High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses.
Nat Commun 2016;
7:13405. [PMID:
27830701 PMCID:
PMC5109587 DOI:
10.1038/ncomms13405]
[Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/29/2016] [Indexed: 11/09/2022] Open
Abstract
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm<R<1,000 nm. Due to the single-cycle nature of the field, the high-energy electron emission is predicted to be confined to a single burst, potentially enabling a variety of applications.
High-energy electron sources are powerful tools for investigating dynamics at atomic and subatomic scales. Here, Li and Jones demonstrate the terahertz-driven emission of electrons with energies exceeding five kiloelectronvolts from nano-tips and study its dependence on the tip radius.
Collapse