1
|
Schaal C, Pillai S, Chellappan SP. The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res 2015; 121:147-182. [PMID: 24889531 DOI: 10.1016/b978-0-12-800249-0.00004-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The retinoblastoma tumor suppressor protein Rb plays a major role in regulating G1/S transition and is a critical regulator of cell proliferation. Rb protein exerts its growth regulatory properties mainly by physically interacting with the transcriptionally active members of the E2F transcription factor family, especially E2Fs 1, 2, and 3. Given its critical role in regulating cell proliferation, it is not surprising that Rb is inactivated in almost all tumors, either through the mutation of Rb gene itself or through the mutations of its upstream regulators including K-Ras and INK4. Recent studies have revealed a significant role for Rb and its downstream effectors, especially E2Fs, in regulating various aspects of tumor progression, angiogenesis, and metastasis. Thus, components of the Rb-E2F pathway have been shown to regulate the expression of genes involved in angiogenesis, including VEGF and VEGFR, genes involved in epithelial-mesenchymal transition including E-cadherin and ZEB proteins, and genes involved in invasion and migration like matrix metalloproteinases. Rb has also been shown to play a major role in the functioning of normal and cancer stem cells; further, Rb and E2F appear to play a regulatory role in the energy metabolism of cancer cells. These findings raise the possibility that mutational events that initiate tumorigenesis by inducing uncontrolled cell proliferation might also contribute to the progression and metastasis of cancers through the mediation of the Rb-E2F transcriptional regulatory pathway. This review highlights these recent studies on tumor promoting functions of the Rb-E2F pathway.
Collapse
Affiliation(s)
- Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
| |
Collapse
|
2
|
Introduction. Nanomedicine (Lond) 2014. [DOI: 10.1201/b17246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
3
|
CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis. Mol Cell Biol 2013; 33:4985-95. [PMID: 24126059 DOI: 10.1128/mcb.00959-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The unfolded protein response (UPR) is activated in response to hypoxia-induced stress such as in the tumor microenvironment. This study examined the role of CREB3L1 (cyclic AMP [cAMP]-responsive element-binding protein 3-like protein 1), a member of the UPR, in breast cancer development and metastasis. Initial experiments identified the loss of CREB3L1 expression in metastatic breast cancer cell lines compared to low-metastasis or nonmetastatic cell lines. When metastatic cells were transfected with CREB3L1, they demonstrated reduced invasion and migration in vitro, as well as a significantly decreased ability to survive under nonadherent or hypoxic conditions. Interestingly, in an in vivo rat mammary tumor model, not only did CREB3L1-expressing cells fail to form metastases compared to CREB3L1 null cells but regression of the primary tumors was seen in 70% of the animals as a result of impaired angiogenesis. Microarray and chromatin immunoprecipitation with microarray technology (ChIP on Chip) analyses identified changes in the expression of many genes involved in cancer development and metastasis, including a decrease in those involved in angiogenesis. These data suggest that CREB3L1 plays an important role in suppressing tumorigenesis and that loss of expression is required for the development of a metastatic phenotype.
Collapse
|
4
|
Treviño JG, Verma M, Singh S, Pillai S, Zhang D, Pernazza D, Sebti SM, Lawrence NJ, Centeno BA, Chellappan SP. Selective disruption of rb-raf-1 kinase interaction inhibits pancreatic adenocarcinoma growth irrespective of gemcitabine sensitivity. Mol Cancer Ther 2013; 12:2722-34. [PMID: 24107447 DOI: 10.1158/1535-7163.mct-12-0719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inactivation of the retinoblastoma (Rb) tumor suppressor protein is widespread in human cancers. Inactivation of Rb is thought to be initiated by association with Raf-1 (C-Raf) kinase, and here we determined how RRD-251, a disruptor of the Rb-Raf-1 interaction, affects pancreatic tumor progression. Assessment of phospho-Rb levels in resected human pancreatic tumor specimens by immunohistochemistry (n = 95) showed that increased Rb phosphorylation correlated with increasing grade of resected human pancreatic adenocarcinomas (P = 0.0272), which correlated with reduced overall patient survival (P = 0.0186). To define the antitumor effects of RRD-251 (50 μmol/L), cell-cycle analyses, senescence, cell viability, cell migration, anchorage-independent growth, angiogenic tubule formation and invasion assays were conducted on gemcitabine-sensitive and -resistant pancreatic cancer cells. RRD-251 prevented S-phase entry, induced senescence and apoptosis, and inhibited anchorage-independent growth and invasion (P < 0.01). Drug efficacy on subcutaneous and orthotopic xenograft models was tested by intraperitoneal injections of RRD-251 (50 mg/kg) alone or in combination with gemcitabine (250 mg/kg). RRD-251 significantly reduced tumor growth in vivo accompanied by reduced Rb phosphorylation and lymph node and liver metastasis (P < 0.01). Combination of RRD-251 with gemcitabine showed cooperative effect on tumor growth (P < 0.01). In conclusion, disruption of the Rb-Raf-1 interaction significantly reduces the malignant properties of pancreatic cancer cells irrespective of their gemcitabine sensitivity. Selective targeting of Rb-Raf-1 interaction might be a promising strategy targeting pancreatic cancer.
Collapse
Affiliation(s)
- José G Treviño
- Corresponding Author: S.P. Chellappan, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pan D, Lanza GM, Wickline SA, Caruthers SD. Nanomedicine: perspective and promises with ligand-directed molecular imaging. Eur J Radiol 2009; 70:274-85. [PMID: 19268515 DOI: 10.1016/j.ejrad.2009.01.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 01/01/2023]
Abstract
Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.
Collapse
Affiliation(s)
- Dipanjan Pan
- Department of Medicine, Washington University Medical School, St Louis, MO, USA.
| | | | | | | |
Collapse
|
6
|
Davis RK, Chellappan S. Disrupting the Rb-Raf-1 interaction: a potential therapeutic target for cancer. DRUG NEWS & PERSPECTIVES 2008; 21:331-5. [PMID: 18836591 PMCID: PMC2800199 DOI: 10.1358/dnp.2008.21.6.1246832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-cycle progression in cancer is often mediated by disrupting the function of the retinoblastoma tumor suppressor protein, Rb. One way in which Rb's function is altered is through phosphorylation mediated by cyclin-dependent kinases (CDKs). Our studies have shown that the Raf-1 kinase binds and phosphorylates Rb very early in the cell cycle prior to the binding of cyclins and CDKs. It was also found that human lung cancer tumor samples had increased binding of Raf-1 to Rb, suggesting this interaction could have contributed to the malignancy of these tumors. Disrupting the Rb-Raf-1 interaction could inhibit cell proliferation in a multitude of cancer cell lines as well as prevent angiogenesis and tumor growth in vivo. Thus, the Rb-Raf-1 interaction is a promising therapeutic target for cancer. This review will highlight the importance of the Rb-Raf-1 interaction in cancer, the search for small molecules capable of disrupting the interaction as well as properties of Rb-Raf-1 disruptors, focusing specifically on RRD-251 (Rb-Raf-1 Disruptor 251). This review will also touch on why targeting protein-protein interactions may be a viable alternate and better strategy to inhibiting kinase function for cancer therapies.
Collapse
Affiliation(s)
- Rebecca K. Davis
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Srikumar Chellappan
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
7
|
Kinkade R, Dasgupta P, Carie A, Pernazza D, Carless M, Pillai S, Lawrence N, Sebti SM, Chellappan S. A small molecule disruptor of Rb/Raf-1 interaction inhibits cell proliferation, angiogenesis, and growth of human tumor xenografts in nude mice. Cancer Res 2008; 68:3810-8. [PMID: 18483265 PMCID: PMC3233839 DOI: 10.1158/0008-5472.can-07-6672] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although it is well established that cyclin-dependent kinases phosphorylate and inactivate Rb, the Raf-1 kinase physically interacts with Rb and initiates the phosphorylation cascade early in the cell cycle. We have identified an orally active small molecule, Rb/Raf-1 disruptor 251 (RRD-251), that potently and selectively disrupts the Rb/Raf-1 but not Rb/E2F, Rb/prohibitin, Rb/cyclin E, and Rb/HDAC binding. The selective inhibition of Rb/Raf-1 binding suppressed the ability of Rb to recruit Raf-1 to proliferative promoters and inhibited E2F1-dependent transcriptional activity. RRD-251 inhibited anchorage-dependent and anchorage-independent growth of human cancer cells and knockdown of Rb with short hairpin RNA or forced expression of E2F1 rescued cells from RRD-251-mediated growth arrest. P.o. treatment of mice resulted in significant tumor growth suppression only in tumors with functional Rb, and this was accompanied by inhibition of angiogenesis, inhibition of proliferation, decreased phosphorylated Rb levels, and inhibition of Rb/Raf-1 but not Rb/E2F1 binding in vivo. Thus, selective targeting of Rb/Raf-1 interaction seems to be a promising approach for developing novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Rebecca Kinkade
- Drug Discovery Program H. Lee Moffitt Cancer Center and Research Institute 12902 Magnolia Drive Tampa, FL 33612
| | | | | | - Daniele Pernazza
- Drug Discovery Program H. Lee Moffitt Cancer Center and Research Institute 12902 Magnolia Drive Tampa, FL 33612
| | | | - Smitha Pillai
- Drug Discovery Program H. Lee Moffitt Cancer Center and Research Institute 12902 Magnolia Drive Tampa, FL 33612
| | - Nicholas Lawrence
- Drug Discovery Program H. Lee Moffitt Cancer Center and Research Institute 12902 Magnolia Drive Tampa, FL 33612
| | - Said M. Sebti
- Drug Discovery Program H. Lee Moffitt Cancer Center and Research Institute 12902 Magnolia Drive Tampa, FL 33612
| | - Srikumar Chellappan
- Drug Discovery Program H. Lee Moffitt Cancer Center and Research Institute 12902 Magnolia Drive Tampa, FL 33612
| |
Collapse
|
8
|
Murphy DA, Makonnen S, Lassoued W, Feldman MD, Carter C, Lee WMF. Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006). THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1875-85. [PMID: 17071608 PMCID: PMC1780219 DOI: 10.2353/ajpath.2006.050711] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of the Raf-MEK-ERK signal transduction pathway in endothelial cells is required for angiogenesis. Raf is the kinase most efficiently inhibited by the multikinase inhibitor sorafenib, which has shown activity against certain human cancers in clinical trials. To understand the mechanisms underlying this activity, we studied how it controlled growth of K1735 murine melanomas. Therapy caused massive regional tumor cell death accompanied by severe tumor hypoxia, decreased microvessel density, increased percentage of pericyte-covered vessels, and increased caliber and decreased arborization of vessels. These signs of K1735 angiogenesis inhibition, along with its ability to inhibit Matrigel neovascularization, showed that sorafenib is an effective anti-angiogenic agent. Extracellular signal-regulated kinase (ERK) activation in tumor endothelial cells, revealed by immunostaining for phospho-ERK and CD34, was inhibited, whereas AKT activation, revealed by phospho-AKT immunostaining, was not inhibited in K1735 and two other tumor types treated with sorafenib. Treatment decreased endothelial but not tumor cell proliferation and increased both endothelial cell and tumor cell apoptosis. These data indicate that sorafenib's anti-tumor efficacy may be primarily attributable to angiogenesis inhibition resulting from its inhibition of Raf-MEK-ERK signaling in endothelial cells. Assessing endothelial cell ERK activation in tumor bio-psies may provide mechanistic insights into and allow monitoring of sorafenib's activity in patients in clinical trials.
Collapse
Affiliation(s)
- Danielle A Murphy
- Biomedical Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The diseases of cancer remain as some of the leading causes of death in the industrialised world, although there are a multitude of technologies being used in the field of medical oncology to combat these diseases and scientific research continues to make discoveries to improve patient outcomes. Some of this research has focused on the maspin gene and protein. Maspin is predicted to be a unique serpin with tumour suppressor activity. Recent studies have explored the use of maspin as a therapeutic agent against cancer. In one study, maspin was found to inhibit cancer growth and metastasis in a breast cancer mouse model through a maspin DNA-liposome therapy. A separate study showed the ability of maspin to induce apoptosis in tumour-specific endothelial cells. Taken together, these studies demonstrate the potential use of maspin as a viable anticancer therapeutic agent.
Collapse
Affiliation(s)
- Jeremy S Schaefer
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
10
|
Abstract
The growth of new blood vessels is a dynamic yet highly regulated process that depends on coordinated signaling by growth factor and cell adhesion receptors. As part of the molecular program regulating angiogenesis, endothelial cells acquire a proliferative and invasive phenotype but also show increased susceptibility to apoptotic stimuli. Integrins are the principle adhesion receptors used by endothelial cells to interact with their extracellular microenvironment, and integrin-mediated interactions play a critical role in regulating cell proliferation, migration, and survival. Alterations in the repertoire and?or activity of integrins, as well as the availability and structural property of their ligands, regulate the vascular cell during the growth or repair of blood vessels.
Collapse
Affiliation(s)
- D G Stupack
- Department of Immunology, The Scripps Research Institute, La Jolla, California 9203, USA
| | | |
Collapse
|
11
|
Lanza GM, Winter PM, Caruthers SD, Morawski AM, Schmieder AH, Crowder KC, Wickline SA. Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 2004; 11:733-43. [PMID: 15592197 DOI: 10.1016/j.nuclcard.2004.09.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Molecular imaging agents are extending the potential of noninvasive medical diagnosis from basic gross anatomic descriptions to complicated phenotypic characterizations based on the recognition of unique cell surface biochemical signatures. Although originally the purview of nuclear medicine, molecular imaging is now a prominent feature of most clinically relevant imaging modalities, in particular magnetic resonance (MR) imaging. MR nanoparticulate agents afford the opportunity not only for targeted diagnostic studies but also for image-monitored site-specific therapeutic delivery, much like the "magic bullet" envisioned by Paul Erhlich 100 years ago. Combining high-resolution MR molecular imaging with drug delivery will facilitate verification and quantification of treatment (ie, rational targeted therapy) and will offer new clinical approaches to many diseases.
Collapse
Affiliation(s)
- Gregory M Lanza
- Division of Cardiology, Washington University Medical School, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|