Nellis WJ. Shock compression of deuterium near 100 GPa pressures.
PHYSICAL REVIEW LETTERS 2002;
89:165502. [PMID:
12398734 DOI:
10.1103/physrevlett.89.165502]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Indexed: 05/24/2023]
Abstract
The shock-compression curve (Hugoniot) of D2 near 100 GPa pressures (1 Mbar) has been contro-versial because the two published measurements have limiting compressions of fourfold and sixfold. Our purpose is to examine published experimental results to decide which, if either, is probably correct. The published Hugoniot data of low-Z diatomic molecules have a universal behavior. The deuterium data of Knudson et al. (fourfold limiting compression) have this universal behavior, which suggests that Knudson et al. are correct and shows that deuterium behaves as other low-Z elements at high tem-peratures. In D2, H2, N2, CO, and O2, dissociation completes and average kinetic energy dominates average potential energy above approximately 60 GPa. Below approximately 30 GPa, D2, H2, N2, CO, and O2 are diatomic. D2 dissociation is accompanied by a temperature-driven nonmetal-metal transition at approximately 50 GPa.
Collapse