1
|
Di Luzio L, Galan J, Giannotti M, Irastorza IG, Jaeckel J, Lindner A, Ruz J, Schneekloth U, Sohl L, Thormaehlen LJ, Vogel JK. Probing the axion-nucleon coupling with the next generation of axion helioscopes. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2022; 82:120. [PMID: 35210937 PMCID: PMC8827404 DOI: 10.1140/epjc/s10052-022-10061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
A finite axion-nucleon coupling, nearly unavoidable for QCD axions, leads to the production of axions via the thermal excitation and subsequent de-excitation of 57 Fe isotopes in the sun. We revise the solar bound on this flux adopting the up to date emission rate, and investigate the sensitivity of the proposed International Axion Observatory IAXO and its intermediate stage BabyIAXO to detect these axions. We compare different realistic experimental options and discuss the model dependence of the signal. Already BabyIAXO has sensitivity far beyond previous solar axion searches via the nucleon coupling and IAXO can improve on this by more than an order of magnitude.
Collapse
Affiliation(s)
- Luca Di Luzio
- Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, Padua, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padua, Italy
| | - Javier Galan
- Center for Astroparticles and High Energy Physics (CAPA), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Maurizio Giannotti
- Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161 USA
| | - Igor G. Irastorza
- Center for Astroparticles and High Energy Physics (CAPA), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Joerg Jaeckel
- Institut für theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
| | - Axel Lindner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jaime Ruz
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551 USA
| | - Uwe Schneekloth
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Lukas Sohl
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Lennert J. Thormaehlen
- Institut für theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
| | - Julia K. Vogel
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551 USA
| |
Collapse
|
2
|
Abstract
Dark matter searches have been ongoing for three decades; the lack of a positive discovery of the main candidate, the WIMP, after dedicated efforts, has put axions and axion-like particles in the spotlight. The three main techniques employed to search for them complement each other well in covering a wide range in the parameter space defined by the axion decay constant and the axion mass. The International AXion Observatory (IAXO) is an international collaboration planning to build the fourth generation axion helioscope, with an unparalleled expected sensitivity and discovery potential. The distinguishing characteristic of IAXO is that it will feature a magnet that is designed to maximise the relevant parameters in sensitivity and which will be equipped with X-ray focusing devices and detectors that have been developed for axion physics. In this paper, we review aspects that motivate IAXO and its prototype, BabyIAXO, in the axion, and ALPs landscape. As part of this Special Issue, some emphasis is given on Spanish participation in the project, of which CAPA (Centro de Astropartículas y Física de Altas Energías of the Universidad de Zaragoza) is a strong promoter.
Collapse
|
3
|
Gao C, Liu J, Wang LT, Wang XP, Xue W, Zhong YM. Reexamining the Solar Axion Explanation for the XENON1T Excess. PHYSICAL REVIEW LETTERS 2020; 125:131806. [PMID: 33034473 DOI: 10.1103/physrevlett.125.131806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
The XENON1T collaboration has observed an excess in electronic recoil events below 5 keV over the known background, which could originate from beyond-the-standard-model physics. The solar axion is a well-motivated model that has been proposed to explain the excess, though it has tension with astrophysical observations. The axions traveling from the Sun can be absorbed by the electrons in the xenon atoms via the axion-electron coupling. Meanwhile, they can also scatter with the atoms through the inverse Primakoff process via the axion-photon coupling, which emits a photon and mimics the electronic recoil signals. We found that the latter process cannot be neglected. After including the keV photon produced via the inverse Primakoff process in the detection, the tension with the astrophysical constraints can be significantly reduced. We also explore scenarios involving additional new physics to further alleviate the tension with the astrophysical bounds.
Collapse
Affiliation(s)
- Christina Gao
- Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Jia Liu
- Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - Lian-Tao Wang
- Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Xiao-Ping Wang
- HEP Division, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439, USA
- School of Physics, Beihang University, Beijing 100083, China
| | - Wei Xue
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
| | - Yi-Ming Zhong
- Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Caputo A, Millar AJ, Vitagliano E. Revisiting longitudinal plasmon-axion conversion in external magnetic fields. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.101.123004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Dillon BM, King B. ALP production through non-linear Compton scattering in intense fields. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2018; 78:775. [PMID: 30956563 PMCID: PMC6413628 DOI: 10.1140/epjc/s10052-018-6207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/01/2018] [Indexed: 06/09/2023]
Abstract
We derive production yields for massive pseudo-scalar and scalar axion-like-particles (ALPs), through non-linear Compton scattering of an electron in the background of low- and high-intensity electromagnetic fields. In particular, we focus on electromagnetic fields from Gaussian plane wave laser pulses. A detailed study of the angular distributions and effects of the scalar and pseudo-scalar masses is presented. It is shown that ultra-relativistic seed electrons can be used to produce scalars and pseudo-scalars with masses up to the order of the electron mass. We briefly discuss future applications of this work towards lab-based searches for light beyond-the-Standard-Model particles.
Collapse
Affiliation(s)
- Barry M. Dillon
- Centre for Mathematical Sciences, Plymouth University, Plymouth, PL4 8AA UK
| | - B. King
- Centre for Mathematical Sciences, Plymouth University, Plymouth, PL4 8AA UK
| |
Collapse
|
6
|
Arik M, Aune S, Barth K, Belov A, Borghi S, Bräuninger H, Cantatore G, Carmona JM, Cetin SA, Collar JI, Da Riva E, Dafni T, Davenport M, Eleftheriadis C, Elias N, Fanourakis G, Ferrer-Ribas E, Friedrich P, Galán J, García JA, Gardikiotis A, Garza JG, Gazis EN, Geralis T, Georgiopoulou E, Giomataris I, Gninenko S, Gómez H, Gómez Marzoa M, Gruber E, Guthörl T, Hartmann R, Hauf S, Haug F, Hasinoff MD, Hoffmann DHH, Iguaz FJ, Irastorza IG, Jacoby J, Jakovčić K, Karuza M, Königsmann K, Kotthaus R, Krčmar M, Kuster M, Lakić B, Lang PM, Laurent JM, Liolios A, Ljubičić A, Luzón G, Neff S, Niinikoski T, Nordt A, Papaevangelou T, Pivovaroff MJ, Raffelt G, Riege H, Rodríguez A, Rosu M, Ruz J, Savvidis I, Shilon I, Silva PS, Solanki SK, Stewart L, Tomás A, Tsagri M, van Bibber K, Vafeiadis T, Villar J, Vogel JK, Yildiz SC, Zioutas K. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap. PHYSICAL REVIEW LETTERS 2014; 112:091302. [PMID: 24655238 DOI: 10.1103/physrevlett.112.091302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 06/03/2023]
Abstract
The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10) GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.
Collapse
Affiliation(s)
- M Arik
- Dogus University, Istanbul, Turkey
| | - S Aune
- IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France
| | - K Barth
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - A Belov
- Institute for Nuclear Research (INR), Russian Academy of Sciences, Moscow, Russia
| | - S Borghi
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - H Bräuninger
- Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany
| | - G Cantatore
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste and Università di Trieste, Trieste, Italy
| | - J M Carmona
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | | | - J I Collar
- Enrico Fermi Institute and KICP, University of Chicago, Chicago, Illinois 60637, Illinois, USA
| | - E Da Riva
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - T Dafni
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - M Davenport
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | | | - N Elias
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - G Fanourakis
- National Center for Scientific Research "Demokritos", Athens, Greece
| | - E Ferrer-Ribas
- IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France
| | - P Friedrich
- Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany
| | - J Galán
- IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France and Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - J A García
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - A Gardikiotis
- Physics Department, University of Patras, Patras, Greece
| | - J G Garza
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - E N Gazis
- National Technical University of Athens, Athens, Greece
| | - T Geralis
- National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - I Giomataris
- IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France
| | - S Gninenko
- Institute for Nuclear Research (INR), Russian Academy of Sciences, Moscow, Russia
| | - H Gómez
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - M Gómez Marzoa
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - E Gruber
- Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - T Guthörl
- Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - S Hauf
- Technische Universität Darmstadt, IKP, Darmstadt, Germany
| | - F Haug
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - M D Hasinoff
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - D H H Hoffmann
- Technische Universität Darmstadt, IKP, Darmstadt, Germany
| | - F J Iguaz
- IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France and Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - I G Irastorza
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - J Jacoby
- Johann Wolfgang Goethe-Universität, Institut für Angewandte Physik, Frankfurt am Main, Germany
| | - K Jakovčić
- Rudjer Bošković Institute, Zagreb, Croatia
| | - M Karuza
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste and Università di Trieste, Trieste, Italy
| | - K Königsmann
- Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - R Kotthaus
- Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
| | - M Krčmar
- Rudjer Bošković Institute, Zagreb, Croatia
| | - M Kuster
- Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany and Technische Universität Darmstadt, IKP, Darmstadt, Germany
| | - B Lakić
- Rudjer Bošković Institute, Zagreb, Croatia
| | - P M Lang
- Technische Universität Darmstadt, IKP, Darmstadt, Germany
| | - J M Laurent
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - A Liolios
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Ljubičić
- Rudjer Bošković Institute, Zagreb, Croatia
| | - G Luzón
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - S Neff
- Technische Universität Darmstadt, IKP, Darmstadt, Germany
| | - T Niinikoski
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - A Nordt
- Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany and Technische Universität Darmstadt, IKP, Darmstadt, Germany
| | - T Papaevangelou
- IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France
| | - M J Pivovaroff
- Lawrence Livermore National Laboratory, Livermore, California 94550, California, USA
| | - G Raffelt
- Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
| | - H Riege
- Technische Universität Darmstadt, IKP, Darmstadt, Germany
| | - A Rodríguez
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - M Rosu
- Technische Universität Darmstadt, IKP, Darmstadt, Germany
| | - J Ruz
- European Organization for Nuclear Research (CERN), Genève, Switzerland and Lawrence Livermore National Laboratory, Livermore, California 94550, California, USA
| | - I Savvidis
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - I Shilon
- European Organization for Nuclear Research (CERN), Genève, Switzerland and Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - P S Silva
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - S K Solanki
- Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| | - L Stewart
- European Organization for Nuclear Research (CERN), Genève, Switzerland
| | - A Tomás
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - M Tsagri
- European Organization for Nuclear Research (CERN), Genève, Switzerland and Physics Department, University of Patras, Patras, Greece
| | - K van Bibber
- Lawrence Livermore National Laboratory, Livermore, California 94550, California, USA
| | - T Vafeiadis
- European Organization for Nuclear Research (CERN), Genève, Switzerland and Aristotle University of Thessaloniki, Thessaloniki, Greece and Physics Department, University of Patras, Patras, Greece
| | - J Villar
- Grupo de Investigación de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
| | - J K Vogel
- Albert-Ludwigs-Universität Freiburg, Freiburg, Germany and Lawrence Livermore National Laboratory, Livermore, California 94550, California, USA
| | | | - K Zioutas
- European Organization for Nuclear Research (CERN), Genève, Switzerland and Physics Department, University of Patras, Patras, Greece
| |
Collapse
|
7
|
Viaux N, Catelan M, Stetson PB, Raffelt GG, Redondo J, Valcarce AAR, Weiss A. Neutrino and axion bounds from the globular cluster M5 (NGC 5904). PHYSICAL REVIEW LETTERS 2013; 111:231301. [PMID: 24476250 DOI: 10.1103/physrevlett.111.231301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 06/03/2023]
Abstract
The red-giant branch (RGB) in globular clusters is extended to larger brightness if the degenerate helium core loses too much energy in "dark channels." Based on a large set of archival observations, we provide high-precision photometry for the Galactic globular cluster M5 (NGC 5904), allowing for a detailed comparison between the observed tip of the RGB with predictions based on contemporary stellar evolution theory. In particular, we derive 95% confidence limits of g(ae)<4.3×10(-13) on the axion-electron coupling and μ(ν)<4.5×10(-12)μ(B) (Bohr magneton μ(B)=e/2m(e)) on a neutrino dipole moment, based on a detailed analysis of statistical and systematic uncertainties. The cluster distance is the single largest source of uncertainty and can be improved in the future.
Collapse
Affiliation(s)
- N Viaux
- Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile and Centro de Astroingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackena 4860, 782-0436 Macul, Santiago, Chile and The Milky Way Millennium Nucleus, Avenida Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile
| | - M Catelan
- Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile and Centro de Astroingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackena 4860, 782-0436 Macul, Santiago, Chile and The Milky Way Millennium Nucleus, Avenida Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile
| | - P B Stetson
- National Research Council, 5071 West Saanich Road, Victoria, British Columbia V9E 2E7, Canada
| | - G G Raffelt
- Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
| | - J Redondo
- Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany and Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstrasse 37, 80333 München, Germany
| | - A A R Valcarce
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - A Weiss
- Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany
| |
Collapse
|
8
|
Arik M, Aune S, Barth K, Belov A, Borghi S, Bräuninger H, Cantatore G, Carmona JM, Cetin SA, Collar JI, Dafni T, Davenport M, Eleftheriadis C, Elias N, Ezer C, Fanourakis G, Ferrer-Ribas E, Friedrich P, Galán J, García JA, Gardikiotis A, Gazis EN, Geralis T, Giomataris I, Gninenko S, Gómez H, Gruber E, Guthörl T, Hartmann R, Haug F, Hasinoff MD, Hoffmann DHH, Iguaz FJ, Irastorza IG, Jacoby J, Jakovčić K, Karuza M, Königsmann K, Kotthaus R, Krčmar M, Kuster M, Lakić B, Laurent JM, Liolios A, Ljubičić A, Lozza V, Lutz G, Luzón G, Morales J, Niinikoski T, Nordt A, Papaevangelou T, Pivovaroff MJ, Raffelt G, Rashba T, Riege H, Rodríguez A, Rosu M, Ruz J, Savvidis I, Silva PS, Solanki SK, Stewart L, Tomás A, Tsagri M, van Bibber K, Vafeiadis T, Villar JA, Vogel JK, Yildiz SC, Zioutas K. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas. PHYSICAL REVIEW LETTERS 2011; 107:261302. [PMID: 22243149 DOI: 10.1103/physrevlett.107.261302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Indexed: 05/31/2023]
Abstract
The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.
Collapse
Affiliation(s)
- M Arik
- Dogus University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
|
11
|
Chou AS, Wester W, Baumbaugh A, Gustafson HR, Irizarry-Valle Y, Mazur PO, Steffen JH, Tomlin R, Yang X, Yoo J. Search for axionlike particles using a variable-baseline photon-regeneration technique. PHYSICAL REVIEW LETTERS 2008; 100:080402. [PMID: 18352604 DOI: 10.1103/physrevlett.100.080402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Indexed: 05/26/2023]
Abstract
We report the first results of the GammeV experiment, a search for milli-eV mass particles with axionlike couplings to two photons. The search is performed using a "light shining through a wall" technique where incident photons oscillate into new weakly interacting particles that are able to pass through the wall and subsequently regenerate back into detectable photons. The oscillation baseline of the apparatus is variable, thus allowing probes of different values of particle mass. We find no excess of events above background and are able to constrain the two-photon couplings of possible new scalar (pseudoscalar) particles to be less than 3.1x10;(-7) GeV-1 (3.5x10;(-7) GeV-1) in the limit of massless particles.
Collapse
Affiliation(s)
- A S Chou
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Maity D, Roy S, SenGupta S. Constraining the Randall-Sundrum modulus in the light of recent PVLAS data. Int J Clin Exp Med 2008. [DOI: 10.1103/physrevd.77.015010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Davoudiasl H, Huber P. Detecting solar axions using Earth's magnetic field. PHYSICAL REVIEW LETTERS 2006; 97:141302. [PMID: 17155238 DOI: 10.1103/physrevlett.97.141302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Indexed: 05/12/2023]
Abstract
We show that solar axion conversion to photons in the Earth's magnetosphere can produce an x-ray flux, with average energy omega approximately 4 keV, which is measurable on the dark side of the Earth. The smallness of the Earth's magnetic field is compensated by a large magnetized volume. For axion masses m(a) less, similar10(-4) eV, a low-Earth-orbit x-ray detector with an effective area of 10(4) cm(2), pointed at the solar core, can probe the photon-axion coupling down to 10(-11) GeV-1, in 1 yr. Thus, the sensitivity of this new approach will be an order of magnitude beyond current laboratory limits.
Collapse
Affiliation(s)
- Hooman Davoudiasl
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
14
|
Gabrielli E, Huitu K, Roy S. Photon propagation in magnetic and electric fields with scalar/pseudoscalar couplings: A new look. Int J Clin Exp Med 2006. [DOI: 10.1103/physrevd.74.073002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Zioutas K, Andriamonje S, Arsov V, Aune S, Autiero D, Avignone FT, Barth K, Belov A, Beltrán B, Bräuninger H, Carmona JM, Cebrián S, Chesi E, Collar JI, Creswick R, Dafni T, Davenport M, Di Lella L, Eleftheriadis C, Englhauser J, Fanourakis G, Farach H, Ferrer E, Fischer H, Franz J, Friedrich P, Geralis T, Giomataris I, Gninenko S, Goloubev N, Hasinoff MD, Heinsius FH, Hoffmann DHH, Irastorza IG, Jacoby J, Kang D, Königsmann K, Kotthaus R, Krcmar M, Kousouris K, Kuster M, Lakić B, Lasseur C, Liolios A, Ljubicić A, Lutz G, Luzón G, Miller DW, Morales A, Morales J, Mutterer M, Nikolaidis A, Ortiz A, Papaevangelou T, Placci A, Raffelt G, Ruz J, Riege H, Sarsa ML, Savvidis I, Serber W, Serpico P, Semertzidis Y, Stewart L, Vieira JD, Villar J, Walckiers L, Zachariadou K. First results from the CERN axion solar telescope. PHYSICAL REVIEW LETTERS 2005; 94:121301. [PMID: 15903903 DOI: 10.1103/physrevlett.94.121301] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2004] [Indexed: 05/02/2023]
Abstract
Hypothetical axionlike particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field ("axion helioscope"), they would be transformed into x-rays with energies of a few keV. Using a decommissioned Large Hadron Collider test magnet, the CERN Axion Solar Telescope ran for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling g(agamma)<1.16x10(-10) GeV-1 at 95% C.L. for m(a) less, similar 0.02 eV. This limit, assumption-free, is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment over a broad range of axion masses.
Collapse
Affiliation(s)
- K Zioutas
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Horvat R, Krčmar M, Lakić B. CERN Axion Solar Telescope as a probe of large extra dimensions. Int J Clin Exp Med 2004. [DOI: 10.1103/physrevd.69.125011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Moriyama S. Proposal to search for a monochromatic component of solar axions using 57Fe. PHYSICAL REVIEW LETTERS 1995; 75:3222-3225. [PMID: 10059530 DOI: 10.1103/physrevlett.75.3222] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
18
|
Massó E, Toldr R. Light spinless particle coupled to photons. PHYSICAL REVIEW. D, PARTICLES AND FIELDS 1995; 52:1755-1763. [PMID: 10019402 DOI: 10.1103/physrevd.52.1755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
19
|
Lazarus DM, Smith GC, Cameron R, Melissinos AC, Ruoso G, Semertzidis YK, Nezrick FA. Search for solar axions. PHYSICAL REVIEW LETTERS 1992; 69:2333-2336. [PMID: 10046458 DOI: 10.1103/physrevlett.69.2333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
20
|
Raffelt G, Sigl G, Stodolsky L. Quantum statistics in particle mixing phenomena. PHYSICAL REVIEW. D, PARTICLES AND FIELDS 1992; 45:1782-1788. [PMID: 10014551 DOI: 10.1103/physrevd.45.1782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
21
|
Ressell MT. Limits to the radiative decay of the axion. PHYSICAL REVIEW. D, PARTICLES AND FIELDS 1991; 44:3001-3020. [PMID: 10013756 DOI: 10.1103/physrevd.44.3001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
22
|
Burrows A, Ressell MT, Turner MS. Axions and SN 1987A: Axion trapping. PHYSICAL REVIEW. D, PARTICLES AND FIELDS 1990; 42:3297-3309. [PMID: 10012728 DOI: 10.1103/physrevd.42.3297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|