, Pandharipande P, Wesley Ely E, Nobis WP, Bastarache JA, Harrison FE. Altered EEG, disrupted hippocampal long-term potentiation and neurobehavioral deficits implicate a delirium-like state in a mouse model of sepsis. Brain Behav Immun 2023; 107:165-178. [PMID: 36243287 PMCID: PMC10010333 DOI: 10.1016/j.bbi.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis and systemic inflammation are often accompanied by severe encephalopathy, sleep disruption and delirium that strongly correlate with poor clinical outcomes including long-term cognitive deficits. The cardinal manifestations of delirium are fluctuating altered mental status and inattention, identified in critically ill patients by interactive bedside assessment. The lack of analogous assessments in mouse models or clear biomarkers is a challenge to preclinical studies of delirium. In this study, we utilized concurrent measures of telemetric EEG recordings and neurobehavioral tasks in mice to characterize inattention and persistent cognitive deficits following polymicrobial sepsis. During the 24-hour critical illness period for the mice, slow-wave EEG dominance, sleep disruption, and hypersensitivity to auditory stimuli in neurobehavioral tasks resembled clinical observations in delirious patients in which alterations in similar outcome measurements, although measured differently in mice and humans, are reported. Mice were tested for nest building ability 7 days after sepsis induction, when sickness behaviors and spontaneous activity had returned to baseline. Animals that showed persistent deficits determined by poor nest building at 7 days also exhibited molecular changes in hippocampal long-term potentiation compared to mice that returned to baseline cognitive performance. Together, these behavioral and electrophysiological biomarkers offer a robust mouse model with which to further probe molecular pathways underlying brain and behavioral changes during and after acute illness such as sepsis.
Collapse
Affiliation(s)
- David C Consoli
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | | | - Benjamin M Owen
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Hakmook Kang
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | | | | | - E Wesley Ely
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - William P Nobis
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Julie A Bastarache
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Fiona E Harrison
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Heidarli E, Vatanpour H, Nasri Nasrabadi N, Soltani M, Tahmasebi S, Faizi M. The Effects of the Fraction Isolated from Iranian Buthotus shach Scorpion Venom on Synaptic Plasticity, Learning, Memory, and Seizure Susceptibility. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e138273. [PMID: 38444716 PMCID: PMC10912865 DOI: 10.5812/ijpr-138273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 09/03/2023] [Indexed: 03/07/2024]
Abstract
Epilepsy, as a neurological disease, can be defined as frequent seizure attacks. Further, it affects many other aspects of patients' mental activities, such as learning and memory. Scorpion venoms have gained notice as compounds with potential antiepileptic properties. Among them, Buthotus schach (BS) is one of the Iranian scorpions studied by Aboutorabi et al., who fractionated, characterized, and tested this compound using electrophysiological techniques in brain slices (patch-clamp recording). In the present study, the fraction obtained from gel electrophoresis was investigated through behavioral and electrophysiological assays. At first, ventricular cannulation was performed in rats, and then the active fraction (i.e., F3), carbamazepine, and the vehicle were microinjected into the brain before seizure induction by the subcutaneous (SC) injection of pentylenetetrazol (PTZ). Seizure behaviors were scaled according to Racine stages. Memory and learning were evaluated using the Y-maze and passive avoidance tests. Other groups entered evoked field potential recording after microinjection and seizure induction. Population spike (PS) and field excitatory postsynaptic potential (fEPSP) were measured. The F3 fraction could prevent the fifth stage and postpone the third stage of seizure compared to the control (carbamazepine) group. There was no significant improvement in memory and learning in the group treated with the F3 fraction. Also, PS amplitude and fEPSP slope increased significantly, and long-term potentiation was successfully formed after the high-frequency stimulation of the performant pathway. Our results support the antiepileptic effects of the F3 fraction of BS venom, evidenced by behavioral and electrophysiological studies. However, the effects of this fraction on memory and learning were not in the same direction, suggesting the involvement of two different pathways.
Collapse
Affiliation(s)
- Elmira Heidarli
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vatanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Nasri Nasrabadi
- Pharmaceutical Sciences Research Centre, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maha Soltani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Tahmasebi
- Department of Cognitive Science, Science and Research Branch, Islamic Azad University Tehran, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Besing GLK, St. John EK, Potesta CV, Gallagher MJ, Zhou C. Artificial sleep-like up/down-states induce synaptic plasticity in cortical neurons from mouse brain slices. Front Cell Neurosci 2022; 16:948327. [PMID: 36313618 PMCID: PMC9615418 DOI: 10.3389/fncel.2022.948327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 02/02/2023] Open
Abstract
During non-rapid eye movement (NREM) sleep, cortical neuron activity alternates between a depolarized (firing, up-state) and a hyperpolarized state (down-state) coinciding with delta electroencephalogram (EEG) slow-wave oscillation (SWO, 0. 5-4 Hz) in vivo. Recently, we have found that artificial sleep-like up/down-states can potentiate synaptic strength in layer V cortical neurons ex vivo. Using mouse coronal brain slices, whole cell voltage-clamp recordings were made from layer V cortical pyramidal neurons to record spontaneous excitatory synaptic currents (sEPSCs) and inhibitory synaptic currents (sIPSCs). Artificial sleep-like up/down-states (as SWOs, 0.5 Hz, 10 min, current clamp mode) were induced by injecting sinusoidal currents into layer V cortical neurons. Baseline pre-SWO recordings were recorded for 5 min and post-SWO recordings for at least 25-30 min. Compared to pre-SWO sEPSCs or sIPSCs, post-SWO sEPSCs or sIPSCs in layer V cortical neurons exhibited significantly larger amplitudes and a higher frequency for 30 min. This finding suggests that both sEPSCs and sIPSCs could be potentiated in layer V cortical neurons by the low-level activity of SWOs, and sEPSCs and sIPSCs maintained a balance in layer V cortical neurons during pre- and post-SWO periods. Overall, this study presents an ex vivo method to show SWO's ability to induce synaptic plasticity in layer V cortical neurons, which may underlie sleep-related synaptic potentiation for sleep-related memory consolidation in vivo.
Collapse
Affiliation(s)
- Gai-Linn Kay Besing
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily Kate St. John
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cobie Victoria Potesta
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Martin J. Gallagher
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chengwen Zhou
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Salaka RJ, Nair KP, Annamalai K, Srikumar BN, Kutty BM, Shankaranarayana Rao BS. Enriched environment ameliorates chronic temporal lobe epilepsy-induced behavioral hyperexcitability and restores synaptic plasticity in CA3-CA1 synapses in male Wistar rats. J Neurosci Res 2021; 99:1646-1665. [PMID: 33713475 DOI: 10.1002/jnr.24823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 01/11/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacoresistance and comorbidities pose significant challenges to its treatment necessitating the development of non-pharmacological approaches. In an earlier study, exposure to enriched environment (EE) reduced seizure frequency and duration and ameliorated chronic epilepsy-induced depression in rats. However, the cellular basis of beneficial effects of EE remains unknown. Accordingly, in the current study, we evaluated the effects of EE in chronic epilepsy-induced changes in behavioral hyperexcitability, synaptic transmission, synaptophysin (SYN), and calbindin (CB) expression, hippocampal subfield volumes and cell density in male Wistar rats. Epilepsy was induced by lithium-pilocarpine-induced status epilepticus. Chronic epilepsy resulted in behavioral hyperexcitability, decreased basal synaptic transmission, increased paired-pulse facilitation ratio, decreased hippocampal subfields volumes. Moreover, epileptic rats showed decreased synaptophysin and CB expression in the hippocampus. Six weeks post-SE, epileptic rats were exposed to EE for 2 weeks, 6 hr/day. EE significantly reduced the behavioral hyperexcitability and restored basal synaptic transmission correlating with increased expression of SYN and CB. Our results reaffirm the beneficial effects of EE on behavior in chronic epilepsy and establishes some of the putative cellular mechanisms. Since drug resistance and comorbidities are a major concern in TLE, we propose EE as a potent non-pharmacological treatment modality to mitigate these changes in chronic epilepsy.
Collapse
Affiliation(s)
- Raghava Jagadeesh Salaka
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kala P Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kiruthiga Annamalai
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | |
Collapse
|
11
|
Zhou L, Flores J, Noël A, Beauchet O, Sjöström PJ, LeBlanc AC. Methylene blue inhibits Caspase-6 activity, and reverses Caspase-6-induced cognitive impairment and neuroinflammation in aged mice. Acta Neuropathol Commun 2019; 7:210. [PMID: 31843022 PMCID: PMC6915996 DOI: 10.1186/s40478-019-0856-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Activated Caspase-6 (Casp6) is associated with age-dependent cognitive impairment and Alzheimer disease (AD). Mice expressing human Caspase-6 in hippocampal CA1 neurons develop age-dependent cognitive deficits, neurodegeneration and neuroinflammation. This study assessed if methylene blue (MB), a phenothiazine that inhibits caspases, alters Caspase-6-induced neurodegeneration and cognitive impairment in mice. Aged cognitively impaired Casp6-overexpressing mice were treated with methylene blue in drinking water for 1 month. Methylene blue treatment did not alter Caspase-6 levels, assessed by RT-PCR, western blot and immunohistochemistry, but inhibited fluorescently-labelled Caspase-6 activity in acute brain slice intact neurons. Methylene blue treatment rescued Caspase-6-induced episodic and spatial memory deficits measured by novel object recognition and Barnes maze, respectively. Methylene blue improved synaptic function of hippocampal CA1 neurons since theta-burst long-term potentiation (LTP), measured by field excitatory postsynaptic potentials (fEPSPs) in acute brain slices, was successfully induced in the Schaffer collateral-CA1 pathway in methylene blue-treated, but not in vehicle-treated, Caspase-6 mice. Increased neuroinflammation, measured by ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia numbers and subtypes, and glial fibrillary acidic protein (GFAP)-positive astrocytes, were decreased by methylene blue treatment. Therefore, methylene blue reverses Caspase-6-induced cognitive deficits by inhibiting Caspase-6, and Caspase-6-mediated neurodegeneration and neuroinflammation. Our results indicate that Caspase-6-mediated damage is reversible months after the onset of cognitive deficits and suggest that methylene blue could benefit Alzheimer disease patients by reversing Caspase-6-mediated cognitive decline.
Collapse
Affiliation(s)
- Libin Zhou
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street Strathcona Anatomy Building, Montreal, QC H3A 0C7 Canada
| | - Joseph Flores
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
| | - Anastasia Noël
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
| | - Olivier Beauchet
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, the BRaIN Program, Department of Neurology and Neurosurgery, McGill University, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4 Canada
| | - Andrea C. LeBlanc
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street Strathcona Anatomy Building, Montreal, QC H3A 0C7 Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC H3A 0G4 Canada
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montréal, QC H3T 1E2 Canada
| |
Collapse
|
12
|
Shiri Z, Simorgh S, Naderi S, Baharvand H. Optogenetics in the Era of Cerebral Organoids. Trends Biotechnol 2019; 37:1282-1294. [PMID: 31227305 DOI: 10.1016/j.tibtech.2019.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
The human brain has been deemed the most complex organ and has captivated neuroscientists for decades. Most studies of this organ have relied on reductionist model systems. Although all model systems are essentially wrong, cerebral organoids so far represent the closest recapitulation of human brain development and disease both in terms of cell diversity and organization. The optogenetic technique can be used in this context to study the functional neuroanatomy of the brain, to examine the neural circuits, and to determine the etiology of neurological disorders. In this opinion article, we suggest ways in which optogenetics can be combined with cerebral organoids to allow unprecedented precision and accuracy in studying normal and aberrant neurodevelopmental processes and, as well, neurodegenerative diseases.
Collapse
Affiliation(s)
- Zahra Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Susan Simorgh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Somayeh Naderi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
13
|
Lalanne T, Abrahamsson T, Sjöström PJ. Using Multiple Whole-Cell Recordings to Study Spike-Timing-Dependent Plasticity in Acute Neocortical Slices. Cold Spring Harb Protoc 2016; 2016:2016/6/pdb.prot091306. [PMID: 27250948 DOI: 10.1101/pdb.prot091306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This protocol provides a method for quadruple whole-cell recording to study synaptic plasticity of neocortical connections, with a special focus on spike-timing-dependent plasticity (STDP). It also describes how to morphologically identify recorded cells from two-photon laser-scanning microscopy (2PLSM) stacks.
Collapse
Affiliation(s)
- Txomin Lalanne
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal General Hospital, Montréal, Québec H3G 1A4, Canada Integrated Program in Neuroscience, McGill University, 3801 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Therese Abrahamsson
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal General Hospital, Montréal, Québec H3G 1A4, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal General Hospital, Montréal, Québec H3G 1A4, Canada
| |
Collapse
|
14
|
Abrahamsson T, Lalanne T, Watt AJ, Sjöström PJ. In Vitro Investigation of Synaptic Plasticity. Cold Spring Harb Protoc 2016; 2016:2016/6/pdb.top087262. [PMID: 27250951 PMCID: PMC5280069 DOI: 10.1101/pdb.top087262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A classical in vitro model for investigation of information storage in the brain is based on the acute hippocampal slice. Here, repeated high-frequency stimulation of excitatory Schaeffer collaterals making synapses onto pyramidal cells in the hippocampal CA1 region leads to strengthening of evoked field-recording responses-long-term potentiation (LTP)-in keeping with Hebb's postulate. This model remains tremendously influential for its reliability, specificity, and relative ease of use. More recent plasticity studies have explored various other brain regions including the neocortex, which often requires more laborious whole-cell recordings of synaptically connected pairs of neurons, to ensure that the identities of recorded cells are known. In addition, with this experimental approach, the spiking activity can be controlled with millisecond precision, which is necessary for the study of spike-timing-dependent plasticity (STDP). Here, we provide protocols for in vitro study of hippocampal CA1 LTP using field recordings, and of STDP in synaptically connected pairs of layer-5 pyramidal cells in acute slices of rodent neocortex.
Collapse
Affiliation(s)
- Therese Abrahamsson
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
| | - Txomin Lalanne
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alanna J. Watt
- Department of Biology, Bellini Life Sciences Building, McGill University, Montréal, Québec H3G 0B1, Canada
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
| |
Collapse
|