1
|
Krishnan R, Gan BY, Hsueh YL, Huq AMSE, Kenny J, Rahman R, Koh TS, Simmons MY, Weber B. Measurement of Enhanced Spin-Orbit Coupling Strength for Donor-Bound Electron Spins in Silicon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405916. [PMID: 39404793 DOI: 10.1002/adma.202405916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/25/2024] [Indexed: 12/06/2024]
Abstract
While traditionally considered a deleterious effect in quantum dot spin qubits, the spin-orbit interaction is recently being revisited as it allows for rapid coherent control by on-chip AC electric fields. For electrons in bulk silicon, spin-orbit coupling (SOC) is intrinsically weak, however, it can be enhanced at surfaces and interfaces, or through atomic placement. Here it is showed that the strength of the spin-orbit coupling can be locally enhanced by more than two orders of magnitude in the manybody wave functions of multi-donor quantum dots compared to a single donor, reaching strengths so far only reported for holes or two-donor system with certain symmetry. These findings may provide a pathway toward all-electrical control of donor-bound spins in silicon using electric dipole spin resonance (EDSR).
Collapse
Affiliation(s)
- Radha Krishnan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Beng Yee Gan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu-Ling Hsueh
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - A M Saffat-Ee Huq
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan Kenny
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rajib Rahman
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Teck Seng Koh
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Michelle Y Simmons
- Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bent Weber
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
2
|
Gilbert W, Tanttu T, Lim WH, Feng M, Huang JY, Cifuentes JD, Serrano S, Mai PY, Leon RCC, Escott CC, Itoh KM, Abrosimov NV, Pohl HJ, Thewalt MLW, Hudson FE, Morello A, Laucht A, Yang CH, Saraiva A, Dzurak AS. On-demand electrical control of spin qubits. NATURE NANOTECHNOLOGY 2023; 18:131-136. [PMID: 36635331 DOI: 10.1038/s41565-022-01280-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Once called a 'classically non-describable two-valuedness' by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in turn, hampers noise immunity and adds architectural complexity. Here we exploit a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without a micromagnet. The weak effects of relativistic spin-orbit interaction in silicon are enhanced, leading to a speed up in Rabi frequency by a factor of up to 650 by controlling the energy quantization of electrons in the nanostructure. Fast electrical control is demonstrated in multiple devices and electronic configurations. Using the electrical drive, we achieve a coherence time T2,Hahn ≈ 50 μs, fast single-qubit gates with Tπ/2 = 3 ns and gate fidelities of 99.93%, probed by randomized benchmarking. High-performance all-electrical control improves the prospects for scalable silicon quantum computing.
Collapse
Affiliation(s)
- Will Gilbert
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia.
- Diraq, Sydney, New South Wales, Australia.
| | - Tuomo Tanttu
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
- Diraq, Sydney, New South Wales, Australia
| | - Wee Han Lim
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
- Diraq, Sydney, New South Wales, Australia
| | - MengKe Feng
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
| | - Jonathan Y Huang
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
| | - Jesus D Cifuentes
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
| | - Santiago Serrano
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
| | - Philip Y Mai
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ross C C Leon
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
| | - Christopher C Escott
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
- Diraq, Sydney, New South Wales, Australia
| | - Kohei M Itoh
- School of Fundamental Science and Technology, Keio University, Yokohama, Japan
| | | | | | - Michael L W Thewalt
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Fay E Hudson
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
- Diraq, Sydney, New South Wales, Australia
| | - Andrea Morello
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
| | - Arne Laucht
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
- Diraq, Sydney, New South Wales, Australia
| | - Chih Hwan Yang
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia
- Diraq, Sydney, New South Wales, Australia
| | - Andre Saraiva
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia.
- Diraq, Sydney, New South Wales, Australia.
| | - Andrew S Dzurak
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia.
- Diraq, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
A silicon singlet-triplet qubit driven by spin-valley coupling. Nat Commun 2022; 13:641. [PMID: 35110561 PMCID: PMC8810768 DOI: 10.1038/s41467-022-28302-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/fα dependence consistent with α ~ 0.7, over 9 orders of magnitude in noise frequency. Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz.
Collapse
|
4
|
Vahapoglu E, Slack-Smith JP, Leon RCC, Lim WH, Hudson FE, Day T, Tanttu T, Yang CH, Laucht A, Dzurak AS, Pla JJ. Single-electron spin resonance in a nanoelectronic device using a global field. SCIENCE ADVANCES 2021; 7:7/33/eabg9158. [PMID: 34389538 PMCID: PMC8363148 DOI: 10.1126/sciadv.abg9158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Spin-based silicon quantum electronic circuits offer a scalable platform for quantum computation, combining the manufacturability of semiconductor devices with the long coherence times afforded by spins in silicon. Advancing from current few-qubit devices to silicon quantum processors with upward of a million qubits, as required for fault-tolerant operation, presents several unique challenges, one of the most demanding being the ability to deliver microwave signals for large-scale qubit control. Here, we demonstrate a potential solution to this problem by using a three-dimensional dielectric resonator to broadcast a global microwave signal across a quantum nanoelectronic circuit. Critically, this technique uses only a single microwave source and is capable of delivering control signals to millions of qubits simultaneously. We show that the global field can be used to perform spin resonance of single electrons confined in a silicon double quantum dot device, establishing the feasibility of this approach for scalable spin qubit control.
Collapse
Affiliation(s)
- Ensar Vahapoglu
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - James P Slack-Smith
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Ross C C Leon
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Wee Han Lim
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fay E Hudson
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tom Day
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tuomo Tanttu
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chih Hwan Yang
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Arne Laucht
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Andrew S Dzurak
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Jarryd J Pla
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Zhang X, Hu RZ, Li HO, Jing FM, Zhou Y, Ma RL, Ni M, Luo G, Cao G, Wang GL, Hu X, Jiang HW, Guo GC, Guo GP. Giant Anisotropy of Spin Relaxation and Spin-Valley Mixing in a Silicon Quantum Dot. PHYSICAL REVIEW LETTERS 2020; 124:257701. [PMID: 32639759 DOI: 10.1103/physrevlett.124.257701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In silicon quantum dots (QDs), at a certain magnetic field commonly referred to as the "hot spot," the electron spin relaxation rate (T_{1}^{-1}) can be drastically enhanced due to strong spin-valley mixing. Here, we experimentally find that with a valley splitting of 78.2±1.6 μeV, this hot spot in spin relaxation can be suppressed by more than 2 orders of magnitude when the in-plane magnetic field is oriented at an optimal angle, about 9° from the [100] sample plane. This directional anisotropy exhibits a sinusoidal modulation with a 180° periodicity. We explain the magnitude and phase of this modulation using a model that accounts for both spin-valley mixing and intravalley spin-orbit mixing. The generality of this phenomenon is also confirmed by tuning the electric field and the valley splitting up to 268.5±0.7 μeV.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Zi Hu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai-Ou Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fang-Ming Jing
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rong-Long Ma
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ming Ni
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gang Luo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gang Cao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gui-Lei Wang
- Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xuedong Hu
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, USA
| | - Hong-Wen Jiang
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Ping Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Fidelity benchmarks for two-qubit gates in silicon. Nature 2019; 569:532-536. [PMID: 31086337 DOI: 10.1038/s41586-019-1197-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/28/2019] [Indexed: 11/08/2022]
Abstract
Universal quantum computation will require qubit technology based on a scalable platform1, together with quantum error correction protocols that place strict limits on the maximum infidelities for one- and two-qubit gate operations2,3. Although various qubit systems have shown high fidelities at the one-qubit level4-10, the only solid-state qubits manufactured using standard lithographic techniques that have demonstrated two-qubit fidelities near the fault-tolerance threshold6 have been in superconductor systems. Silicon-based quantum dot qubits are also amenable to large-scale fabrication and can achieve high single-qubit gate fidelities (exceeding 99.9 per cent) using isotopically enriched silicon11,12. Two-qubit gates have now been demonstrated in a number of systems13-15, but as yet an accurate assessment of their fidelities using Clifford-based randomized benchmarking, which uses sequences of randomly chosen gates to measure the error, has not been achieved. Here, for qubits encoded on the electron spin states of gate-defined quantum dots, we demonstrate Bell state tomography with fidelities ranging from 80 to 89 per cent, and two-qubit randomized benchmarking with an average Clifford gate fidelity of 94.7 per cent and an average controlled-rotation fidelity of 98 per cent. These fidelities are found to be limited by the relatively long gate times used here compared with the decoherence times of the qubits. Silicon qubit designs employing fast gate operations with high Rabi frequencies16,17, together with advanced pulsing techniques18, should therefore enable much higher fidelities in the near future.
Collapse
|
7
|
A silicon metal-oxide-semiconductor electron spin-orbit qubit. Nat Commun 2018; 9:1768. [PMID: 29720586 PMCID: PMC5931988 DOI: 10.1038/s41467-018-04200-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/12/2018] [Indexed: 11/09/2022] Open
Abstract
The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin-orbit (SO) effects. Here we advantageously use interface-SO coupling for a critical control axis in a double-quantum-dot singlet-triplet qubit. The magnetic field-orientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface-SO contributions. The resulting all-electrical, two-axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, [Formula: see text], of 1.6 μs is consistent with 99.95% 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-axis qubit control, while not increasing noise relative to other material choices.
Collapse
|
8
|
Zimmerman NM, Huang P, Culcer D. Valley Phase and Voltage Control of Coherent Manipulation in Si Quantum Dots. NANO LETTERS 2017; 17:4461-4465. [PMID: 28657758 DOI: 10.1021/acs.nanolett.7b01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With any roughness at the interface of an indirect-bandgap semiconducting dot, the phase of the valley-orbit coupling can take on a random value. This random value, in double quantum dots, causes a large change in the exchange splitting. We demonstrate a simple analytical method to calculate the phase, and thus the exchange splitting and singlet-triplet qubit frequency, for an arbitrary interface. We then show that, with lateral control of the position of a quantum dot using a gate voltage, the valley-orbit phase can be controlled over a wide range, so that variations in the exchange splitting can be controlled for individual devices. Finally, we suggest experiments to measure the valley phase and the concomitant gate voltage control.
Collapse
Affiliation(s)
- Neil M Zimmerman
- Quantum Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Peihao Huang
- Quantum Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
- Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology , Gaithersburg, Maryland 20742, United States
| | - Dimitrie Culcer
- School of Physics and Australian Research Council Centre of Excellence in Low-Energy Electronics Technologies, UNSW Node, The University of New South Wales , Sydney 2052, Australia
| |
Collapse
|