Ko E, Alemany MMG, Derby JJ, Chelikowsky JR. Ab Initio simulations of nonstoichiometric CdxTe1−x liquids.
J Chem Phys 2005;
123:084508. [PMID:
16164313 DOI:
10.1063/1.2008247]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present ab initio molecular-dynamics simulations for Cd(x)Te(1-x) liquids where the composition is nonstoichiometric. The simulations are performed following Born-Oppenheimer molecular dynamics. The required forces are obtained from a solution of the Kohn-Sham equation using ab initio pseudopotentials. We consider stoichiometries of the form: Cd(x)Te(1-x), where x=0.2, 0.4, 0.6, and 0.8. For each composition of the melt, we consider a range of temperatures near the experimentally determined liquid temperatures. We examine the microstructural properties of the melt, the viscosity, and self-diffusion properties of the liquid as a function of the stoichiometry and temperature. We also perform an analysis of the distribution of the electronic density of states in these liquids. We find that structural changes in the local order, experimentally predicted to occur when the concentration of Cd is increased, are closely related to changes in the electronic properties of the melt.
Collapse