1
|
Liang L. The recovery strategy of interdependent networks under targeted attacks. Heliyon 2024; 10:e37774. [PMID: 39315174 PMCID: PMC11417261 DOI: 10.1016/j.heliyon.2024.e37774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
To effectively mitigate failures in interdependent systems during targeted-attack scenarios, a common approach is to pre-store repair resources. The question arises: what constitutes an appropriate quantity of these pre-stored repair resources? The paper introduces a novel recovery strategy aimed at providing guidance for this issue. Current recovery strategies frequently emphasize the dynamic interplay between cascading failures and recovery processes, indicating that interventions during the recovery phase are permissible. In this context, the recovery strategy focus on recovering a predetermined number of failed nodes that are adjacent to the largest connected component of each individual network, along with their dependent nodes, at each recovery stage. Simulation results demonstrate that this strategy significantly enhances the capacity to prevent system breakdowns for interdependent networks subjected to targeted attacks. Therefore, by determining the necessary recovery steps to prevent system failures and the appropriate repair resources required for each step, this novel strategy can serve as a valuable reference for the pre-storage of repair resources. Significantly, the strategy can be effectively applied to interdependent networks associated with critical infrastructure, such as power grids and communication networks.
Collapse
Affiliation(s)
- Li Liang
- 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang University of Science and Technology, School of Science, China
| |
Collapse
|
2
|
Meng Y, Lai YC, Grebogi C. The fundamental benefits of multiplexity in ecological networks. J R Soc Interface 2022; 19:20220438. [PMID: 36167085 PMCID: PMC9514891 DOI: 10.1098/rsif.2022.0438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
A tipping point presents perhaps the single most significant threat to an ecological system as it can lead to abrupt species extinction on a massive scale. Climate changes leading to the species decay parameter drifts can drive various ecological systems towards a tipping point. We investigate the tipping-point dynamics in multi-layer ecological networks supported by mutualism. We unveil a natural mechanism by which the occurrence of tipping points can be delayed by multiplexity that broadly describes the diversity of the species abundances, the complexity of the interspecific relationships, and the topology of linkages in ecological networks. For a double-layer system of pollinators and plants, coupling between the network layers occurs when there is dispersal of pollinator species. Multiplexity emerges as the dispersing species establish their presence in the destination layer and have a simultaneous presence in both. We demonstrate that the new mutualistic links induced by the dispersing species with the residence species have fundamental benefits to the well-being of the ecosystem in delaying the tipping point and facilitating species recovery. Articulating and implementing control mechanisms to induce multiplexity can thus help sustain certain types of ecosystems that are in danger of extinction as the result of environmental changes.
Collapse
Affiliation(s)
- Yu Meng
- Institute for Complex Systems and Mathematical Biology, School of Natural and Computing Sciences, King’s College, University of Aberdeen, AB24 3UE, UK
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, Dresden 01187, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, School of Natural and Computing Sciences, King’s College, University of Aberdeen, AB24 3UE, UK
| |
Collapse
|
3
|
Long YS, Zhai ZM, Tang M, Liu Y, Lai YC. Structural position vectors and symmetries in complex networks. CHAOS (WOODBURY, N.Y.) 2022; 32:093132. [PMID: 36182361 DOI: 10.1063/5.0107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Symmetries, due to their fundamental importance to dynamical processes on networks, have attracted a great deal of current research. Finding all symmetric nodes in large complex networks typically relies on automorphism groups from algebraic-group theory, which are solvable in quasipolynomial time. We articulate a conceptually appealing and computationally extremely efficient approach to finding and characterizing all symmetric nodes by introducing a structural position vector (SPV) for each node in networks. We establish the mathematical result that symmetric nodes must have the same SPV value and demonstrate, using six representative complex networks from the real world, that all symmetric nodes in these networks can be found in linear time. Furthermore, the SPVs not only characterize the similarity of nodes but also quantify the nodal influences in propagation dynamics. A caveat is that the proved mathematical result relating the SPV values to nodal symmetries is not sufficient; i.e., nodes having the same SPV values may not be symmetric, which arises in regular networks or networks with a dominant regular component. We point out with an analysis that this caveat is, in fact, shared by the known existing approaches to finding symmetric nodes in the literature. We further argue, with the aid of a mathematical analysis, that our SPV method is generally effective for finding the symmetric nodes in real-world networks that typically do not have a dominant regular component. Our SPV-based framework, therefore, provides a physically intuitive and computationally efficient way to uncover, understand, and exploit symmetric structures in complex networks arising from real-world applications.
Collapse
Affiliation(s)
- Yong-Shang Long
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zheng-Meng Zhai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Ming Tang
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ying Liu
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
4
|
Liu X, Maiorino E, Halu A, Glass K, Prasad RB, Loscalzo J, Gao J, Sharma A. Robustness and lethality in multilayer biological molecular networks. Nat Commun 2020; 11:6043. [PMID: 33247151 PMCID: PMC7699651 DOI: 10.1038/s41467-020-19841-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Robustness is a prominent feature of most biological systems. Most previous related studies have been focused on homogeneous molecular networks. Here we propose a comprehensive framework for understanding how the interactions between genes, proteins and metabolites contribute to the determinants of robustness in a heterogeneous biological network. We integrate heterogeneous sources of data to construct a multilayer interaction network composed of a gene regulatory layer, a protein-protein interaction layer, and a metabolic layer. We design a simulated perturbation process to characterize the contribution of each gene to the overall system's robustness, and find that influential genes are enriched in essential and cancer genes. We show that the proposed mechanism predicts a higher vulnerability of the metabolic layer to perturbations applied to genes associated with metabolic diseases. Furthermore, we find that the real network is comparably or more robust than expected in multiple random realizations. Finally, we analytically derive the expected robustness of multilayer biological networks starting from the degree distributions within and between layers. These results provide insights into the non-trivial dynamics occurring in the cell after a genetic perturbation is applied, confirming the importance of including the coupling between different layers of interaction in models of complex biological systems.
Collapse
Affiliation(s)
- Xueming Liu
- Key Laboratory of Imaging Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Enrico Maiorino
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Arda Halu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rashmi B Prasad
- Genomics Diabetes and Endocrinology, Lund University Diabetes Centre, CRC, Malmö, SE, 20502, Sweden
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jianxi Gao
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Amitabh Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|